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When a viscoelastic fluid blob is stretched out into a thin horizontal filament, it sags
and falls gradually under its own weight, forming a catenary-like structure that evolves
dynamically. If the ends are brought together rapidly after stretching, the falling filament
tends to straighten by rising. These two effects are strongly influenced by the elasticity
of the fluid and yield qualitatively different behaviours from the case of a purely viscous
filament analyzed previously [J. Teichman and L. Mahadevan, J. Fluid Mech. 478, 71
(2003)]. Starting from the bulk equations for the motion of a viscoelastic fluid, we derive
a simplified equation for the dynamics of a viscoelastic filament and analyze this equation
in some simple settings to explain our observations.

1. Introduction

Fluid sheets and filaments, which are ubiquitous in science and technology, are marked
by a slender aspect ratio. This geometric separation of length scales leads to a separation
of time scales that is at the heart of a range of unusual behavior arising from the conflu-
ence of geometry and physics in these objects. While this interplay has been the subject
of much research in the context of simple Newtonian fluids, it is only recently that analo-
gous questions have been asked for complex fluids, such as those encountered commonly
in the kitchen when an egg is broken, in the bathroom when shampoo is squirted from a
bottle, and in a host of applications such as rheometry and fiber processing of polymer
melts and solutions (McKinley & Sridhar 2002; Denn 2004). However, much of this work
has been focussed on the one-dimensional dynamics of stretching and the accompanying
thinning (Keiller 1992; Entov & Hinch 1997; Olagunju 1999). To understand the behavior
of viscoelastic filaments free to deform in space, we focus here on a thin filament of vis-
coelastic fluid that can sag under its own weight—the viscoelastic catenary—motivated
by recent studies of a viscous catenary of a Newtonian fluid [Teichman & Mahadevan
(2003)].

To make the filament, we used a “Boger” fluid (see Larson 1999) composed of 0.025%
w/w Polystyrene of molecular weight 1.877 x 10° dissolved in styrene oil. The relaxation
time of this fluid, A, is ~ 4 seconds and its zero-shear viscosity, 7o, is ~ 50 Pa - s (50,000
times that of water).

Figure 1 shows a filament of such a fluid, made by stretching a blob horizontally
between two supporting rods and allowing it to evolve under the influence of gravity. The
initial stretching of the blob leads to the stretching of polymer molecules inside the fluid,
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FIGURE 1. Snapshots of a falling viscoelastic filament at different instants of time (¢) in seconds
(a)t =07% (b) t =4 (c) t = 8, and of the rising filament in a separate experiment where the ends
of the filament are rapidly brought closer together after initial stretching, (d) t = 0" (e) t = 0.75
(f) t = 1.75. The notation that follows in the derivation is shown in (b). The solid anchors on
the sides have a cylindrical cross-section of diameter 1.2cm. In this case, the fluid used is a
mixture of Polystyrene (MW 1.877 X 106) in styrene oil—a Boger fluid. The zero shear viscosity
is approximately 50 Pa-s and there is no shear thinning for the shear rates under consideration.

which then imparts an elastic stress to the filament. As this stress relaxes, the filament
initially demonstrates a similar range of motions to the purely viscous filament [Teichman
& Mahadevan (2003)]—bending at short times scales and stretching at long time scales
(Figure la-c). However, as the filament stretches even more, the elastic stress imparted by
the polymer molecules leads to a slowing down of the sagging at long time scales, an effect
that is not present in the purely viscous case . If, after the initial stretching, the supporting
ends of the filament are brought together quickly, the filament rises. Although the elastic
stresses in the filament favor rapid axial contraction, the combined effects of viscosity
and the slender geometry of the filament prevent this from happening; instead the excess
length of the filament between the supporting ends is accommodated by rapid sagging
(Figure 1d). Then the unbalanced elastic stresses acting along the curved filament cause
the viscoelastic filament to rise and straighten, all the while opposing gravity (Figure 1
e-f). As the elastic stresses relax, this process eventually slows down over a time scale
comparable to the relaxation time of the fluid, ~ 4 seconds.

To understand this behavior and compare and contrast it with that of the viscous
catenary [Teichman & Mahadevan (2003)], we use a perturbation approach to derive the
equation governing the motion of the centerline of the fluid filament following Buckmas-
ter, Nachman & Ting (1975); Entov & Yarin (1984); Howell (1996); Ribe (2001) for the
viscous case, and use the resulting dynamical equation to provide a simple quantitative
theory for the two phenomena described above.

