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Lecture 1

Drift and diffusion

1.1 Walls and exits

A particle starts at (x0, t0) inside a bounded, connected domain Ω. The particle is
subject to a drift u(x, t), which may include both a background fluid motion and a
swimming velocity. The particle also undergoes diffusion with diffusivity D.

The domain boundary ∂Ω is divided into two types of regions: walls (∂Ωw) and
exit regions (∂Ωe). The walls are impermeable to particles, though the drift might
have a component through the wall. For the flow part of the drift, we can interpret
this as walls having gratings that prevent particles from escaping the domain Ω. For
the swimmer velocity part, this allows a swimmer to butt its head up against a rigid
wall, without exiting.

We would like to understand what happens as we release particles at different
initial locations in the domain. This is best expressed in terms of the transition
probability density p(x, t |x0, t0), which gives the probability density function (pdf)
of finding a stochastic particle at (x, t) if it was initially at (x0, t0). That is

p(x, t |x0, t0) dx = P(Xt ∈ [x,x+ dx) |Xt0 = x0). (1.1)

This probability density satisfies the Fokker–Planck equation (also called the Kol-
mogorov forward equation)

∂tp+ Lp = 0, t > t0, (1.2a)

with boundary conditions

n̂ · (up−D∇p)|∂Ωw
= 0, (1.2b)

p|∂Ωe
= 0, (1.2c)
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LECTURE 1. DRIFT AND DIFFUSION 3

and initial condition

p(x, t0 |x0, t0) = δ(x− x0). (1.2d)

Here the vector n̂(x) is the outward unit normal at the surface, and the differential
operator L is defined by1

Lg := ∇ · (ug −D∇g) (1.3)

for any differentiable function g. The wall boundary condition (1.2b) says the the
normal flux of particles is zero at the walls. The exit boundary condition (1.2c)
says that if a particle touches an exit, then its probability of being in the domain
is immediately set to zero. The initial condition (2.12d) says that at t = t0 the
probability of finding the particle at x0 is one.

In this entire derivation, the diffusivity D could in principle be a function of x
and t, though in practice we will never do this, and in some cases it does present
some nontrivial challenges of interpretation [14]. More importantly, D could be
a symmetric tensor, whose principal axes reflect different strengths of diffusivity
according to direction. In this case we simply replace expressions such as D∇p
by D · ∇p.

We will be presenting many examples througout. Most of the time, these exam-
ples will assume a constant scalar diffusivity D, and an initial time t0 = 0, unless
otherwise noted.

Example 1.1 (interval with diffusion only). Set u = 0 and take Ω = [0, 1], with ∂Ωw =
{0} and ∂Ωe = {1}. The Fokker–Planck equation (1.2) is then

∂tp = D∂2
xp, ∂xp|x=0 = p|x=1 = 0 (1.4)

with p(x, 0 |x0, 0) = δ(x − x0). This is the standard heat equation in an interval,
with solution [4]

p(x, t |x0, 0) = 2
∑
n odd

cos (nπx/2) cos (nπx0/2) e−(nπ/2)2Dt. (1.5)

Figure 1.1 shows a plot of this pdf at different times. Ultimately the solution has
the profile cos(πx/2), corresponding to the slowest-decaying eigenfunction.

Example 1.2 (interval with drift only). Use the same setting as in Example (1.1),
but with u = u x̂ and D = 0. The Fokker–Planck equation (1.2) is then

∂tp = −u ∂xp, p|x=0 = p|x=1 = 0 (1.6)

1In stochastic calculus L is (minus) the adjoint of the generator for the process.
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Figure 1.1: The pdf (1.5) for D = 1 and x0 = 0.25, plotted at different times.

with p(x, 0 |x0, 0) = δ(x−x0). The solution to this is δ(x−x0−ut), which happens to
satisfy the boundary conditions in (1.6), at least for a while, but we cannot possibly
apply both conditions to this first-order equation. Intuitively, in this simple case the
particles exits at t = (1 − x0)/u for u > 0. For u < 0 the particle reaches the left
side in time x0/|u|, and then just sits there. In general, in the absence of diffusion
we only get to apply boundary conditions at the outflow regions, and for u < 0 it is
pretty clear that (1.6) is not the appropriate limit as D → 0.

Example 1.3 (interval with drift and diffusion). Again, use the same setting as in
Example (1.1), but with u = u x̂ and D = 1. The Fokker–Planck equation (1.2) is
then

∂tp = −u ∂xp+ ∂2
xp, u p− ∂xp|x=0 = p|x=1 = 0 (1.7)

with p(x, 0 |x0, 0) = δ(x − x0). The solution to this is significantly more involved
than for Example 1.1, so we devote the next section to it (Section 1.2. The final
result is

p(x, t |x0, 0) = 2eu (x−x0)/2 2ν0 cosh ν0x< + u sinh ν0x<
(2 + u) cosh ν0 + 2ν0 sinh ν0

sinh ν0(1− x>) e−(u2/4−ν20 ) t

− 2
∞∑
n=1

eu (x−x0)/2 2ωn cosωnx< + u sinωnx<
(2 + u) cosωn − 2ωn sinωn

sinωn(1− x>) e−(ω2
n+u2/4) t. (1.8)
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Figure 1.2: The pdf (1.8) with x0 = 0.25, plotted at different times for (a) u = −4;
(b) u = 4.

where x< = min(x, x0) and x> = max(x, x0). The eigenvalue ν0 is the single real
positive to

tanh ν0 = (−2/u) ν0, u < −2, (1.9)

which only exists for u < −2, and the ωn are the the real positive solutions to

tanωn = (−2/u)ωn, n = 1, 2, 3, . . . . (1.10)

The exponentials in (1.8) are all decaying. For u > 0, the slowest-decaying eigen-
function can develop a ‘bump’ (Fig. 1.2(a) and (1.3)). For u < 0 the particles get
pushed along the left wall, but diffusion always allows them to slowsly leak away
(Fig. 1.2(b)). As u → −∞ we can predict this slow leakage rate by expanding
the tanh for large argument in (1.9) to obtain

ν0 = −1
2
u+ u eu + . . . u→ −∞ (1.11)

which translates to an exponentially-small decay rate in the first term of (1.8) equal
to

e−(u2/4−ν20 ) t = e−u
2eut + O(e−u

2e2ut), u→ −∞. (1.12)

Thus, diffusion allows the particles to leak very slowly against the prevailing leftward
drift.



LECTURE 1. DRIFT AND DIFFUSION 6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Figure 1.3: The normalized slowest-decaying eigenfunction for (1.8) with x0 = 0.25
and different values of u.

1.2 Solving the advection–diffusion equation with

Laplace transforms

To solve (1.7), start by taking its Laplace transform:

− ∂2
xp̃+ u ∂xp̃+ sp̃ = δ(x− x0), (1.13)

where p̃(x, s |x0, 0) is

p̃(x, s |x0, 0) =

∫ ∞
0

p(x, t |x0, 0) e−st dt. (1.14)

To the left and right of x0 the solution to (1.13) is a linear combination of eα±x with

α± = 1
2
u± ν(s), ν(s) :=

√
s+ 1

4
u2. (1.15)

We create a composite solution that satisfies the boundary conditions in (1.7):

p̃(x, s |x0, 0) =

{
A< eux/2 (u sinh νx+ 2ν cosh νx) , x < x0;

A> eux/2 sinh(ν(1− x)), x > x0.
(1.16)
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To determine A> and A< we impose continuity of p̃ at x = x0, and specify a jump
in its derivative according to (1.13):

[∂xp̃]
x+0
x−0

= −1 . (1.17)

We find

p̃(x, s |x0, 0) = eu (x−x0)/2 2ν cosh νx< + u sinh νx<
ν(2ν cosh ν + u sinh ν)

sinh ν(1− x>) (1.18)

where x< = min(x, x0) and x> = max(x, x0).
We now recover the solution by taking the inverse Laplace transform of (1.18):

p(x, t |x0, 0) =
1

2πi

∫ c+i∞

c−i∞
p̃(x, s |x0, 0) est ds (1.19)

where c is a real constant that puts the contour to the right of all poles. The
relevant features of (1.18) are the singularities in the complex plane where 2ν cosh ν+
u sinh ν = 0, and the branch cut in ν(s) at s = −u2/4. (The apparent singularity
at ν = 0 is removable.)

