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SPEEDING UP MIXING WITH MOVING WALLS
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Summary Mixing in viscous fluids is challenging, but chaotic advection in principle allows efficient mixing. In the best possible
scenario, the decay rate of the concentration profile of a passive scalar should be exponential in time. In practice, several authors have
found that the no-slip boundary condition at the walls of a vessel can slow down mixing considerably, turning an exponential decay
into a power law. This slowdown affects the whole mixing region, and not just the vicinity of the wall. The reason is that when the
ergodic mixing region extends to the wall, a separatrix connects to it. The approach to the wall along that separatrix is polynomial in
time and dominates the long-time decay. However, if we move the walls closed orbits appear, separated from the bulk by a hyperbolic
fixed point with a homoclinic orbit. The long-time approach to the fixed point is exponential, so we recover an overall exponential
decay, albeit with a thin unmixed region near the wall.

THE FIGURE-EIGHT PROTOCOL

Figure (a) shows the result of a mixing experiment where a circular rod is moved slowly in a viscous flow following a
‘figure-eight’ trajectory. Three-dimensional effects are negligible, and the fluid (sugar syrup) can be treated as a Stokes
flow. The passive scalar (darker fluid) is India ink. The rod stretches and folds an initial blob of ink until it filaments
and diffusion takes over. A numerically-computed Poincaré section for this flow is shown in Fig. (b). It is evident that
the phase space of trajectories consists of one large chaotic region, with no apparent islands. Furthermore, the chaotic
region extends all the way to the wall. Two separatrices are also apparent, connected to the wall at the red dots. The
upper separatrix corresponds to a separation point, and the lower one to a re-attachment point. Since the entire mixing
domain consists of one ergodic component, we might expect that the decay rate for the concentration intensity would
be exponential. This is not the case: recent work [1, 2, 3] has demonstrated that the slow dynamics associated with the
no-slip boundary condition at the wall limit the rate of decay. Furthermore, we have show experimentally and in a map [3]
that this slow decay affects the entire mixing region, and is not limited to the vicinity of the wall. We will show why this
is so by a simple model, and demonstrate that mixing can be accelerated by moving the walls.

FLOW NEAR THE WALL

As can easily be seen in the Poincaré section (Fig. (b)), the ‘effective’ velocity field near the wall only reverses sign in two
places, at separatrices connected to the wall. Near the wall, incompressibility and the no-slip boundary condition dictate

u = A(x)y + O
(
y2

)
, v = − 1

2A
′(x)y2 + O

(
y3

)
. (1)

Here x is a periodic variable along the wall, 0 ≤ y � 1 measures the distance from the wall, and u and v are
the corresponding velocity components. The streamfunction for (1) is ψ(x, y) = 1

2A(x)y2 + O
(
y3

)
, with (u, v) =

(∂yψ , −∂xψ). The streamfunction tells us the obvious fact that the wall y = 0 is a streamline with ψ = 0. If two sepa-
ratrices are to be connected to the wall, as is evident in Fig. (b), then we need ψ = 0 for y > 0; this can only happen at
points x with A(x) = 0. We conclude that A(x) must have two zeros corresponding to the separatrices in Fig. (b). We
choose x = 0 to be the point where the lower separatrix is attached, and measure x counterclockwise around the wall.
Every point (x, y) = (x0, 0) on the wall is a parabolic fixed point. Near most of these points the dynamics are boring:
particles just stream along following ẋ = A(x0)y, and approach or recede from the wall depending on the sign of A′(x0).
Eventually all trajectories leave the neighbourhood of (x0, 0). However, for the two values of x for which A(x) vanishes,
we get separatrices. We focus on the separatrix at x = 0, where A(0) = 0, and Eq. (1) become

Ẋ = A′(0)XY + O
(
X2Y , Y 2

)
, Ẏ = − 1

2A
′(0)Y 2 + O

(
XY 2 , Y 3

)
, (2)

with (x, y) = (0+X, 0+Y ) and (X,Y ) small expansion variables. Now the set {X = 0, Y > 0} is invariant for small Y
and corresponds to the separatrix, which is the stable manifold of the fixed point (0, 0). The evolution along the stable
manifold is obtained by solving Ẏ = − 1