2. Equations of motion and asymptotic analysis

For simplicity, we start with a consideration of the dynamics of a thin viscoelastic
sheet, and then generalize the results appropriately to arrive at a dynamical equation of
motion for a viscoelastic filament. We assume that the sheet is made of an incompressible
viscoelastic fluid, and is supported between two walls at a distance length L apart. We
further assume that the motion of the sheet is confined to the x — y plane and that the
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initial thickness of the sheet is h = d. The governing equations of mass and momentum
conservation are then

V-u=0, (2.1)
p(u+u-Vu)=-Vp+uViu+V- T — pg, (2.2)

where (.); = 9(.)/0t, u is the fluid velocity, 7 is the polymer stress tensor, p the fluid
density, p its pressure, u its zero-shear viscosity, and g the gravity vector acting in the
negative y direction. For simplicity, we use a minimal correctly invariant constitutive
equation for a viscoelastic fluid that generalizes the Maxwell model valid for small de-
formations, the Oldroyd-B model (see Oldroyd 1950; Larson 1988),

’Tt+u~V’T—(Vu)T-T—T-(Vu):—%(T—Q_I), (2.3)

where G is the equilibrium polymer stress. This last equation describes the evolution of
the stress as it is advected and stretched by the flow while it simultaneously tries to
relax. The left-hand side of (2.3) is the so-called Oldroyd (upper-convected) derivative
of T, while the right-hand side of (2.3) characterizes the tendency of the stress to relax
to its equilibrium state 7 = GI at a rate 1/), where ) is the longest relaxation time of
the polymers.

To complete the formulation of the problem, we need to specify some boundary con-
ditions. In addition to the usual kinematic boundary conditions, for large values of the
Capillary number pU /v, with + the interfacial tension, the lateral surfaces y = H &+ h/2
are traction-free, so that

U:(H:t%h)t—l—u(H:I:%h)w, o-n=0, (2.4a,b)

where, o = —pI + p(Vu + Vu®l) + 7, is the total stress tensor and fi is the unit vector
in the direction of the outward normal to the surface of the fluid sheet.

We make the above equations dimensionless by scaling all velocities with a characteris-
tic velocity U (determined say by the balance between gravity and viscosity), all lengths
with the length of the sheet L, time with L/U, and stress as well as pressure with uU/L.
We also define the Reynolds number Re = pUL/p characterizing the ratio of inertial
to viscous forces, the Weissenberg number Wi = AU/L characterizing the ratio of the
internal relaxation time to the externally imposed time, the dimensionless equilibrium
stress G = G/(pU/L), and the dimensionless weight @ = pgL?/uU.

The slenderness of the sheet allows us to define a small parameter ¢ = h/L < 1, in
terms of which we write down an asymptotic expansion for the variables u,v, H, h,p, 7.
Substituting this expansion into (2.1) and (2.2), solving the equations order by order
and using the Fredholm-alternative theorem [see e.g. Hinch (1991)], yields an equation
of motion for the centerline H(x,t) of the sheet,

Re Hy + 2d* Hygaor = [ATHyo + WHy,] + 04 — @, (2.5)

where o = 7Y is the viscoelastic shear stress, T is the tension in the filament, and
¥ = T% — TY is the viscoelastic first normal stress difference. The various terms in
(2.5) have simple physical interpretations: the first term on the left is the inertial term
present in the equation for the motion of a string, while the second is the viscous bending
term that arises from the effects of the solvent, as in the viscous catenary [Teichman &
Mahadevan (2003)]. The first term on the right is the product of the sheet’s curvature
and tangential stress, which itself has two components—a viscous component that is
the same as for the fluid catenary [Teichman & Mahadevan (2003)], and a new elastic
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component. The last but one term on the right side is the spatial derivative of the elastic
shear resultant, while the last term is the weight per unit length per unit width of the
sheet.

We now consider a sheet of unit initial length (scaled by L) at ¢t = 0, symmetric about
x = 0, and anchored at its two ends to solid walls at = +1/2, subject to homogeneous
extensional flow. Horizontal force balance implies that the tension satisfies T,, = 0, so
that (see Appendix)

1/2
T(a,t) = T(t) = /0 (H2),da. (2.6)

Furthermore, for weak homogeneous extensional flows the normal and shear stresses relax
exponentially, with a characteristic decay time set by the Weissenberg number; this is
indeed the case even for the case considered here, as the leading order stress balance
shows (see Appendix for details), yielding

U=y /Wi 5=y He /Wi, (2.7)

Equations (2.5)—(2.7) are the governing equations for the shape and stress in the vis-
coelastic sheet.