Along the branch cut, take s± = 1
4
u2
(
−1 + ξ e±iπ

)
, with ξ ≥ 0 real and ν(s±) =

1
2
u
√
ξ e±iπ = 1

2
u
√
ξ e±iπ/2 = ±1

2
iu
√
ξ. The two sides of the branch cut will thus

cancel, since p̃ is an even function of ν. We conclude that the branch cut makes no
contribution to the inverse Laplace transform.

Let νn, n = 0, 1, 2, 3, . . ., correspond to the poles of (1.18) in the complex plane;
then the inverse transform (1.19) can be evaluated as a sum over residues

p(x, t |x0, 0) = 2
∞∑
n=0

eu (x−x0)/2 2νn cosh νnx< + u sinh νnx<
(2 + u) cosh νn + 2νn sinh νn

sinh νn(1−x>) e(ν2n−u2/4) t.

(1.20)
Here we sum over just one member of each pair of singularities at ±νn, since these
correspond to a single pole for s = ν2 − 1

3
u2. We also took care to divide by ν ′(s) =

1/2ν since the integration variable is s, not ν.
The poles are located at

tanh ν = −2

u
ν. (1.21)

There is one positive real solutions ν0 only if 0 < −2/u < 1, or u < −2. This
corresponds to a strong flow to the left, away from the exit. From (1.15), the rate
constant of that solution is recovered from

s0 = ν2
0 − 1

4
u2 = 1

4
u2(tanh2 ν0 − 1) < 0 (1.22)
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which means that s0 < 0 for u < −2, indicating decay as required.
Now let ν = iω in (1.21):

tanω = −2

u
ω . (1.23)

This clearly has an infinite number of positive real solutions ωn, n = 1, 2, 3, . . . .
These give exponential time dependence esnt with

sn = −ω2
n − 1

4
u2 < 0 (1.24)

again corresponding to decaying solutions. Note that for u < −2 the real solution
to (1.21) is always the slowest-decaying eigenmode, and its decay rate approaches
zero as u→ −∞. We will discuss this further below.

Splitting the sum in (1.20) between real ν0 and imaginary νn = iωn for n ≥ 1, we
can write the full solution as

p(x, t |x0, 0) = 2eu (x−x0)/2 2ν0 cosh ν0x< + u sinh ν0x<
(2 + u) cosh ν0 + 2ν0 sinh ν0

sinh ν0(1− x>) e−(u2/4−ν20 ) t

− 2
∞∑
n=1

eu (x−x0)/2 2ωn cosωnx< + u sinωnx<
(2 + u) cosωn − 2ωn sinωn

sinωn(1− x>) e−(ω2
n+u2/4) t, (1.25)

which is (1.8). For u ≥ −2 we set ν0 = 0 and the first term simply drops out.
For u→ 0, we have ωn = (n− 1

2
)π and cosωn = 0:

p(x, t |x0, 0) = −2
∞∑
n=1

cosωnx<
− sinωn

sinωn(1− x>) e−ω
2
nt

= 2
∞∑
n=1

cosωnx< cosωnx> e−ω
2
nt

= 2
∞∑
n=1

cosωnx cosωnx0 e−ω
2
nt (1.26)

which is the same as (1.5), as required.



Lecture 2

The mean exit time equation

2.1 The adjoint operator

A crucial operator will be the adjoint of L with respect to the inner product

〈F,G〉 =

∫
Ω

F (x)G(x) dV. (2.1)

The adjoint of L is computed via integration by parts, which gives rise to boundary
terms:

〈f,Lg〉 =

∫
Ω

f ∇ · (ug −D∇g) dV

=

∫
∂Ω

f (ug −D∇g) · n̂ dS +

∫
∂Ω

g D∇f · n̂ dS +

∫
Ω

gL∗f dV, (2.2)

where the adjoint operator is defined

L∗f := −u · ∇f −∇ · (D∇f) . (2.3)

The function g satisfies the same boundary conditions as p in (1.2); the first boundary
term in (2.2) thus vanishes on ∂Ωw. Hence,

〈f,Lg〉 =

∫
∂Ωe

f (ug −D∇g) · n̂ dS +

∫
∂Ωw

g D∇f · n̂ dS + 〈L∗f, g〉. (2.4)

We still haven’t imposed any boundary conditions on f . We use this freedom to get
rid of the remaining boundary terms in (2.4), which we can do by requiring

n̂ ·D∇f |∂Ωw
= 0, (2.5a)

f |∂Ωe
= 0. (2.5b)

9
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We refer to (2.5) as the adjoint boundary conditions. We thus obtain the usual adjoint
relation

〈f,Lg〉 = 〈L∗f, g〉 (2.6)

for all functions g obeying (1.2b)–(1.2c) and functions f obeying (2.5). Note that
we left the diffusivity D in (2.5a) instead of dividing through by D, to emphasize
that (2.5a) becomes vacuous when D = 0, and so that (2.5a) is still valid for tenso-
rial D.

2.2 Derivation of the exit time equation

The survival probability of finding the particle anywhere in Ω at time t is

S(t |x0, t0) =

∫
Ω

p(x, t |x0, t0) dV. (2.7)

We can also interpret S(t |x0, t0) as the fraction of particles remaining in the domain
at time t. We can find its time evolution by integrating (1.2a):

∂tS(t |x0, t0) = −
∫

Ω

∇ · (up−D∇p) dV = −
∫
∂Ω

(up−D∇p) · n̂ dS. (2.8)

By (1.2b), the surface integral vanishes on ∂Ωw, and by (1.2c) p vanishes on ∂Ωe.
We are left with

∂tS(t |x0, t0) =

∫
∂Ωe

D∇p · n̂ dS ≤ 0. (2.9)

We can see that ∂tS is nonpositive as follows. Since p ≥ 0 inside Ω and p = 0 on ∂Ωe,
∇p|∂Ωe points toward the interior, and so ∇p · n̂ ≤ 0. We conclude that ∂tS ≤ 0,
and hence the only way to lose particles is at the exit boundaries ∂Ωe.

From S(t |x0, t0) we find the first passage time density f(t |x0, t0), which is the
probability density for a particle to have first reached the boundary at time t:

f(t |x0, t0) = −∂S
∂t
≥ 0. (2.10)
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The expected exit time or mean exit time τ(x0, t0) (measured from t0) is then

τ(x0, t0) =

∫ ∞
t0

(t− t0)f(t |x0, t0) dt

= −
∫ ∞
t0

(t− t0)
∂S

∂t
dt

= −[(t− t0)S]∞t0 +

∫ ∞
t0

S(t |x0, t0) dt

=

∫ ∞
t0

S(t |x0, t0) dt. (2.11)

Note that this assumes that S(t) decays faster than t−1 as t → ∞. This is fine,
as p should be asymptotically equal to the slowest-decaying eigenfunction of the
operator L, and so should decay exponentially.