2A
′(0)Y 2, which gives Y (t) = Y0/(1 + 1

2A
′(0)Y0t). For this to represent the

stable manifold, we require A′(0) > 0. (The other separatrix exhibits finite-time escape to infinity, which takes particles
away from the wall and into the bulk.) For long times, the rate of approach is Y (t) ∼ (2/A′(0))t−1. The asymptotic form
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for Y (t) is algebraic and is independent of Y0. The consequence of this independence is visible at the bottom of Fig. (a):
material lines ‘bunch-up’ against each other faster than they approach the wall, thereby forgetting their initial position.
Since A(x) must be periodic in x and have only two zeros, a simple model is to take A(x) = sinx. In that case x2 =
3π/2, A(x2) = −1, and A′′(x2) = 1. Figure (c) shows trajectories for this mock flow. Once a particle leaves the vicinity
of the wall, its trajectory becomes meaningless, since our expansion (1) is only valid for small y. However, the cusp
structure for U = 0 in Fig. (c) is evident and is remarkably similar to Fig. (b).

MOVING WALL

Now consider the case of a ‘rotating wall’, where we add a constant speed U > 0 to the velocity u in (1). Again
we look for fixed points: all the parabolic fixed points on the wall have disappeared, as well as the two separatrices.
Since A(x) is continuous, has two zeros, and A′(0) > 0, A(x) must have a maximum at x1 and a minimum at x2,
where A′(x1,2) = 0 and hence v(x1,2, y) = 0 for all y. Enforcing that the along-wall velocity also vanish, there will be
fixed points at y1,2 = −U/A(x1,2). Since A(x1) > 0 (maximum) and A(x2) < 0 (minimum), only x2 has y2 ≥ 0. The
other fixed point lies outside our domain. Hence, we focus on the unique fixed point (x2,−U/A(x2)). Now we look at
the linearised dynamics near the fixed point. Let (x, y) = (x2 +X,−U/A(x2) + Y ); then

Ẋ = A(x2)Y + O
(
X2, Y 2, XY

)
, Ẏ = − 1

2A
′′(x2)y2

2 X + O
(
X2, Y 2, XY

)
. (3)

The linearised motion thus has eigenvalues λ± = ±λ = ±
√
−A′′(x2)/2A(x2)U where the argument in the square root

is nonnegative since A(x2) < 0 and A′′(x2) ≥ 0. For A′′(x2) > 0 and U > 0, this is a hyperbolic fixed point, and
the approach along its stable manifold is given by Y (t) ∼ Y0 exp(−λ t) for (X0, Y0) initially on the stable manifold.
Compare this to the 1/t approach for a fixed wall: the approach to the fixed point is now exponential, at a rate proportional
to the speed of rotation of the wall. One expects that this exponential decay will dominate if it is slower than the mixing
rate in the bulk. Otherwise, if λ is large enough, then the rate of mixing in the bulk dominates.
We do not have experimental results for a moving wall, but Fig. (d) shows a stirring protocol where the rod undergoes a
‘loop’ (epitochroid) motion. This creates closed trajectories near the wall, as is evident in the Poincaré section Fig. (e).
We have verified experimentally the the decay of the passive scalar in this case is exponential, for the same reason as
the moving wall. Indeed, Fig. (f) shows trajectories for a moving wall with U = 0.2 and A(x) = sinx. Compare this
to Fig. (d): in both cases closed trajectories are evident near the wall. A separatrix, consisting of a homoclinic orbit
connecting the hyperbolic fixed point to itself, isolates the wall region from the bulk. It is the approach to this separatrix
that will limit the decay rate, and it is exponential in time. In a forthcoming publication, we will analyse the case of closed
orbits with a fixed wall (as in Fig. (d)) in greater detail.
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