The foregoing derivation was for a sheet of infinite extent in the z direction. For an
axisymmetric viscoelastic filament, the equations are almost identical, except for the fact
that the bending stiffness of a filament is 3umd*/64 (see Teichman & Mahadevan 2003),
and all other prefactors have to be re-interpreted as being per unit cross-sectional area
of the filament. When inertia is unimportant (Re < 1), as here, we can integrate (2.5)
once to obtain

3

€ 1 [2 9 Wi
o —cof= —t/Wi) _
55 Ot 69(2/0 (6), dx + Age ) x, (2.8)

where Ag = A¥y and § = H,. Here we have rescaled time using the intrinsic time
641/ pgd, the stresses 0 = 7% and ¥ using the equilibrium polymer stress G, and define
Ao = WG /pgd. Equation (2.8), when complemented with initial and boundary conditions,
is identical to that for the weakly nonlinear dynamics of a viscous catenary described
and analyzed in Teichman & Mahadevan (2003), except for the second term on the right
which reflects the effect of a decaying elastic stress.

For the filament shown in figure 1, the diameter d = 0.001 m, length L = 0.023 m,
weight w = 0.125N/m, density p = 1026 kg/m?3 and relaxation time A\ = 4s, which
results in € = 0.045 and Wi = 0.13. In the analysis that follows, we use Wi € [0.001,0.1],
Ap =25 and € = 0.02 in Eq. (2.8) to describe the dynamics of a viscoelastic filament. The
value of Ay we pick is arbitrary, since we do not have an accurate estimate of its value
for the experiments shown in figure 1. We emphasize that here we have limited ourselves
to the simplest consistent constitutive model that leads to an embedded stress in the
filament due to initial stretching, even though the initial stretching may be fast enough
to invalidate the Oldroyd-B model which does not account for the finite extensibility of
the polymer.

3. Analysis of filament behavior

We now use our slender body theory to investigate the falling and rising of a filament
and uncover the role of elastic stresses in each case.
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3.1. Fall

An initially horizontal fluid filament must bend as it sags under its own weight. With the
assumption of symmetry about x = 0, the initial condition is 6(x,0) = 0, and boundary
conditions are

0(£1/2,t) =0,H(£1/2,t) = 0. (3.1)
Physically, these boundary conditions mean that the ends of the filament are clamped at
the points of support, and are the same as used by Teichman & Mahadevan (2003). We
solve the integro-differential equation (2.8) with these conditions using a pseudospectral
scheme based on Chebyshev polynomials [Trefethen (2000), Teichman & Mahadevan
(2003)]. Figure 2(a) shows the results of the evolution of the shape of the viscoelastic
catenary at early, intermediate and late times; different curves correspond to snapshots
separated by equal intervals of time. We see two characteristic behaviors of the filament:
at early times, the filament falls at roughly constant velocity and its shape has two
inflection points where the curvature changes sign, while at late times the filament slows
down considerably and the inflection points become imperceptible. To understand this
behavior, we note that in the limit ¢ < 1 corresponding to a slender filament (2.8)
is singular, and thus exhibits different asymptotic regimes. At early times, when the
filament is nearly horizontal, 6 is nearly zero and the dominant balance is between the
viscous bending term on the left side of (2.8) and the filament weight. During this time,
the evolution of the viscoelastic filament is practically identical to that of a purely viscous
filament, with

3
32
so that the analysis is identical to that in Teichman & Mahadevan (2003), yielding

Gxxt ~ -, (32)

H(z,t) = (a2’ t)da' ~ —%e 2t (5 — x2)2. (3.3)

[SE

Although the viscous bending—gravity balance is reasonable at early times, it fails at
intermediate times when the filament slows down as it starts to stretch. Then stretching
and elastic terms become important in the bulk of the filament, where they approximately
balance gravity. If 8(°) refers to the solution in this region,

1 12 )
60(0) <2\/0 (0(0))? dl’ + AO et/Wl> ~x, T E [O’% — 6] (34)

Here ¢ is the width of the dynamic boundary layer over which there is a transition from
the stretching-dominated region to the bending-dominated region to accommodate the
clamped boundary condition (0,¢) = 0. Letting (®) = a(t)x in the interior so that
H(xz,t) = 3a(t)(z* — 1), and substituting into (3.4), we obtain

oda 24

“at T e

In figure 2(a), we see that the full numerical solution of (2.8)-(3.1) compares well with

the approximate equations (3.2) and (3.5) in the two asymptotic regimes of (2.8) that
arise naturally at early and intermediate times.