Our ultimate goal is to derive a PDE for τ(x0, t0). But first, an aside: in Ap-
pendix 2.A, we show that p(x, t |x0, t0) satisfies the Kolmogorov backward equation
with respect to (x0, t0):

−∂t0p+ L∗x0,t0
p = 0, t0 < t, (2.12a)

with the adjoint boundary conditions (2.5)

n̂ ·D∇x0p|∂Ωw
= 0, (2.12b)

p|∂Ωe
= 0, (2.12c)

and terminal condition

p(x, t |x0, t) = δ(x− x0). (2.12d)

The subscripts on L∗x0,t0
and ∇x0 remind us that the derivatives are with respect

to x0, and the velocity field in the operator is evaluated at x0 and t0. The sys-
tem (2.12) is ill-posed forward in time, so it must be solved backward in time.

Given that p(x, t |x0, t0) satisfies (2.12), we act on τ with L∗x0,t0
:

L∗x0,t0
τ(x0, t0) =

∫ ∞
t0

L∗x0,t0
S(t |x0, t0) dt

=

∫ ∞
t0

∫
Ω

L∗x0,t0
p(x, t |x0, t0) dV dt

=

∫
Ω

∫ ∞
t0

∂t0p dt dV =

∫ ∞
t0

∂t0S dt.
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For the last term, we use

∂t0τ = ∂t0

∫ ∞
t0

S(t |x0, t0) dt = −S(t0 |x0, t0) +

∫ ∞
t0

∂t0S dt (2.13)

with S(t0 |x0, t0) = 1. We thus obtain

−∂t0τ + L∗x0,t0
τ = 1, t0 < t, (2.14a)

n̂ ·D∇x0τ |∂Ωw
= 0, (2.14b)

τ |∂Ωe
= 0, (2.14c)

where the boundary conditions on τ are inherited from those on p in Eq. (2.12). The
exit time τ(x0, t0) is measured from t0, so if the velocity field is time-independent
then τ does not depend on t0 (autonomous drift), and we can drop the −∂t0τ term
in (2.14):

L∗x0
τ = 1, n̂ ·D∇x0τ |∂Ωw

= 0, τ |∂Ωe
= 0. (2.15)

Note that when dealing only with τ and not with p it is customary to drop the zero
subscripts, with the understanding that x now refers to an initial position.

Appendix 2.A The backward Kolmogorov equa-

tion

The probability density must satisfy a consistency property in the form of the
Chapman–Kolmogorov equation:∫

Ω

p(x, t |y, s) p(y, s |x0, t0) dVy = p(x, t |x0, t0), t0 ≤ s ≤ t. (2.16)

This says that if we integrate over all locations at some intermediate time, we must
obtain the same result, independent of the choice of intermediate time s. Take a
derivative with respect to s of (2.16), then set s = t0:∫

Ω

(∂t0p(x, t |y, t0) p(y, t0 |x0, t0) + p(x, t |y, t0) ∂tp(y, t0 |x0, t0)) dVy = 0. (2.17)

We use the forward equation (1.2a) to replace ∂tp by −Lp, as well as p(y, t0 |x0, t0) =
δ(y − x0):∫

Ω

(∂t0p(x, t |y, t0) δ(y − x0)− p(x, t |y, t0)Ly,t0p(y, t0 |x0, t0)) dVy = 0. (2.18)
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We then integrate the delta function and use the adjoint property (2.6):

∂t0p(x, t |x0, t0)−
∫

Ω

L∗y,t0p(x, t |y, t0) p(y, t0 |x0, t0) dVy = 0. (2.19)

The use of the adjoint requires that p(x, t |x0, t0) satisfy the adjoint boundary condi-
tions (2.12b)–(2.12c). Finally, we again use p(y, t0 |x0, t0) = δ(y−x0) and integrate
to find

∂t0p(x, t |x0, t0)− L∗x0,t0
p(x, t |x0, t0) = 0, (2.20)

which is Eq. (2.12a).



Lecture 3

Examples of exit time calculations

In this lecture we explore several examples of solutions of the mean exit time equa-
tion (2.15) for an autonomous flow:

L∗xτ = 1, n̂ ·D∇xτ |∂Ωw
= 0, τ |∂Ωe

= 0 (3.1)

where L∗ was defined in (2.3)

L∗f := −u · ∇f −∇ · (D∇f) . (3.2)

and we dropped the 0 subscript on initial quantities.

3.1 Exit from a one-dimensional interval

Example 3.1 (interval with diffusion only). Set u = 0 and take Ω = [0, 1], with ∂Ωw =
{0} and ∂Ωe = {1}. The exit time equation (2.15) for τ(x) is then

−Dτ ′′ = 1, τ ′(0) = 0, τ(1) = 0. (3.3)

This has the simple solution

τ(x) =
1

2D
(1− x2). (3.4)

As a check, recall that in Lecture 1 we derived the pdf (1.26):

p(x, t |x0, 0) = 2
∞∑
n=1

cosωnx cosωnx0 e−ω
2
nDt, ωn = (n− 1

2
)π. (3.5)

14
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Figure 3.1: Mean exit time (3.10) for a particle, as a function of its initial position
in the interval. We set D = 1 and the exit time is normalized by τ(0). The dashed
line is the ballistic limit.

From this we can directly compute the survival probability (2.7):

S(t |x0, 0) =

∫ 1

0

p(x, t |x0, 0) dx (3.6)

=
2

D

∞∑
n=1

(−1)n−1

ωn
cosωnx0 e−ω

2
nt, (3.7)

and then the mean exit time (2.11):

τ(x0) =

∫ ∞
0

S(t |x0, 0) dt =
2

D

∞∑
n=1

(−1)n−1

ω3
n

cosωnx0. (3.8)

This is the generalized Fourier series expansion of (3.4) (with x → x0) in terms of
the orthogonal functions cosωnx0.

Example 3.2 (interval with drift and diffusion). With the same setting as Exam-
ple 3.1, we now allow for nonzero drift u = ux̂; the exit time equation (2.15) is

−Dτ ′′ − uτ ′ = 1, τ ′(0) = 0, τ(1) = 0 (3.9)
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with solution

τ(x) =
1− x
u

+
D

u2

(
e−u/D − e−ux/D

)
. (3.10)

This solution is plotted in Fig. 3.1 for different values of u.
For large positive u the mean exit time is

τ(x) =
1− x
u

+ O(e−ux/D), u→∞. (3.11)

The quantity (1 − x)/u is the ‘ballistic’ exit time (i.e., nondiffusive), but there is a
boundary layer in τ ′ at x = 0 of width D/u to ensure the wall condition τ ′(0) = 0.

For u < 0, write (3.10) as

τ(x) = −1− x
|u|

+
D

u2

(
e|u|/D − e|u|x/D

)
, u < 0. (3.12)

The largest term as u→ −∞ is e|u|/D, independent of x. There is however a boundary
layer on the right, of width D/|u|, to ensure the exit boundary condition τ(1) = 0.
This situation — an exit time independent of initial position, except in a boundary
layer — will recur when we encounter the “Narrow Escape Problem.” (See Exam-
ple 3.4 and references such as [3, 8].) If a particle starts near the exit, inside the
boundary layer, there’s a good chance it will escape immediately. However, if it starts
outside the boundary layer, the particle is likely to explore the interval many times
over because it happens to enter the boundary layer. This wipes out any memory of
the initial position of the particle, leading to a flat exit time.

