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Summary The emerging field of topological fluid kinematics is conaanwith design and analysis of effective fluid mixers based on
the topology of the motion of stirring apparatus and othefggéc flow structures. Knowing even a small amount of flowdimgy
often permits very powerful diagnoses, such as provingexie of chaotic dynamics and a lower bound on mixing meassed

on material stretching. In this paper we present a canomniegihod for examining flows on surfaces of arbitrary genusrmyihe flow
topology encoded as a braid. The method may be used to studiyfixing driven by an arbitrary number of stirrers in eitfeunded

or spatially-periodic fluid domains. Additionally, and ik@ previous techniques, the current work may also be agptiflows on
manifolds of higher genus.

INTRODUCTION

Over the last eight years, a number of authors have invéstigaow efficient laminar fluid mixing can be achieved by
engineering fluid flows with a favourable topology. The idéajmplying topological tools to fluid mixing was proposed
by Boyland, Aref and Stremler [1]. They explain that certame-periodic stirring motions give rise to a mapping of
the fluid domain onto itself that has the topology of a pseAdosov map. These maps are desirable for fluid mixing
as they have chaotic dynamics, and a positive topologidabpy which guarantees exponential stretching and fgldin
of material lines. The theory is particularly attractivechase it requires only continuity, and so the rapid streglaind
folding is independent of the dynamical equations satiddiethe fluid.

Topology of a fluid flow may be encoded in several ways, but tbetrmommon and succinct description uses the language
of braid groups. A braid encodes how the fluid stirrers pasarad each other, and, in a spatially-periodic domain, how
stirrers tour the periodic directions. A description of fletepology using braids has been presented before in a fluids
context [1, 2], and more generally by Birman [3], so for btgwie omit one here. The key result is that the topological
entropy of a braid embedded in a flow provides a rigorous Idveemd on the topological entropy of the flow itself. In
the fluid mixing context it can be desirable to study reldyiveng braids corresponding to large collections of peidod
flow structures. This is a significant computational chajksrand so some of the literature in the area of topologidal flu
kinematics has been devoted to developing fast techniguesmputing braid entropies [2, 4].

The fastest technique for a bounded domain is due to Moussadfiruses a dynamical system to compute the action
of braids on a Dynnikov-coordinate encoding of topolodicalon-trivial material loops [4]. The exponential growth
rate of such loops converges to the braid entropy. Finn ariffe@hlt derived a more general dynamical system, using a
triangulation method, to describe the action of braidingamains with one or two spatially-periodic directions [2] the
present work we present a canonical method for examiningsftmvsurfaces of arbitrary genus given the flow topology
encoded as a braid. The method may be used to study fluid mikiagn by an arbitrary number of stirrers in either
bounded or spatially-periodic fluid domains. Additionaliynd unlike previous techniques, the current work may a¢so b
applied to flows on manifolds of higher genus.

PANTS DECOMPOSITION, DEHN-THURSTON COORDINATES AND BRAID S

It is not possible to present full details of the techniquehiis short paper, so instead we give an outline and present
an illustrative example. Full details will be prepared fasubbsequent article. We consider a surface of ggnuih n
punctures. In a fluids context a puncture is a stirrer. Theigglis the number of holes, with = 0 for bounded flows or

g = 1 for spatially-periodic flows. We also considgr> 1 for flows on surfaces with a more complicated topology that
may be produced by some exotic physical constraint. Fig(akillustrates a domain with three holes and four stirrers.

Figure 1. (a) A surface of genus three with four punctures contingodsformed to standard form and decomposed into pairs opant
(b) The action of braid letters;, » andp; may be expressed in terms of fundamental transformatioshéhatf’ and full Dehn twists.



Figure 2. Deformation of a closed loop under the action of the silvalidmpflaflpl on a surface of genus one with two punctures.
Each row corresponds to one braid letter, beginning withThe actions of; ando; * are achieved by half Dehn twists (hDt). The
motions around the holgy, and p;!, are achieved by making cuts, full Dehn twists (Dt), and regui To apply these Dehn twists
it is necessary to perform an isotopy (iso) between the uarg&eps to maintain the correct twisting conventions neéu¢he pants
coordinate system [5].

Following the notation of Birman [3], the braiding motions the surface are labelled, corresponding to interchanging
the position of neighbouring punctures, anar p;, corresponding to a puncture touring each hole (which cadobe in

two ways). To determine the action of braids on material foap employ a pair-of-pants decomposition of the surface,
and use Dehn—Thurston coordinates to encode loops, falipthie conventions used by Penner [5]. By Euler’'s formula
exactlyp = 2g + n — 2 pants are required for such a decomposition. To give a sydiemay of computing braid actions

it is convenient to perform first a continuous deformatiothef surface to a standard form with a tree of punctures and a
tree of holes. This is shown for our example surface in Fidijed.

Our main contribution is how to perform the action of the tiaiterss;, 7, andp;. These actions are achieved through a
sequence of Dehn twists (full twists around the boundaryéenh two pants—see Figure 1(b)) and a special manoeuvre
which may only be applied to pairs of punctures which amotméshalf Dehn twist. To compute these actions in Dehn—
Thurston coordinates also involves Penner’s two fundaat¢r@insformations [5], and some cutting and rejoining ef th
surface. The details are non-trivial, but fortunately théca of certain braids can be simplified by appealing to tteedh
group presentation [3].

To illustrate the process we show in Figure 2 the action oftiteed Ulpl_lal_lpl on a loop in a surface with genus

g = 1 andn = 2 punctures. This corresponds to a flow on a domain with pegitydin one direction driven by two
stirrers. The braid is readily realised with rotating gegrin a batch mixer and produces a large topological entrépy o
log(3 + 2v/2) ~ 1.7627 [6]. An entropy estimate based on iteration of our dynansgatem converges to this quantity.
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