To understand the evolution of the dynamic boundary layers in the viscoelastic fila-
ment, we first note that the size of this layer is determined by the balance between the the
effects of filament bending and filament weight. Equation (2.8) thus yields ¢36(®) /6%t ~ .
In the viscous limit, when the Weissenberg number Wi — 0, (3.4) gives the interior solu-

(1 — ey e_t/Wia) . (3.5)
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FIGURE 2. (a) Early time bending-dominated regime of a viscoelastic filament, and the late time
stretching-dominated regime for € = 0.02, Ag = 25, Wi = 0.1. The numerical solution to the
complete equation describing the shape of the filament, Eq. (2.8), is plotted with solid lines,
and the analytical solution to the approximate equation for the bending regime, Eq. (3.2), is
in large dashed lines. The numerical solution to the approximate equation, Eq. (3.4), is plotted
in small dashed lines. The vertical downward arrow shows the direction of increasing time. (b)
Maximum displacement of catenary, |H(0,t)|, as a function of the scaled time ¢ for € = 0.02
and (i) purely viscous case, (i) Ao = 25, Wi = 0.01, (iii) Ao = 25, Wi = 0.1. The points
and the dashed lines are numerical solutions to Eq. (2.8) and Eq. (3.4), respectively. (¢) Width
of the viscous boundary layer § near the supporting walls as a function of time, for values of
parameters shown in legend. For the purely viscous case (Wi = 0, solid circles) ¢ ~ 64/31‘71/3,
while for the purely elastic case (Wi = oo solid diamonds) § ~ 6A81/2t_1/2 (see text). For a
viscoelastic filament (dashed line), the boundary layer width is dominated by elastic effects at
short times and viscous effects at long times.

tion 0(©) ~ zt'/3¢=1/3 5o that boundary layer size scales as § ~ ¢*/3¢~1/3 (see Teichman
& Mahadevan 2003). In the elastic limit, Wi — oo and (3.4) yields the stationary solution
0(©) ~ x/eAg. The size of the boundary layer is then § ~ eAal/Qt_1/2. In figure 2(c), we
show the numerically evaluated evolution of the size of the boundary layer for varying
Wi; at short times the boundary layer is similar to that in the elastic limit (Wi — 00),
while at long times it is similar to that in the viscous limit (Wi — 0), as expected.

In the intermediate time regime, outside the two dynamic boundary layers near the
supports the shape of the filament is very nearly parabolic and determined by a bal-
ance of viscoelastic stretching and gravity. Indeed choosing H(z,t) = Sa(t)(z* — 1) and
substituing this ansatz into (2.8) we find that the center of the filament follows the
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FIGURE 3. (a) Rising of an initially curved filament obtained by solving (2.8) with boundary
conditions 0(+1/2,t) = 0; the lowermost curve showing the position of the filament at ¢t =07,

i.e. with the initial condition set numerically by allowing the filament to fall so that H. = 0.355.
This shape is very well approximated by H(z,0) ~ 1.42(z* — i) The vertical upward arrow

shows the direction of increasing time. The catenary rises due to the embedded elastic stress, and
is opposed by the viscous stretching term which now acts in the direction of gravity (¢ = 0.02,
Ao = 25, Wi = 0.1). The barely visible dashed line is the solution to the approximate equation
(3.4), showing excellent agreement with the complete solution. (b) Maximum rising displacement
of catenary, |H(0,t) — H.|, against scaled time ¢ for e = 0.02 and Ao = 25, (i) Wi = 0.001, (ii)
Wi = 0.01, (iii) Wi = 0.1. The solid line corresponds to the numerical solution to (2.8), while
the dashed line shows the numerical solution to the approximate equation (3.4).

law H(0,t) = H.(t) = a(t)/8. In figure 2(b) we show |H.(t)| for Ay = 25 and differ-
ent values of Wi. The embedded elastic stress within the filament, i.e. Ay > 0, slows
down its sagging. For Wi — oo, Eq. (3.5) predicts that the filament stops falling when
H.(t — o0) = 1/(84¢¢), while for Wi — 0 we recover the case of a purely viscous
filament [Teichman & Mahadevan (2003)]. The figure also shows the slowdown of the fil-
ament with increasing Wi due to the additional resistance offered by the elastic stresses.
Smaller values of Wi result in faster relaxation of the elastic stresses and at long times
the behavior is similar to that of the viscous catenary with a ~ e~ 1/3¢1/3,

3.2. Rise

When a filament is stretched out rapidly from a blob, the stretching of the polymers
leads to an embedded elastic stress. If the supporting ends are brought together quickly
the resulting geometrically-induced sagging can be reversed by this elastic stress, leading
to the rising of the filament.