3.2 Exit from a disk or sphere

Example 3.3 (disk or sphere with diffusion only). Set u = 0, in a disk or sphere of
unit radius, and take ∂Ωw = ∅ and ∂Ωe = ∂Ω. The mean exit time will depend only
on r, so we write τ(r). Then (3.1) reads

−D 1

rd−1

(
rd−1 τ ′

)′
= 1, τ ′(0) = 0, τ(1) = 0, (3.13)

where d = 2 or 3, with solution

τ(r) =
1

2Dd

(
1− r2

)
. (3.14)

As intuition suggests, the mean exit time is maximized at the center of the disk or
sphere.
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Example 3.4 (disk or sphere with small exit, diffusion only). Take a disk or sphere
with a small exit at its center:

Ω = {ε < r < 1}, ∂Ωe = {r = ε}, ∂Ωw = {r = 1}. (3.15)

The outer boundary is a reflecting wall, and the exit is a disk or sphere centered on
the origin. The exit time equation (3.1) with D = 1 is

− 1

rd−1

(
rd−1 τ ′

)′
= 1, τ(ε) = 0, τ ′(1) = 0. (3.16)

For a disk (d = 2), the solution is

τ(r) = 1
4

(
ε2 − r2 + 2 log(r/ε)

)
. (3.17)

As ε→ 0,
τ(r) = 1

2
log ε−1 + O(ε0), r & ε, (3.18)

that is, the exit time is roughly constant except in a boundary layer near the central
exit. The mean exit time blows up logarithmically as ε→ 0.

For a sphere (d = 3), the solution is

τ(r) = 1
3
(ε−1 − r−1) + 1

6
(ε2 − r2) =

1

3ε
+ O(ε0). (3.19)

Again, the exit time is roughly constant except in a boundary layer of width ε near
the central exit. However, here the exit time blows up as ε−1 with ε→ 0 rather than
logarithmically. This reflects the fact that it is much harder in three dimensions for
the particle to wander into the exit.

Example 3.5 (disk or sphere with small exit, with drift and diffusion). For the
same setup as in Example 3.4, the exit time equation with D = 1 and a symmetric
flow u(r) = u(r) r̂ + . . . is

− 1

rd−1

(
rd−1 τ ′

)′ − u(r) τ ′ = 1, τ(ε) = 0, τ ′(1) = 0. (3.20)

The components of u in directions perpendicular to r̂ do not contribute to u · ∇τ ,
since by symmetry the solution τ(r) depends on r only. We let y(r) = rd−1 τ ′(r), so
that (3.20) becomes

y′ + u(r) y = −rd−1, y(1) = 0. (3.21)

Take

F (r) =

∫
u(r) dr (3.22)
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to be any antiderivative of u(r). Then eF (r) is an integrating factor for (3.21):(
eF (r) y

)′
= −rd−1 eF (r) (3.23)

which can then be integrated to give

y(r) = rd−1 τ ′ = e−F (r)

∫ 1

r

td−1 eF (t) dt. (3.24)

We divide by rd−1 and integrate this again from ε to r to find τ(r) with τ(ε) = 0.
We thus obtain the solution to (3.20) in the integral form

τ(r) =

∫ r

ε

s−(d−1) e−F (s)

∫ 1

s

td−1 eF (t) dt ds . (3.25)

Rewrite this as

τ(r) =

∫ r

ε

s−(d−1) G(s) ds, G(s) := e−F (s)

∫ 1

s

td−1 eF (t) dt . (3.26)

Unless u(r) is singular at the origin, G(s) will have a Taylor series expansion at s = 0:

G(s) = G(0) (1− u(0)s) + O(s2). (3.27)

The integral for τ(r) in (3.26) will then be dominated by the singularity s−(d−1)

as ε→ 0:

τ(r) = G(0)

(∫ r

ε

s−(d−1) ds− u(0)

∫ r

ε

s−d+2 ds

)
+ . . . (3.28)

In particular, for d = 2 or 3:

τ(r) = G(0)×

{
log(r/ε)− u(0) (r − ε) + O(ε2, r2), d = 2;

ε−1 − r−1 − u(0) log(r/ε) + O(ε, r), d = 3.
(3.29)

As ε → 0, τ(r) becomes independent of r except in a small boundary layer of
thickness ε near the exit, in a manner very similar to Example 3.4. The coefficient
can be regarded as a kind of ‘effective diffusivity’

Deff = D/G(0)d (3.30)

which measures the enhancement or suppression of the exit time by the flow. Note
that G(0) = 1/d for u ≡ 0, so (3.30) reduces to D in the absence of flow.
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Figure 3.2: The function G(0) for the case u = const., as given by Eq. (3.31).

For the case u = const., we have

G(0) = (−u)−d {Γ(d)− Γ(d,−u)} =

{
((u− 1) eu + 1) /u2, d = 2;

((u2 − 2u+ 2) eu − 2) /u3, d = 3.
(3.31)

These are plotted in Fig. 3.2. For positive u there is an exponential suppression
of the exit time, G(0) ∼ eu/u independent of d, consistent with the flow pushing
particles away from the exit. For negative u there is an enhancement. We get the
asymptotic result

G(0) ∼ (d− 1)!

|u|d
, u→ −∞, (3.32)

or from (3.30)
Deff ∼ D |u|d/d! , u→ −∞. (3.33)

This suggests an enhancement that can become arbitrarily large, but this is a figment
of taking small ε first.



Lecture 4

The swimming Brownian needle

4.1 Basic equation

We call a needle an infinitely thin segment of length `. We will confine ourselves to
two dimensions. We define a coordinate X to be along the length of the needle, with
positive X corresponding to the ‘head,’ and Y the perpendicular direction to X.
These are relative coordinates defined in the frame of the needle, or ‘body frame.’
The coordinates x and y are the absolute ‘lab frame’ coordinates.

The needle moves due to diffusion of its center of mass, and its angle θ with
respect to the absolute horizontal also undergoes diffusion. The needle is propelled
at some speed U along its long direction, in the positive X direction.

The basic stochastic differential equation (SDE) for the swimming Brownian nee-
dle are inspired by [8, p. 235]. We add to their formulation a drift term in the X
direction in the needle frame:

dX = U dt+
√

2DX dW1 ; (4.1a)

dY =
√

2DY dW2 ; (4.1b)

dθ =
√

2Dθ dW3 . (4.1c)

Here dX is the change in the needle’s position in its long direction, dY in the per-
pendicular direction, and dθ the change to its angle. The increments (dX, dY ) in
body frame coordinates are related to those in lab frame coordinates (dx, dy) by a
rotation: (

dX
dY

)
=

(
cos θ − sin θ
sin θ cos θ

)(
dx
dy

)
. (4.2)

20
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Figure 4.1: (a) Sample path for a purely Brownian needle (DX = DY = 1, U = Dθ =
0) starting from the origin, and (b) for a swimming Brownian needle (DX = DY = 0,
U = Dθ = 1). The swimming case is much smoother-looking.

