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Biomixing

A controversial proposition:

• There are many regions of the ocean that are relatively
quiescent, especially in the depths (1 hairdryer/ km3);

• Yet mixing occurs: nutrients eventually get dredged up to the
surface somehow;

• What if organisms swimming through the ocean made a
significant contribution to this?

• There could be a local impact, especially with respect to
feeding and schooling;

• Also relevant in suspensions of microorganisms (Viscous
Stokes regime).
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Bioturbation

The earliest case studied of
animals ‘stirring’ their en-
vironment is the subject of
Darwin’s last book.

This was suggested by his
uncle and future father-in-
law Josiah Wedgwood II,
son of the famous potter.

“I was thus led to conclude that

all the vegetable mould over the

whole country has passed many

times through, and will again pass

many times through, the intestinal

canals of worms.”
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Munk’s Idea
Though it had been mentioned earlier, the first to seriously
consider the role of ocean biomixing was Walter Munk (1966):

“. . . I have attempted, without much success, to interpret [the
eddy diffusivity] from a variety of viewpoints: from mixing along
the ocean boundaries, from thermodynamic and biological
processes, and from internal tides.”
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Basic claims

The idea lay dormant for almost 40 years; then

• Huntley & Zhou (2004) analyzed the swimming of 100 (!)
species, ranging from bacteria to blue whales. Turbulent
energy production is ∼ 10−5 W kg−1 for 11 representative
species.

• Total is comparable to energy dissipation by major storms.

• Another estimate comes from the solar energy captured:
63 TeraW, something like 1% of which ends up as mechanical
energy (Dewar et al., 2006).

• Kunze et al. (2006) find that turbulence levels during the day
in an inlet were 2 to 3 orders of magnitude greater than at
night, due to swimming krill.
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In situ experiments
Katija & Dabiri (2009) looked at jellyfish:

[movie 1] (Palau’s Jellyfish Lake.)
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Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994); Eames & Bush (1999)
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Cylinders and spheres: Displacements

∆2
L(a, b) a (cylinder) ∆2

L(a, b) a2 (sphere)
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Displacement for cylinders

Small a: ∆ ∼ − log a

Large a: ∆ ∼ a−3

(Darwin, 1953)∫ 1
0 ∆2(a)da ' 2.31∫∞
1 ∆2(a)da ' .06
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Numerical simulation

• Validate theory using simple simple simulations;

• Large periodic box;

• N swimmers (cylinders of radius 1), initially at random
positions, swimming in random direction with constant speed
U = 1;

• Target particle initially at origin advected by the swimmers;

• Since dilute, superimpose velocities;

• Integrate for some time, compute |x(t)|2, repeat for a large
number Nreal of realizations, and average.
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A ‘gas’ of swimmers
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[movie 2] N = 100 cylinders, box size = 1000
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How well does the dilute theory work?
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Cloud of particles

[movie 3] (30 cylinders)
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Cloud dispersion proceeds by steps
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Squirmers

Considerable literature on transport due to microorganisms: Wu &

Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007);

Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity
specified at surface,
to mimic cilia;

• Steady swimming
condition imposed
(no net force on
fluid). (Drescher et al., 2009) (Ishikawa et al., 2006)
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Typical squirmer

3D axisymmetric streamfunction for a
typical squirmer, in cylindrical coordi-
nates (ρ, z):

ψ = −1
2ρ

2 +
1

2r3
ρ2 +

3β

4r3
ρ2z

(
1

r2
− 1

)
where r =

√
ρ2 + z2, U = 1, radius of

squirmer = 1.

Note that β = 0 is the sphere in potential
flow.

We will use β = 5 for most of the re-
mainder.
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Particle motion for squirmer

A particle near the squirmer’s swimming
axis initially (blue) moves towards the
squirmer.

After the squirmer has passed the particle
follows in the squirmer’s wake.

(The squirmer moves from bottom to
top.)

[movie 4]
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Squirmer displacements
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Squirmers: Transport
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Squirmers: Trajectories

b/λ = 0 b/λ = 0.5 b/λ = 1
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Far field: Displacements
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Far field: transport
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Finite Reynolds number: Displacements
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Finite Reynolds number: Transport
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Optimal control vs steepest descent
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Matthew et. al.