To quantify this, we first consider the extreme case of a filament that is curved, say
parabolically at time ¢ = 0 with A9 > 0, Wi — oo, and a(0) > 1/(A¢e). Then from
(3.5), da/dt < 0 and the filament rises against its own weight until da/dt = 0, i.e., when
a = 1/(Age). For a fluid with a finite relaxation time, and therefore a finite Wi, the
embedded viscoelastic stress decays with time and the filament slows down as it rises.
More generally, the rising criterion at t = 0, is defined by the condition

e AoH, > 1/8 (3.6)

where H, = a/8. As the filament straightens, it re-enters the viscous bending-dominated
regime. Since both the elastic and viscous resistance to stretching and contraction are
proportional to 8, it is clear that in the absence of inertia the filament can never rise to a
perfectly horizontal state starting from a sagged state. On the other hand, inertial effects
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can cause the filament to rebound past the horizontal, an effect that can sometimes be
seen with a stretched piece of chewing gum, but that we do not consider here. In figure
3(a) we show the rising of an initially curved filament and see that there is excellent
agreement between the numerical solutions to the full equation (2.8) and the approximate
equation (3.4).

We confirm the rising criterion by solving (2.8) with an initial condition corresponding
to a falling filament, H(z,0) = H.(1 —2%/4). In figure 3(b), we plot the maximum rising
displacement H(0,¢) — H(0,0) = H(0,t) — H. of the filament, and look at the effect
of varying Wi for given initial stress Ag. For Wi = 0.1, the filament rises fast initially
and attains a nearly constant shape, while for Wi = 0.001, the elastic stress decays too
rapidly (by 1/e of its initial value in ¢ ~ Wi for this case), so that it falls further instead
of rising. The rising criterion (3.6) is met in each of the cases at ¢t = 0, since for € = 0.02,
Ao =25 and H, = 0.35, eAgH,. = 7/40 > 1/8.

4. Discussion

Our asymptotic analysis of the flow of a viscoelastic fluid in slender geometry yielded
a pair of simple evolution equations for the shape of and the stress in a filament. These
equations have a transparent physical interpretation that builds on and complements
earlier work on the purely viscous case [Teichman & Mahadevan (2003)]. In particular,
we see that the effect of elastic normal stresses suffices to explain both the falling and
rising behavior of a viscoelastic filament in the limit of moderate deviations from the
horizontal. Although the physical values in the experiment are not fully compatible with
the scalings assumed in the derivation of (2.5), the qualitative behavior of the filament
agrees well with the conclusions derived from it. This is perhaps not surprising since
the basic force balance embodied in (2.5) is valid far beyond its asymptotic regime of
applicability.

Our study raises many questions. From an experimental perspective, our analysis sug-
gests ways to probe the rheology of complex fluids since the bending, stretching, falling,
and rising responses probe different regimes of fluid behavior and are translated directly
into different shape evolutions. We have ignored the effects of inertia and surface tension,
and although they are not important in the phenomena that we consider, much remains
to be done on both the theoretical and experimental front to account for their effect in
other situations.

We acknowledge the 2003 Summer Program in Geophysical Fluid Dynamics at the
Woods Hole Oceanographic Institution, where much of this work was carried out. We
thank Jeremy Teichman for the spectral code used herein, Keith Bradley, Jose Bico, Yoel
Forterre and Kyung-Ho Roh for help with experiments, and Ronald Larson for useful
discussions.

Appendix A. Derivation of equation for centreline of filament

In this appendix we derive Eq. (2.5) using standard methods from weakly nonlinear
asymptotics [see e.g. Hinch (1991)]. For small departures from an initial straight line, we
scale y ~ O(e), t ~ O(e?), Wi ~ O(€?), and Re ~ O(e*). Next we expand the velocity,
stress, pressure fields, location of the centerline of the sheet H, and its thickness h as
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series in €, writing

u = ug + 2ug + O(e*), ev = vy + vy + O(e?),

H = eHy + Hy + O(€%), h = ehg + €6hy + O(€%),

D= po+ 2ps + O(Y), To = T 4 2T 1 O(eh),
T — e%wy + 637—;?4 4 0(55), TYY — %yy 4 E27—2yy + 0(64).