We apply the rotation (4.2) to the SDEs (4.1) to obtain the Itô stochastic equations1

dx =
(
U(x, y, t) dt+

√
2DX dW1

)
cos θ − sin θ

√
2DY dW2 ; (4.3a)

dy =
(
U(x, y, t) dt+

√
2DX dW1

)
sin θ + cos θ

√
2DY dW2 ; (4.3b)

dθ =
√

2Dθ dW3 . (4.3c)

These can be rewritten in matrix form asdx
dy
dθ

 = µ dt+ � ·

dW1

dW2

dW3

 , (4.4)

with

µ =

U cos θ
U sin θ

0

 , � =

√2DX cos θ −
√

2DY sin θ 0√
2DX sin θ

√
2DY cos θ 0

0 0
√

2Dθ

 . (4.5)

1Here we are avoiding the thorny modeling issue of interpretation of the SDE as Itô, Stratonovich,
or something else. This issue goes away in our simplified equation (4.8), which has constant diffu-
sivity. See [13, 14] for a lot more on this subtle point.
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The Fokker–Planck equation for the probability density p(x, y, θ, t) is then

∂tp = −∂xi (µi(x, y, θ, t) p) + ∂2
xixj

(Dij(x, y, θ) p) (4.6)

with

[Dij] = D = 1
2
��T =

DX cos2 θ +DY sin2 θ 1
2
(DX −DY ) sin 2θ 0

1
2
(DX −DY ) sin 2θ DX sin2 θ +DY cos2 θ 0

0 0 Dθ

 . (4.7)

We thus have an example of a system in which the diffusivity is both a tensor
and depends on one of the coordinates, here θ, though this dependence goes away
when DX = DY . However, we can effect a tremendous simplification: the problem
is still interesting even if we set DX = DY = 0, since the needle will still swim
throughout the entire domain by varying its direction. (See Fig. 4.1 for typical
paths in the diffusive and swimming case.) The Fokker–Planck equatoin (4.6) then
simplifies to

∂tp = −∂x(U cos θ p)− ∂y(U sin θ p) +Dθ ∂
2
θθ p . (4.8)

For any volume Ω we have

∂t

∫
Ω

p dV = −
∫

Ω

{
∂x(U cos θ p) + ∂y(U sin θ p) +Dθ ∂

2
θθ p
}

dV

= −
∫

Ω

∇x,y,θ · (U cos θ p , U sin θ p , Dθ ∂θp) dV

= −
∫
∂Ω

(U cos θ p , U sin θ p , Dθ ∂θp) · n̂ dS.

Thus, on the reflecting (wall) parts of the boundary we require

(U cos θ p , U sin θ p , Dθ ∂θp) · n̂ = 0, on ∂Ωw (4.9)

where n̂ is the outer unit normal to the boundary.
The mean exit time equation corresponding to (4.8) is

U cos θ ∂xτ + U sin θ ∂yτ +Dθ ∂
2
θθ τ = −1 . (4.10)

We will return later to this equation. For now, in the next Section, we’d like to
attack the SDE directly in the case where there are no boundaries.
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4.2 Solving the SDE in an infinite domain

Let’s solve (4.3) with DX = DY = 0 and U constant, for the case where there are no
exits or walls and Ω = R2 × [−π, π]:

dx = U cos θ(t) dt ; (4.11a)

dy = U sin θ(t) dt ; (4.11b)

dθ =
√

2Dθ dWt . (4.11c)

(We have altered the notation a bit: the time-dependence is indicated by a sub-
script on dWt, since there is now only one Brownian motion.) Change this to the
dimensionless variables t′ = 2Dθt and x′ = (2Dθ/U)x:

dx′ = cos θ(t′) dt′ ; (4.12a)

dy′ = sin θ(t′) dt′ ; (4.12b)

dθ = dWt′ , (4.12c)

so that now Wt is standard Brownian motion. We drop the primes in (4.12). We can
immediately solve for θ(t) = θ0 +Wt and then find an integral form for x(t):

x(t) = x0 +

∫ t

0

r̂(θ0 +Ws) ds, r̂(θ) =

(
cos θ
sin θ

)
. (4.13)

The solution (4.13) is exact, but is not yet very useful. One thing we can do is
use it to compute expectations of x(t) and its moments. To simplify the calculation
from here, let’s set x0 = θ0 = 0 and rotate the answer at the end.

Expectations of functions of Wt are computed using the Gaussian heat kernel,

Ef(Wt) =

∫ ∞
−∞

f(w)
e−w

2/2t

√
2πt

dw. (4.14)

Using this in (4.13) with θ0 = 0, we have

Ex(t) = E
∫ t

0

(
cosWs

sinWs

)
ds = 2(1− e−t/2)

(
1
0

)
. (4.15)

Here, using Fubini’s theorem, we brought the expectation inside the integral. Perhaps
surprisingly, the expectation (4.15) does not go to x0 = 0 as t → ∞, because there
is a bias determined by the initial motion in the x̂ direction. Of course, averaging
over the initial angle would eliminate the bias. For small time, (4.15) gives

Ex(t) = t+ O(t2), t→ 0, (4.16)
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exhibiting the initial ballistic motion of the needle. Equation (4.15) is compared to
numerical simulations in Fig. 4.2(a).

Now for the mean-squared displacement. We have the quadratic expectation

E(x(t)⊗ x(t)) = E
{∫ t

0

r̂(Ws) ds⊗
∫ t

0

r̂(Ws) ds

}
= E

∫ t

0

∫ t

0

r̂(Ws)⊗ r̂(Ws′) ds ds′.

The covariance of a vector x(t) is2

Cov{x(t),x(t)} = E{x(t)⊗ x(t)} − Ex(t)⊗ Ex(t) (4.17)

so that

Cov{x(t),x(t)} =

∫ t

0

∫ t

0

Cov{r̂(Ws), r̂(Ws′)} ds ds′. (4.18)

We thus need to compute the expectation E{r̂(Ws), r̂(Ws′)} at different times s
and s′. For t > s, we use the independence of Wt −Ws and Ws:

E{cosWt cosWs} = E{cos(Wt −Ws +Ws) cosWs}
= E{(cos(Wt −Ws) cosWs − sin(Wt −Ws) sinWs) cosWs}
= E cosWt−s E cos2Ws − E sinWt−s E{sinWs cosWs}
= (e−(t−s)/2)(e−s cosh s)− 0

= e−(t+s)/2 cosh s,

and similarly for the other entries, to obtain

E{r̂(Wt)⊗ r̂(Ws)} = e−(t+s)/2

(
cosh s 0

0 sinh s

)
, t > s. (4.19)

We also have

Er̂(Wt)⊗ Er̂(Ws) = e−(t+s)/2

(
1 0
0 0

)
, (4.20)

so that

Cov{r̂(Wt), r̂(Ws)} = e−(t+s)/2

(
cosh s− 1 0

0 sinh s

)
, t > s. (4.21)

2Feller [5, p. 82] defines this as the variance of a vector. It seems more natural call this a
covariance and reserve variance for Var{x(t)} = Tr Cov{x(t),x(t)}.
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Figure 4.2: (a) Components of expected displacement Ex(t) for a swimming needle
with DX = DY = 0, U = Dθ = 1, and x0 = θ0 = 0, averaged over 3000 paths. The
dashed lines are the components of (4.15). (b) Variance of x and y for the same
parameters, compared to the diagonal elements of (4.22).

