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Matthew Finn∗ & Jean-Luc Thiffeault∗∗
∗School of Mathematical Sciences, University of Adelaide, South Australia 5005, Australia

∗∗Department of Mathematics, University of Wisconsin, Madison, USA

Summary The emerging field of topological fluid kinematics is concerned with design and analysis of effective fluid mixers based on
the topology of the motion of stirring apparatus and other periodic flow structures. Knowing even a small amount of flow topology
often permits very powerful diagnoses, such as proving existence of chaotic dynamics and a lower bound on mixing measures based
on material stretching. In this paper we present a canonicalmethod for examining flows on surfaces of arbitrary genus given the flow
topology encoded as a braid. The method may be used to study fluid mixing driven by an arbitrary number of stirrers in eitherbounded
or spatially-periodic fluid domains. Additionally, and unlike previous techniques, the current work may also be applied to flows on
manifolds of higher genus.

INTRODUCTION

Over the last eight years, a number of authors have investigated how efficient laminar fluid mixing can be achieved by
engineering fluid flows with a favourable topology. The idea of applying topological tools to fluid mixing was proposed
by Boyland, Aref and Stremler [1]. They explain that certaintime-periodic stirring motions give rise to a mapping of
the fluid domain onto itself that has the topology of a pseudo-Anosov map. These maps are desirable for fluid mixing
as they have chaotic dynamics, and a positive topological entropy, which guarantees exponential stretching and folding
of material lines. The theory is particularly attractive because it requires only continuity, and so the rapid stretching and
folding is independent of the dynamical equations satisfiedby the fluid.
Topology of a fluid flow may be encoded in several ways, but the most common and succinct description uses the language
of braid groups. A braid encodes how the fluid stirrers pass around each other, and, in a spatially-periodic domain, how
stirrers tour the periodic directions. A description of flowtopology using braids has been presented before in a fluids
context [1, 2], and more generally by Birman [3], so for brevity we omit one here. The key result is that the topological
entropy of a braid embedded in a flow provides a rigorous lowerbound on the topological entropy of the flow itself. In
the fluid mixing context it can be desirable to study relatively long braids corresponding to large collections of periodic
flow structures. This is a significant computational challenge, and so some of the literature in the area of topological fluid
kinematics has been devoted to developing fast techniques for computing braid entropies [2, 4].
The fastest technique for a bounded domain is due to Moussafirand uses a dynamical system to compute the action
of braids on a Dynnikov-coordinate encoding of topologically non-trivial material loops [4]. The exponential growth
rate of such loops converges to the braid entropy. Finn and Thiffeault derived a more general dynamical system, using a
triangulation method, to describe the action of braiding indomains with one or two spatially-periodic directions [2].In the
present work we present a canonical method for examining flows on surfaces of arbitrary genus given the flow topology
encoded as a braid. The method may be used to study fluid mixingdriven by an arbitrary number of stirrers in either
bounded or spatially-periodic fluid domains. Additionally, and unlike previous techniques, the current work may also be
applied to flows on manifolds of higher genus.

PANTS DECOMPOSITION, DEHN–THURSTON COORDINATES AND BRAID S

It is not possible to present full details of the technique inthis short paper, so instead we give an outline and present
an illustrative example. Full details will be prepared for asubsequent article. We consider a surface of genusg with n

punctures. In a fluids context a puncture is a stirrer. The genusg is the number of holes, withg = 0 for bounded flows or
g = 1 for spatially-periodic flows. We also considerg > 1 for flows on surfaces with a more complicated topology that
may be produced by some exotic physical constraint. Figure 1(a) illustrates a domain with three holes and four stirrers.

Figure 1. (a) A surface of genus three with four punctures continuously deformed to standard form and decomposed into pairs of pants;
(b) The action of braid lettersσi, τi andρi may be expressed in terms of fundamental transformations and ‘half’ and full Dehn twists.



Figure 2. Deformation of a closed loop under the action of the silver braidσ1ρ
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ρ1 on a surface of genus one with two punctures.

Each row corresponds to one braid letter, beginning withσ1. The actions ofσ1 andσ
−1

1
are achieved by half Dehn twists (hDt). The

motions around the hole,ρ1 andρ
−1

1
, are achieved by making cuts, full Dehn twists (Dt), and gluing. To apply these Dehn twists

it is necessary to perform an isotopy (iso) between the various steps to maintain the correct twisting conventions needed in the pants
coordinate system [5].

Following the notation of Birman [3], the braiding motions on the surface are labelledσi, corresponding to interchanging
the position of neighbouring punctures, andτi or ρi, corresponding to a puncture touring each hole (which can bedone in
two ways). To determine the action of braids on material loops we employ a pair-of-pants decomposition of the surface,
and use Dehn–Thurston coordinates to encode loops, following the conventions used by Penner [5]. By Euler’s formula
exactlyp = 2g + n− 2 pants are required for such a decomposition. To give a systematic way of computing braid actions
it is convenient to perform first a continuous deformation ofthe surface to a standard form with a tree of punctures and a
tree of holes. This is shown for our example surface in Figure1(a).
Our main contribution is how to perform the action of the braid lettersσi, τi andρi. These actions are achieved through a
sequence of Dehn twists (full twists around the boundary between two pants—see Figure 1(b)) and a special manoeuvre
which may only be applied to pairs of punctures which amountsto ahalf Dehn twist. To compute these actions in Dehn–
Thurston coordinates also involves Penner’s two fundamental transformations [5], and some cutting and rejoining of the
surface. The details are non-trivial, but fortunately the action of certain braids can be simplified by appealing to the braid
group presentation [3].
To illustrate the process we show in Figure 2 the action of thebraid σ1ρ

−1

1
σ
−1

1
ρ1 on a loop in a surface with genus

g = 1 andn = 2 punctures. This corresponds to a flow on a domain with periodicity in one direction driven by two
stirrers. The braid is readily realised with rotating gearing in a batch mixer and produces a large topological entropy of
log(3 + 2

√
2) ≈ 1.7627 [6]. An entropy estimate based on iteration of our dynamicalsystem converges to this quantity.
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