Substituting the expansions into Egs. (2.1) and (2.2) yields the scaled equation for mass
conservation

Uy + v, =0 (A1)
and the equations for conservation of momentum (2.2) in the = and y directions are
e'Re (uy + €uug + vuy) = —€py + Etyy + Uy, + T + 627;”, (A2a)
¢*Re (vt + Euvy + m;y) = —ezpy + vpy + Vyy + 64’];“” + 627;7”4 —élw. (A 20D)
Finally, the constitutive equations (2.3) for the stress components become
1
T + EuT” + 0T = 262 (T  ug + T™uy) = —W(Tm - 3G), (A3a)
1
TP + EuTY + T}V — (26T Vv, + T"v,) = —W(’Tyy -G), (A 3b)
i
1
TV + EuTY + VT — (T v, + T%u,) = Wi T, (A3c)
i
The kinematic boundary condition in (2.4) reads
v=(H*3h), +u(H £+ 5h)_, (A4)
and the stress-free condition (2.4b),
—€* (—p+ 2uy + T*) (Hy £ 1hy) + (uy + vz + €T7Y) =0, (Ab5a)
((uy +v2) + € T™) (Hy £ 3hy) — €€p+ 20, + €T = 0. (A5b)

At leading order, O(e"), the continuity equation (A1) and the kinematic boundary
condition (A4) are vg = Hy; and hg; = 0, while (A 2a) and the stress-free boundary
condition(A 5a) is

ug = Hoazt(Ho — y) + Uo(), (A6)
with To(x) the velocity of the centerline of the sheet, i.e. y = Hy. Differentiating Eq. (A 6)
once with x gives the rate of extensional strain of the centerline, which is the tension, T,

T= Upy + HOxHOxt . (A 7)

For a sheet that is pinned at its ends, horizontal stress balance requires that T, = 0,
so that the tension T = T'(t). Integrating Eq. (A7) with = € [-1/2,1/2], imposing
%p(0,t) = 0 (from symmetry) and Tg(+1/2,t) = 0 (no-slip) as boundary conditions, we
find that the average tension in the filament is as in (2.6).

Assuming that the flow is purely extensional and homogeneous throughout the sheet,
we find 75, = 75, = 71p, = ¥p = 0, where ¥ = T — T is the first normal stress
difference. At leading order, the Oldroyd-B equations (A 3) are then

1 1
Wi Wi
T = T e + "oy — o T3 (As0)

Tot" =~ (L7 = 9), T’ = (77" = 9), (A8a,b)
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Combining (A 8a,b) yields an equation for the evolution of the first normal stress differ-
ence ¥ = 7** — 7YY which when integrated in time is

W =wye WV (A9)

where ¥ (t = 0) = ¥y. Thus, at leading order, the first normal stress difference ¥ relaxes
to zero, consistent with a relatively small Weissenberg number Wi ~ O(€?), whence the
strain in the flow is not powerful enough to maintain a nonzero ¥. Finally, using the
continuity equation and the kinematic boundary condition, along with (A 6) and (A 9),
in (A 8c) gives us an evolution equation for the elastic shear stress, o = 7Y, as

o =Wye 'WViH,, — % o (A10)
where Wi = A\pgd/6u is the appropriate Weissenberg number, with A the longest relax-
ation time of the fluid. Integrating (A 10) with the initial condition o(z,0) = 0 for the
case of pure (initial) extension of the sheet, we find o = ¥y H,e */Wi, If the initial thick-
ness of the sheet at leading order is uniform, i.e., hg, = 0, then the kinematic boundary
condition implies that hg = const. = d. With this assumption, T,, = 0 at O(¢?) from the
stress-free boundary condition (A 5a), and the leading-order pressure and elastic stress
are related by pg — 73"Y = —2uq,, with ug, obtained by differentiating (A 6).

Moving now to order O(e?), we integrate (A 2b) to obtain the equation for pressure
at O(e?). We use this expression, along with the stress-free boundary condition (A 5a)
and (A 5b) at this order, and impose orthogonality of the solution at O(e?) to that of the
leading order homogeneous solution. The Fredholm-alternative theorem [Hinch (1991)]
gives a solvability condition for Hy(z,t), and thus an equation of motion for the centerline
of the sheet, Eq. (2.5).
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