Inserting this into (4.18) we find

Cov{x(t),x(t)} = 2

∫ t

0

ds

∫ s

0

ds′ Cov{r̂(s), r̂(s′)}

= 2

∫ t

0

ds

∫ s

0

ds′ e−(s+s′)/2

(
cosh s′ − 1 0

0 sinh s′

)
= 2(t− 3 + 4e−t/2 − e−t) I

−
(
1− 1

3
e−2t

(
1− 6et + 8e3t/2

))(1 0
0 −1

)
. (4.22)

This expression is compared to numerical simulations in Fig. 4.2(b).
The variance of x(t) is then

Var{x(t)} = E‖x(t)−Ex(t)‖2 = Tr Cov{x(t),x(t)} = 4(t−3+4e−t/2−e−t). (4.23)

This is diffusive (linear in t) for large t. The long-time effective diffusivity is read off
from

Var{x(t)} ∼ 4Deff t, t −→∞, (4.24)
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Figure 4.3: The mean-squared displacement for a purely Brownian needle, and a
swimming needle. The dashed lines are the predicted effective diffusivities: DX +DY

for the first case, Deff = U2/2Dθ for the second.

which gives Deff = 1. In terms of the original units, this is

Deff = U2/2Dθ. (4.25)

For small t (4.22) can be expanded as

Cov{x(t),x(t)} =

(
1
12
t4 0

0 1
3
t3 − 5

24
t4

)
+ O(t5). (4.26)

For a general initial angle θ0, we can transform (4.22) with the rotation (4.2):(
cos θ0 − sin θ0

sin θ0 cos θ0

)(
1 0
0 −1

)(
cos θ0 − sin θ0

sin θ0 cos θ0

)T
=

(
cos 2θ0 sin 2θ0

sin 2θ0 − cos 2θ0

)
. (4.27)



Lecture 5

Introduction to stochastic calculus

This lecture is a bit out of order since we solved an SDE in the previous lecture, but
people expressed interest in learning more, so here we go. This short introduction will
be far from rigorous; rather we will focus on intuition and on practical calculations. A
good non-rigorous reference is the book by Gardiner [6]; a standard rigorous reference
is Øksendal [10].

5.1 Brownian motion

The basic building block in SDEs is Brownian motion, which a time-dependent
stochastic process Wt. As mentioned in Lecture 4, Wt ∼ N(0, t), i.e., it is normally-
distributed (Gaussian) with mean zero and variance t. Expected values of functions
of Brownian motion are computed according to

Ef(Wt) =

∫ ∞
−∞

f(w)
e−w

2/2t

√
2πt

dw. (5.1)

This the Gaussian probability density corresponding to a heat kernel with mean zero
and variance t:

EWt = 0; EW2
t = t. (5.2)

The increments of the Brownian process are of the form

Wt −Ws, t > s , (5.3)

27
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and Wt −Ws is independent of Ws if t > s. For t > s, we have the correlation

E{WtWs} = E{(Wt −Ws +Ws)Ws}
= E{(Wt −Ws)Ws}+ E{W2

s}
= 0 + s, t > s. (5.4)

We rewrite this as
E{WtWs} = min{t, s}. (5.5)

5.2 The stochastic integral

A stochastic differential equation is an equation of the form

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt (5.6)

for some sufficiently smooth functions f and σ. The infinitesimal increment dWt is
the limit Wt+∆s −Wt as ∆s→ 0. Integrate (5.6) to give

Xt = X0 +

∫ t

0

µ(Xs, s) ds+

∫ t

0

σ(Xs, s) dWs. (5.7)

The first integral does not cause any problems: we just integrate with rest to s as we
would normally. The second is more problematic: dWs is an increment of Brownian
motion. To interpret the integral, we divide up the interval as we normally would
for a Riemann integral:

sn = n∆s, n = 0, . . . N, ∆s = t/N. (5.8)

The last integral in (5.7) then becomes∫ t

0

σ(Xs, s) dWs = lim
N→∞

N−1∑
n=0

σ(Xsn , sn) ∆Wsn . (5.9)

where
∆Wsn := Wsn+∆s −Wsn . (5.10)
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Example 5.1 (Integral of Brownian motion). As an example, let’s integrate Brow-
nian motion itself:∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

Wsn ∆Wsn (5.11)

= lim
N→∞

N−1∑
n=0

(Wsn Wsn+∆s −W 2
sn)

= lim
N→∞

N−1∑
n=0

1
2

(
W 2
sn+∆s −W 2

sn

)
− 1

2
(Wsn+∆s −Wsn)2.

The first term is a telescoping sum with value 1
2

(W 2
t −W 2

0 ) with W0 = 0. The
second is a sum over (∆Wsn)2, and these converge in the mean-squared sense to ∆s
(see p. 30); hence, ∫ t

0

Ws dWs = 1
2
W 2
t − 1

2
t. (5.12)

The integral is different than we might expect from the normal chain rule, which
would imply WsdWs = d(1

2
W 2
t ). The expected value of the integral vanishes:

E
∫ t

0

Ws dWs = 1
2
(EW 2

t − t) = 0. (5.13)

For the stochastic integral of a general differentiable function f(Ws), we write∫ t

0

f(Ws) dWs = lim
N→∞

N−1∑
n=0

f(Wsn) ∆Wsn . (5.14)

The expectation again vanishes:

E
∫ t

0

f(Ws) dWs = lim
N→∞

N−1∑
n=0

E{f(Wsn)∆Wsn} = 0, (5.15)

since Wsn is independent of ∆Wsn and E∆Wsn = 0. In fact, we can write something
resembling the fundamental theorem of calculus:∫ t

t0

f(Ws) dWs = F (Wt)− F (Wt0)− 1
2

∫ t

t0

f ′(Ws) ds, (5.16)

where F (w) is and antiderivative of f(w), which will follow from Itô formula (Eq. (6.2)).
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What about a differentiable function of the stochastic process f(Xt)? We define
the integral in the same way:∫ t

0

f(Xs) dWs = lim
N→∞

N−1∑
n=0

f(Xsn) ∆Wsn . (5.17)

This is the Itô integral, with expected value zero since Xsn is independent of ∆Wsn .
An integral in (dWs)

2 is equal to one in ds in expectation:

E
{∫ t

0

f(Xs)(dWs)
2 −

∫ t

0

f(Xs) ds

}
= lim

N→∞

N−1∑
n=0

E
{
f(Xsn)

(
(∆Wsn)2 −∆s

)}
= 0.

Moreover, the Riemann sums defining these integrals converge to each other in the
mean-squared sense, as can be see by first writing

E

{(∫ t

0

f(Xs)(dWs)
2 −

∫ t

0

f(Xs) ds

)2
}

=

lim
N,N ′→∞

N−1∑
n=0

N ′−1∑
n′=0

E
{
f(Xsn)f(Xsn′

)
(
(∆Wsn)2 −∆s

) (
(∆Wsn′

)2 −∆s′
)}
.

For n < n′ we have f(Xsn)f(Xsn′
) ((∆Wsn)2 −∆s) independent of

(
(∆Wsn′

)2 −∆s′
)
,

so the expectation vanishes, and similarly for n > n′. Hence,

E

{(∫ t

0

f(Xs)(dWs)
2 −

∫ t

0

f(Xs) ds

)2
}

=

lim
N→∞

N−1∑
n=0

E{f 2(Xsn)}E
{

(∆Wsn)4 − 2(∆Wsn)2∆s+ (∆s)2
}
.