(from Lin, Thiffeault, Doering.)
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Steepest descent of Ḣ−1

(from Lin, Thiffeault, Doering.)
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Optimal control vs steepest descent: any flow
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Steepest descent of Ḣ−1: any flow

(from Lin, Thiffeault, Doering.)
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Sources and sinks: CO in the atmosphere

Red corresponds to high levels of CO (450 parts per billion) and blue to low

levels (50 ppb). Note the immense clouds due to grassland and forest fires in

Africa and South America. (Photo NASA/NCAR/CSA.)
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Matlab code: Minimize norm with fmincon

function [psi,Effq] = velopt(psi0,src,kappa,q,L,scalefac)

% Problem parameters for Matlab’s optimizer fmincon.

psi0 = psi0(:); problem.x0 = psi0(2:end);

problem.objective = @(x) normHq2(x,src,kappa,q,L,scalefac);

problem.nonlcon = @(x) nonlcon(x,src,kappa,q,L,scalefac);

problem.solver = ’fmincon’;

problem.options = optimset(’Display’,’iter’,’TolFun’,1e-10,...

’GradObj’,’on’,’GradConstr’,’on’,...

’algorithm’,’interior-point’);

[psi,Hq2] = fmincon(problem);

% Mixing efficiency: call normHq2 with no flow to get pure-conduction solution.

Effq = sqrt(normHq2(zeros(size(psi)),src,kappa,q,L,scalefac) / Hq2);

psi = reshape([0;psi],size(src)); % Convert psi back into a square grid
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Matlab code: Right-hand side function

function [varargout] = normHq2(psi,src,kappa,q,L,scalefac)

N = size(src,1); src = src(:);

% 2D Differentiation matrices and negative-Laplacian

[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); mlap = -(Dxx+Dyy);

if q ~= 0 && q ~= -1, error(’This code only supports q = 0 or -1.’); end

psi = [0;psi]; ux = Dy*psi; uy = -Dx*psi;

ugradop = diag(sparse(ux))*Dx + diag(sparse(uy))*Dy;

if q == 0

Aop2 = (-ugradop + kappa*mlap);

elseif q == -1

Aop2 = mlap*(-ugradop + kappa*mlap);

end

Aop1 = (ugradop + kappa*mlap)*Aop2;

% Solve for chi, dropping corner point to fix normalisation.

chi = [0; Aop1(2:end,2:end) \ src(2:end)];

theta = Aop2*chi;

% The squared H^q norm of theta.

varargout{1} = L^2*sum(theta.^2)/N^2 * scalefac;

if nargout > 1

% Gradient of squared-norm Hq2.

gradHq2 = 2*((Dx*theta).*(Dy*chi) - (Dy*theta).*(Dx*chi));

varargout{2} = gradHq2(2:end) / N^2 * scalefac;

end
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Matlab code: Constraints

function [c,ceq,gc,gceq] = nonlcon(psi,src,kappa,q,L,scalefac)

psi = [0;psi]; N = size(src,1);

c = []; gc = [];

[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); % 2D Differentiation matrices

U2 = L^2*(sum((Dx*psi).^2 + (Dy*psi).^2)/N^2);

ceq(1) = (U2-1) * scalefac;

if nargout > 2

% Gradient of constraints

mlappsi = -(Dxx+Dyy)*psi;

gceq(:,1) = 2*mlappsi(2:end) / N^2 * scalefac;

end
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Optimal stirring flow

x

y

0 L
0

L

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Pe

E 0
–

1

Pe2

Pe1

Left: Optimal stirring velocity field (streamlines) for the source sin x sin y ,

for Pe = 10. Right: Dependence on Péclet number of the optimal mixing

efficiency E0. For small Pe the optimal streamfunction → (
√

2π)−1 cos x cos y .

10 / 11



References

Doering, C. R. & Thiffeault, J.-L. 2006 Multiscale mixing efficiencies for steady sources. Phys. Rev. E 74 (2),
025301(R).

Lin, Z., Thiffeault, J.-L., and Doering, C. R. 2010 Optimal stirring strategies for passive scalar mixing.
Preprint.
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