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In a horizontal layer of fluid heated from
below and subject to gravity, a state of cel-
lular convective flow called Rayleigh—Bénard
convection! occurs. Experiments have shown
that in such a system, shear flow modes (span-
ning the horizontal dimension of the system)
can be destabilized?. In tokamak plasmas, it is
thought that a shear flow in the edge layer may
be responsible for the so-called H-mode of con-
finement: convection cells form as a result of the
nonlinear development of the Rayleigh-Taylor
instability in regions of unfavorable magnetic
curvature and lead to the generation of shear
flow, creating a barrier to particle transport.

In this work we make a Fourier expansion of
the stream function and temperature fields, and
then make a finite truncation of the infinite set
of ODE’s obtained. We then examine the condi-
tions under which the truncations preserve the
invariants of the full PDE’s in the dissipation-
less limit.

EQUATIONS OF THE SYSTEM

The problem consists of a 2-D incompress-
ible fluid subject to gravity and lying between
two horizontal plates with fixed temperature
difference AT, with a hotter bottom plate. The
velocity and temperature fields are periodic in
the = (horizontal) direction, and at the walls
we use stress-free boundary conditions. In the
Boussinesq approximation, the dimensionless
equations governing the flow are
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where X is the stream function (with v =
(—0,X,0xX)), T is the temperature devi-

ation from a linear profile, v is the kin-
ematic viscosity, and x is the thermal con-
ductivity.  The Poisson bracket is defined
as {A,B}=0,A0,B - 0,A0,B.

In the dissipationless limit, where v and &
are set equal to zero, (1) conserves the total
energy:
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where the angle brackets denote an average over
the domain. Equations (1) also conserve (7T')
and some quadratic invariants which are easily
preserved by truncations, so we will not deal
with them here.

MODAL EXPANSION

We now expand the two fields in Fourier
modes:
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where k is the ratio of the height of a con-
vection cell to its width. This expansion is
more general than traditional ones® in that it
allows for a variable phase in the rolls and ad-
mits a non-vanishing shear flow part (the X,
modes). Expansion (3) can then be inserted
into (1) to yield an infinite sequence of coupled
nonlinear ODE’s*. A truncation is made by in-
cluding only the finite set of modes Ay for the
stream function and Ar for the temperature.
If, say, Ay contains X,,,, then it must also con-
tain X, _p, X_pn, and X_,, _,, since these are
related by the boundary conditions. We define
M to be the largest mode number m included
in Ay.

Such a truncation will preserve the quad-
ratic invariants of the full PDE’s, but (7") and
the energy (2) will in general not be conserved.
To see how we can preserve the energy (2), we

look at the expansion for its kinetic and poten-
tial part:
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FIG. 1. Modes that must be included in a truncation
to preserve the invariants.
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After taking the time derivative of (4) and
(5) and using the equations of motion for the
modes, we obtain the following condition for
the conservation of E:
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The T}, (m,n > 0) term cannot be canceled by
a term from the sum over p’, since m + p’ > m.
Only the term in the first sum with p = 2m can
cancel it. The largest m is M, and the sums
over p and p' came from the time derivative of
U. From (5) we conclude that we need to in-
clude all modes of the form Ty, p=1,...2M,
the odd modes helping to conserve (7T') (see
Fig. 1). The truncation then preserves all of
the invariants of the full PDE’s.

More importantly, truncations that preserve
the invariants in the dissipationless limit can be
shown to be bounded when the dissipation is
included?. This is not true of arbitrary trunca-
tions, as can be seen in Fig. 2, where a compar-

ison of the total heat flux is made between a 6—
mode truncation popular in the literature® and

its energy-conserving counterpart (7 modes).

The curve of the 7—-ODE model has a slope

closer to experiment.
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FIG. 2. Plot of the total heat flux vs the reduced
Rayleigh number r for the 6-ODE (dashed line) and
the 7-ODE (solid line) models. For this graph, k = 1.2,
o = 10. The dotted line has a slope of 5.05, correspond-

ing to the experimental result? for o = 7.

In a steady-state, the energy-conserving
truncations display an z-averaged heat flow
which is independent of z, as physically expec-
ted*. The cascade of energy is modeled without
extraneous terms adding unphysical dissipation
or sources to the system. The boundedness
property, the proof of which depends strongly
on the energy conserving modes, is also desir-
able from a physical standpoint. For these reas-
ons, energy-conserving truncations are a more
reasonable form of truncation to use in model-
ing the Rayleigh—Bénard system.
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