On the right-hand side we use E(∆Wsn)2 = ∆s and E(∆Wsn)4 = 3E(∆Wsn)2 =
3(∆s)2, which follows from ∆Wsn being Gaussian. We thus have

E

{(∫ t

0

f(Xs)(dWs)
2 −

∫ t

0

f(Xs) ds

)2
}

= lim
N→∞

N−1∑
n=0

E{f 2(Xsn)} 2(∆s)2 = 0

which vanishes because (∆s)2 ∼ 1/N2 and there are only N terms in the series (f
is bounded since it is continuous on a closed interval). We conclude that the two
integrals converge to each other in the mean-squared sense for any function f(x),
and thus it makes sense to write [10, p. 44, Theorem 4.1.2]

(dWs)
2 = ds, (∆Wsn)2 = ∆s (5.18)

even without expectation.
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5.3 Other definitions of the stochastic integral

But wait! We made a big assumption in writing down (5.11): when we evaluated Ws

in an interval inside the sum, we chose to evaluate it at the start of the interval. We
could have equally well have evaluated it at the end of the interval:∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

Ws+∆s ∆Wsn . (5.19)

The expected value is then

E
∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

(EW2
sn+∆s − E{Wsn+∆sWsn})

= lim
N→∞

N−1∑
n=0

(sn + ∆s− sn) = t. (5.20)

Oops. . . we get a different answer. What about if we use a trapezoidal rule to ap-
proximate the integral, by averaging the values at the start and end of the interval?
This leads to ∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

1
2

(Wsn +Wsn+∆s) ∆Wsn . (5.21)

By linearity, the expected value is the average of (5.13) and (5.20):

E
∫ t

0

Ws dWs = 1
2
t (5.22)

which is different yet again. We can combine all these cases by using an arbitrary
weight 0 ≤ β ≤ 1:∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

((1− β)Wsn + βWsn+∆s) ∆Wsn (5.23)

so the expectation is

E
∫ t

0

Ws dWs = βt. (5.24)

The cases we looked at before correspond to β = 0 (start of interval), β = 1
2

(average
of start and end), and β = 1 (end of interval).
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Note that instead of averaging the two endpoint values we can also decide to
evaluate the Brownian motion at an intermediate point inside the interval:∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

Wsn+β∆s ∆Wsn (5.25)

which gives the expectation

E
∫ t

0

Ws dWs = lim
N→∞

N−1∑
n=0

(E{Wsn+β∆sWsn+∆s} − E{Wsn+β∆sWsn})

= lim
N→∞

N−1∑
n=0

((sn + β∆s)− sn) = βt, (5.26)

i.e., the same as (5.24). So it makes no difference whether we interpret the stochastic
integral as (5.23) or (5.25).

Because the choice of β affects the value of the stochastic integral, we introduce
the somewhat kludgy notation ∫ t

0

f ◦β dWs (5.27)

to indicate the choice of β in interpreting the stochastic integral. However, the
absence of ◦β indicates the Itô convention β = 0, which is the default in most
stochastic calculus texts. Another common convention is the Stratonovich integral,
β = 1

2
, which is usually denoted by a plain circle ◦.

For the integral of functions of the stochastic process f(Xt), the integral using
weighted endpoints is∫ t

0

f(Xs) ◦β dWs = lim
N→∞

N−1∑
n=0

f((1− β)Xsn + β Xsn+∆s)) ∆Wsn

= lim
N→∞

N−1∑
n=0

f(Xsn + β (Xsn+∆s −Xsn)) ∆Wsn

= lim
N→∞

N−1∑
n=0

(f(Xsn) + β f ′(Xsn) ∆Xsn + · · · ) ∆Wsn

where higher-order terms can be neglected in the limit. As ∆s → 0 the incre-
ment ∆Xsn tends to dXsn , so we can use (5.6):∫ t

0

f(Xs) ◦β dWs = lim
N→∞

N−1∑
n=0

(f(Xsn) + β f ′(Xsn)σ(Xsn , sn) ∆Wsn) ∆Wsn .
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Substituting (∆Wsn)2 = ∆s, we obtain∫ t

0

f(Xs) ◦β dWs =

∫ t

0

f(Xs) dWs + β

∫ t

0

f ′(Xs)σ(Xs, s) ds (5.28)

where the first term on the right is an Itô integral (5.17). Equation (5.28) is a
conversion formula between the Itô integral and any other convention. Thus, there
is no real loss in generality in using Itô calculus, as long as we remember to do the
conversion. Indeed, supposed we are faced with a general SDE of the form

dXt = µ(Xs, s) ds+ σ(Xs, s) ◦β dWs. (5.29)

Then we apply (the time-derivative of) (5.28) and obtain the Itô equation

dXt = (µ(Xs, s) + β σ(Xs, s) ∂xσ(Xs, s)) ds+ σ(Xs, s) dWs. (5.30)

Hence, an SDE (5.29) with an arbitrary value of β is an Itô SDE (5.6) with the
substitution

µ(x, t) −→ µ(x, t) + β σ(x, t) ∂xσ(x, t). (5.31)

Note that in the case where ∂xσ = 0 there is no difference between the different
conventions. The case with ∂xσ 6= 0 is referred to as multiplicative noise.

If we take Xs = Ws so that σ ≡ 1, the relationship (5.28) can be used with the
‘Itô fundamental theorem’ (5.16) to get a fundamental theorem for general choice
of β: ∫ t

t0

f(Ws) ◦β dWs = F (Wt)− F (Wt0) + (β − 1
2
)

∫ t

t0

f ′(Ws) ds. (5.32)

In the Stratonovich case (β = 1
2
), we have the elegant result∫ t

t0

f(Ws) ◦ dWs = F (Wt)− F (Wt0), (5.33)

that is, the chain rule df(Ws) = f ′(Ws)◦dWs is satisfied just as in ordinary calculus.
This is why it is sometimes preferred, but bear in mind that then the expectation of
stochastic integrals does not vanish.



Lecture 6

The Fokker–Planck equation

In this lecture we’ll (hopefully) complete our basic introduction to stochastic calculus.
In addition, we’ll devote some time to the so-called ‘Itô vs Stratonovich dilemma,’
a modeling issue that is not often addressed in mathematical SDE courses, but is
relevant in physics and applied math.

6.1 Itô’s formula

Let f(x, t) be a differentiable function. We wish to find the stochastic calculus version
of the chain rule. We have by Taylor expansion

df(Xt, t) = ∂tf(Xt, t) dt+ dxf(Xt, t) dXt + 1
2
∂2
xf(Xt, t) (dXt)

2 + O(dX3
t ). (6.1)

Here dXt satisfies the Itô SDE (5.6), so to leading order (dXt)
2 = σ2 (dWt)

2 = σ2dt,
after using (5.18). We thus obtain Itô’s formula

df(Xt, t) =
(
∂tf(Xt, t) + µ(Xt, t) ∂xf(Xt, t) + 1

2
σ2(Xt, t) ∂

2
xf(Xt, t)

)
dt

+ ∂xf(Xt, t)σ(Xt, t) dWt. (6.2)

Itô’s formula can be regarded as a transformation rule for changing variables in (5.6).
Define the generator of the stochastic process as the differential operator

Ax,tf(x) := µ(x, t) f ′(x) + 1
2
σ2(x, t)f ′′(x). (6.3)

Then Itô’s formula can be recast as

df(Xt, t) = (∂tf(Xt, t) +AXt,tf(Xt, t)) dt+ ∂xf(Xt, t)σ(Xt, t) dWt (6.4)

34



LECTURE 6. THE FOKKER–PLANCK EQUATION 35

or in integral form as

f(Xt, t)− f(X0, t0) =

∫ t

t0

(∂s +AXs,s)f(Xs, s) ds+

∫ t

t0

∂xf(Xs)σ(Xs, s) dWs. (6.5)

6.2 The forward and backward Kolmogorov equa-

tions

For some differentiable function g(x), define the quantity

u(t |x0, t0) := Ex0,t0g(Xt), (6.6)

where we used the notation

Ex0,t0g(Xt) := E{g(Xt) |Xt0 = x0}. (6.7)

We have
u(t |x0, t) = g(x0) (6.8)

which we regard as a terminal value for u(t |x0, t0), t0 ≤ t. In fact another way to
write u(t |x0, t0) is in terms of the transition probability density function p(x, t |x0, t0)
introduced in Lecture 1:

u(t |x0, t0) =

∫
Ω

g(x′) p(x′, t |x0, t0) dVx . (6.9)

From the definition of p, we see that the indices x0, t0 on the right are exactly the
statement that a stochastic particle started at that point, and the integral over x is
the expectation (6.7). Putting g(x′) = δ(x− x′) gives u(t |x0, t0) = p(x, t |x0, t0), so
that p can be deduced from u.

