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In the previous lecture we found the expression for the pdf of displacements due to
swimming organisms:

polz,t) = % /_OO exp (—nTq(k,t)) e dk, (1)
where
atit) = [ k. 1) . @)

Consider the case special when A(r, t) vanishes outside a specified ‘swept volume’ Viyept (1).
Then
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Define ¢swept := nVawept; then we can Taylor expand the exponential in to obtain

= gfve — 1 > m —ikx
pn(,t) = ZT;% ¢swept%/ W (k,t) e % dk. (4)
m=0 ) -

The factor ¢, € #vr*/m! is a Poisson distribution for the number of ‘interactions’ m —
the number of times a particle has been affected by a swimmer. The other factor in the sum
is a probability density,

1 > —ikx
Pimy () = %/ W (k,t) e dk, (5)

for the distribution of displacements given that a particle has interacted with a swimmer m
times (see also [1]).
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FIG. 1. The ‘log model’ for the displacement function of a cylinder of unit radius moving in

an inviscid fluid. The solid line is the true displacement function, as computed by Maxwell [2]
and Darwin [3]. The dashed line is the asymptotic form C log(¢/p), with ¢ = 8/e* ~ 1.08268. The
simplified ‘log model’ consists of using only the logarithmic asymptotic form for p < ¢, and zero
otherwise.

Let us apply to a specific example. A model for cylinders and spheres of radius ¢
traveling along the z axis in an inviscid fluid [4, 5] is the log model,

A(p), if0<z<Ut,

A(p) = Clog* (¢ 6
0. otherwise, (p) og" (¢/p) (6)

A(p, 2 t) = {

where p is the perpendicular distance to the swimming direction and log™ z := In max(z, 1).
The logarithmic form comes from the stagnation points on the surface of the swimmer, which
dominate transport in this inviscid limit. The constant C'is set by the linear structure of the
stagnation points [4H0], and usually scales with the size of the organism (not with time ¢, for
long enough times). For example, C' = 1 for a cylinder of unit radius moving through inviscid
fluid [4], 6]. For spheres in the same type of fluid, C' = % [4]. This model is also appropriate
for a spherical ‘treadmiller’ swimmer in viscous flow. The function @ is compared to the
exact drift function for a cylinder in Fig.

For a drift function of the form (€], the function I'y(k,t) defined in () becomes
Lalht) = [ 2alkAn. 1)V,
v
Ut poo
— [ [ ks antapa:
o Jo

=adUt/ Ya(kA(p)) p* 2 dp.
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Assuming a monotonic relationship between p and A(p), with A(0) = oo and A(co) = 0,



we change integration variable from p to A:
Lalht) = auUt [ (k) p2(2) |5(8) dp. (7)
0

We can write p = £e~2/ with |p/(A)| = (¢/C) e /¢, Then

Wilk, ) = o [0 a(ka)) e 03 dp, ©

0

where we used Viyept = g1 04Ut and ag/ag_1 = d — 1. We can carry out the integrals
explicitly to obtain
k)%, linders);
Wd(k) ( ( 1) ) (Cy m ers)) (9)
(Ck/2)~ arctan(Ck:/Z) (spheres).

This is independent of ¢, even for short times (though the model is not valid for short times).
Furthermore, for d = 2 we can also explicitly obtain the convolutions that arise in to

find

1
om=1/2 pr 1
the full distribution,
1
— —Pswept swept 2 (m—1)/2 K
Pol@,t) = e ( +Z ml CvaTm) (I=[/2C) (m-1)/2(|2|/C)

(1)
where K, (x) are modified Bessel functions of the second kind, and I'(z) is the Gamma
function (not to be confused with I'(k, t) above). Equation is a very good approximation
to the distribution of displacements due to inviscid cylinders. Unfortunately no exact form
is known for spheres: we must numerically evaluate given @, or use asymptotic methods
(see [7]).

The log model is more appropriate for swimmers in an inviscid fluid. To compare the
theory to the experiments of [Leptos et al.| we need a swimmer in a viscous environment,
as appropriate for microswimmers. We use a model swimmer of the squirmer type [10-14],
with axisymmetric streamfunction [5]

(s ez i
\Ilsf(p7 Z) - %p2 U {_1 + (:02 + 22)3/2 + %(pQ -+ 22>3/2 (p2 + 22 B 1) } (12>

in a frame moving at speed U. Here z is the swimming direction and p is the distance
from the z axis. To mimic C. reinhardtii, we use £ = 5pum and U = 100 um/s. We take
also 8 = 0.5 for the relative stresslet strength, which gives a swimmer of the puller type, just
like C. reinhardtii. The contour lines of the axisymmetric streamfunction are depicted
in Fig. 3] The parameter /8 is the only one that was fitted to give good agreement.

The numerical results are plotted into Fig. and compared to the data of Fig. 2(a) of
Leptos et al. [8]. The agreement is excellent: we adjusted only one parameter, 5 = 0.5. All
the other physical quantities were gleaned from [Leptos et al.| What is most remarkable about
the agreement in Fig. is that it was obtained using a model swimmer, the spherical
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FIG. 2. For the log model: the exact pdf p(,)(z) from for different values of m (solid line)
and C = 1, as well as the large-deviation (dashed line) and Gaussian (dotted line) approximations.

FIG. 3. Contour lines for the axisymmetric streamfunction of a squirmer of the form ,

with 8 = 0.5. This swimmer is of the puller type, as for C. reinhardtii.

squirmer, which is not expected to be such a good model for C. reinhardtii.

The real

organisms are strongly time-dependent, for instance, and do not move in a perfect straight
line. Nevertheless the model captures very well the pdf of displacements. New work with
my student Peter Mueller uses a more realistic model for C. reinhardtii, involving a no-slip
sphere for the body and a point force for the flagellum. We observe a lifting of the tails



Px, (J’J)

10 5 0 5 10

FIG. 4. (a) The pdf of particle displacements after a time ¢ = 0.12s, for several values of the
volume fraction ¢. The data is from Leptos et al. [8], and the figure should be compared to their

Fig. 2(a). (b) Same as (a) but on a wider scale, also showing the form suggested by Eckhardt and
Zammert [9] (dashed lines).

which matches the data better.
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