To get a differential equation for u, consider the integral form (6.5) of Itô’s formula
applied to f(x, t) = u(τ |x, t):

u(τ |Xt, t)− u(τ |X0, t0) =

∫ t

t0

(∂s +AXs,s)u(τ |Xs, s) ds

+

∫ t

t0

∂xu(τ |Xs, s)σ(Xs, s) dWs. (6.10)

Now take expectation Ex0,t0 on both sides of (6.10). On the left we have

Ex0,t0{u(τ |Xt, t)− u(τ |X0, t0)} = Ex0,t0Ex0,t0g(Xτ )− u(τ |x0, t0)

= Ex0,t0g(Xτ )− u(τ |x0, t0)

= 0.
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On the right of (6.10), after taking expectation Ex0,t0 , divide by t− t0, and take the
limit t→ t0:

0 = Ex0,t0 lim
t→t0

1

t− t0

∫ t

t0

(∂s +AXs,s)u(τ |Xs, s) ds

= Ex0,t0 (∂t0 +AX0,t0)u(τ |X0, t0)

= (∂t0 +Ax0,t0)u(τ |x0, t0). (6.11)

After setting τ = t, we thus obtain the Kolmogorov backward equation

∂t0u(t |x0, t0) +Ax0,t0u(t |x0, t0) = 0, t0 < t, u(t |x0, t) = g(x0). (6.12)

The PDE (6.12) can easily be transformed to a PDE for p(x, t |x0, t0) using (6.9)
with g(x′) = δ(x − x′). Comparing this to (2.12) from Lecture 2: we can see that
the generator A is related to L∗ by

Ax0,t0 = −L∗x0,t0 . (6.13)

Now we proceed as in Lecture 2 when we found the adjoint L∗, but going the
other way. We obtain the Kolmogorov forward or Fokker–Planck equation:

∂t0v(x, t | t0) = A∗x,tv(x, t | t0), t < t0, v(x, t0 | t0) = f(x), (6.14)

where the adjoint to the generator is

A∗x,tf(x) := −(µ(x, t)f(x))′ + 1
2
(σ2(x, t)f(x))′′. (6.15)

Comparing to (1.3), we have
A∗x,t = −Lx,t. (6.16)

Notice that the forward equation requires more regularity the the backward one,
since µ and σ appear inside derivatives.

6.3 Itô vs Stratonovich vs Hänggi

As we saw in the previous lecture, changing the convention for the stochastic integral
is simply a matter of effecting the substitution (5.31), which modifies the drift µ in
the generator (6.3) to give

Ax,tf(x) = (µ+ β σ ∂xσ) f ′(x) + 1
2
σ2f ′′(x). (6.17)
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We can instead move the extra β term to the diffusion term:

Ax,tf(x) = µ ∂xf + 1
2
σ2(1−β) ∂x

(
σ2β∂xf

)
. (6.18)

The adjoint appearing in the forward equation is

A∗x,tf(x) = −∂x(µ f) + 1
2
∂x
(
σ2β ∂x(σ

2(1−β)f)
)
. (6.19)

Thus, the different conventions for the stochastic integral can be interpreted as dif-
ferent models of diffusion.

For β = 0, the diffusion term is

∂2
x (Df) , D = 1

2
σ2, (β = 0, Itô), (6.20)

whereas for β = 1 it is

∂x (D∂xf) , D = 1
2
σ2, (β = 1, Hänggi). (6.21)

This last one resembles Fick’s law of diffusion, which says that the flux is proportional
to the gradient: F = −D(x) ∂xf . Finally, the Stratonich choice splits the difference:

∂x (σ ∂x(σ f)) , (β = 1
2
, Stratonovich). (6.22)

Of course, when σ is constant these are all the same. The appropriate choice of β is
a modeling issue.

• The Stratonovich integral is the limit of a non-white noise yε with short corre-
lation time ε:

dxε

dt
= h(xε) +

1

ε
f(xε) yε(t) (6.23)

This limits to
dXt = h(Xt) + σ f(Xt) · dWt. (6.24)

• Stratonovich also makes sense when there is a differential constraint. For in-
stance, to constrain Brownian motion to a sphere, a natural choice is the Itô
process

dXt = P(Xt) · dWt (6.25)

where P is the orthogonal projection to the tangent space of the sphere’s surface,
and Wt ∈ Rd is a d-dimensional Brownian motion. The projection operator
can be taken to be

P(x) = I− x⊗ x
‖x‖2

. (6.26)
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The length of Xt appears to be preserved by the process, since x · P(x) = 0
and so Xt · dXt = 0. However, all is not as well as it seems, which we can see
by integrating the equation to find ‖Xt‖2.

The multidimensional generalization of the Itô formula (6.2) for a function f(x)
is

df(Xt) = 1
2
��T : ∇∇f dt+∇f · � · dWt. (6.27)

We set µ = 0, �(x) = P(x), f(x) = 1
2
‖x‖2, ∇f = x, ∇∇f = I, to get

d(1
2
‖Xt‖2) = 1

2
Tr ��T dt+Xt · P · dWt. (6.28)

The last term above vanishes, and ��T = PPT = P2 = P, so that

Tr ��T = TrP = d− 1, (6.29)

where d is the dimension. Integrating (6.28) from 0 to t, we find

‖Xt‖2 = ‖X0‖2 + (d− 1) t. (6.30)

If the initial vector has unit length, ‖X0‖2 = 1, we see that the length drifts
away from unity with time! We are using the wrong calculus, since for compati-
bility we need d(1

2
‖Xt‖2) = Xt◦dXt and we should really use the Stratonovich

definition.

We modify Eq. (6.25) for the Stratonovich case by using [10, p. 83, Eq. (6.1.3)]

dXt = � ◦ dWt = 1
2
∂xkσij σkj êi dt+ � · dWt (6.31)

with � = P. After a bit of manipulation we find

dXt = −1
2
(d− 1)

Xt

‖Xt‖2
dt+ P(Xt) · dWt . (6.32)

This is the correct Itô equation to solve in order to constraint Xt to the surface
of a sphere. The generator is

Ax,tf = −1
2
(d− 1)

x

‖x‖2
· ∇f + 1

2
P(x) : ∇∇f (6.33)

with adjoint

A∗x,tf = 1
2
∇ ·
(

(d− 1)
x

‖x‖2
f +∇ · (P(x)f)

)
= 1

2
∇ · (−(∇ · P) f +∇ · (P(x)f))

= 1
2
∇ · (P(x) · ∇f) ,



LECTURE 6. THE FOKKER–PLANCK EQUATION 39

where we used ∇ · P = −(d − 1)x/‖x‖2. To make the role of the projection
clearer, decompose the gradient into two parts:

∇ = P(x) · ∇+ x̂ (x̂ · ∇) = ∇⊥ +∇‖ (6.34)

with ∇‖P(x) = 0. Then

A∗x,tf = 1
2
(∇2
⊥f +∇‖ · (∇⊥f))

= 1
2
(∇2
⊥f +∇‖ · (P · ∇f))

= 1
2
(∇2
⊥f + P · ∇‖ · (∇f))

= 1
2
∇2
⊥f.

Challenge: characterize some interesting solution on the sphere. In 3D, relate
to polar angles. Which is easier to solve?
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