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Figure 1: A patch of dye in a uniform straining flow. The amplitude of the concentration field
decreases exponentially with time. The length of the filament increases exponentially, whilst its
width is stabilised at £ = \/k/A. (From J.-L. THIFFEAULT, Scalar decay in chaotic mizing, in
Transport and Mixing in Geophysical Flows, J. B. Weiss and A. Provenzale, eds., vol. 744 of
Lecture Notes in Physics, Berlin, 2008, Springer, pp. 3-35.)
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Figure 2: A patch of dye in a uniform shearing flow. The amplitude of the concentration field
decreases algebraically with time as t=2. The length of the filament increases as t3/2, whilst its
width increases as t1/2. (From J.-L. THIFFEAULT, Scalar decay in chaotic mizing, in Transport
and Mixing in Geophysical Flows, J. B. Weiss and A. Provenzale, eds., vol. 744 of Lecture Notes in
Physics, Berlin, 2008, Springer, pp. 3-35.)
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Figure 1: The probability distribution of finite-time Lyapunov exponents for the baker’s map with
a = 0.3. As the iterate n increases, the distribution converges to the large-deviation probabil-
ity density, p,(h) (dashed red). The distribution was computed using 10° randomly-distributed
trajectories. See Figs. 2 and 3 for the Matlab code used to generate these figures.
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function dist_baker

Npts = 100000; Niter = 100; % number of initial points and iterates
alpha = .3; beta = l-alpha;

% The large-deviation form of the PDF.

mh = @(h) (h + log(beta))/(log(beta/alpha));

G = @(h) mh(h).*log(mh(h)) + (1-mh(h)).*log(1-mh(h))
+ mh(h) *log(beta/alpha) - log(beta);

sigma2 = alphaxbeta*log(alpha/beta) "2;

Pld = @(h,n) sqrt(n/2/pi/sigma2) * exp(-n*G(h));

% Specify which 4 values of iterate n to plot.
plotn = [20 50 75 100]; plotgeom = [2 2]; nplot = O;
% Generate random initial conditions.
rng(’default’); X = rand(Npts,2);
lstr = zeros(Npts,1); % the log-stretch
for n = 1:Niter
[X,str] = baker(X,alpha); Y% apply baker’s map (vectorized)
lstr = 1str + log(str);
if any(plotn == n)
% Plot the results.
nplot = nplot + 1; subplot(plotgeom(1l),plotgeom(2) ,nplot)
% Histogram of average stretching, normalized.
[P,bins] = hist(lstr/n,20); P = P/trapz(bins,P);
semilogy(bins,P,’b’,’LineWidth’,1.5), hold on
semilogy(bins,P1ld(bins,n),’r--’,’LineWidth’,2), hold off
xlabel (’$h$’, ’Interpreter’,’LaTeX’)
ylabel (’$\rho_{n}(h)$’,’Interpreter’,’LaTeX’)
axis([.35 1.05 2e-4 2el])
title(sprintf (’$n = %d$’,n),’Interpreter’,’LaTeX’)
end
end
print -dpdf dist_baker.pdf

Figure 2: The Matlab code dist_baker.m.
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function [Xn,stretch] = baker(X,al)
%BAKER  Baker’s map.

% XN = BAKER(X) returns the image of X=(x,y) under the action of the
BAKER (X,ALPHA) returns the generalized baker’s map, where
X must be in the unit square [0,1]°2.

% baker’s map.
% 0 < ALPHA < 1.
yA array with a 2-vector on each row.

% [XN,STRETCH] = BAKER(X) returns a vector STRETCH that records the
%  vertical stretching experienced by the particle (1/alpha or
This is used to reconstruct the tangent map.

% 1/(1-alpha)).

if nargin < 2
% Default is the uniform baker’s map.
al = 0.5;

end
if al >1 |l al <0
error(’Baker’’s map requires O < alpha < 1.°)
end
be = 1-al;

x = XCG,0D;5 y = X(:,2);

xn = zeros(size(x)); yn = zeros(size(y));

% Formula for y <= alpha.

ila = find(y <= al);
xn(ila) = al*x(ila);
yn(ila) = y(ila)/al;

% Formula for y > alpha.
iga = find(y > al);
xn(iga) = al + bexx(iga);
yn(iga) = (y(iga) - al)/be;

Xn = [xn ynl;

if nargout > 1
stretch = 1/al*ones(size(xn));
stretch(iga) = 1/be;

end

X can also be an

% Allocate arrays.

64
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Lecture 11: Renovating flows

Consider a two-dimensional linear divergence-free velocity field given by
u(x) = RO)ART () - x (1)

where A is a constant traceless matrix and

R(O) - (cos f —sin 9) )

sinf cos6
is a rotation matrix. The velocity gradient matrix is then
(Vu)l' = R(§) ART(9). (3)
An infinitesimal line segment dx obeys
dx =dx - Vu. (4)

Hence, as long as Vu remains constant, the initial line segment dx(0) is stretched after a
time 7 to

6x(7) = exp(TRAR") - §2(0). (5)
For any traceless matrix A with determinant det A = —¢?, we have
expA =1 cosh( + A¢ *sinh(. (6)
Hence,
6x(7) = (I cosh¢ + TRART (" 'sinh() - 6z(0). (7)
Now let

=17 ®

where v is the rate-of-strain of the flow, and w is half its vorticity (V x w = 2wz). The
corresponding rotated matrix is

(9)

T vycos20  ysin20 —w
RAR _(Wsin29+w —ycos20 )

and the exponential is

[ cosh{+ (y7/¢) cos20sinh ¢ ((y7/¢)sin20 — (wr/¢))sinh ¢
exp(TRARY) = <((77’/C) sin 260 + (wr/¢))sinh ¢ cosh  — (y7/¢) cos 26 sinh ¢ ) (10)

with

¢ = \/— det(TRART) = T\/’)/Q — w2, (11)

Note that this expression is valid for v* < w?, as well as for 2 = w? by taking the limit.
The latter case corresponds to a shear flow, since then A% = (y* — w?)I = 0 with A # 0.
To simplify expressions, we let

I'= ’YT/Ca Q= WT/Ca (12)
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whence (10) becomes

(13)

exp(rRART) = (coshC +Tcos20sinh ¢ (T'sin20 — Q) sinh ) ‘

(T'sin20 + Q) sinh ¢ cosh ¢ — T"cos 26 sinh ¢

The matrix RART can represent an arbitrary 2D linear flow: there a 3 free parameters
(0, v, w), which is the same as the number of independent components of a traceless 2D
matrix. Now we assume that the flow renovates: for fixed v and w, we choose a uniformly-
distributed random angle 6 € [0,27). We allow this flow to act for a time 7, and after that
period we select a new, independent random angle and start over. The random angle 6
allows is to make analytic progress, and to compute explicitly quantities such as Lyapunov
exponents.

Equation (7) is linear in dz, so the initial length of dx is irrelevant and doesn’t have to be
infinitesimal. Moreover, the angle # is random, so we may choose for dx a vector £ = (1 0)
that lies along the x axis with unit length. Then after one step it is transformed to the
vector

¢ = exp(TRAR") - £ = (cosh ¢ + T'cos 20sinh ¢ (T sin 26 + Q) sinh () (14)
which is just the first column of (13). The length of the transformed vector is

1| = (cosh ¢ + I' cos 20 sinh ¢)* + (I"sin 20 + Q)*sinh* ¢
= cosh? ¢ + I' cos 20sinh 2¢ + (I'? + Q% + 2I'Q sin 26) sinh? ¢ .

To find the Lyapunov exponent, we need to average log||€'|| over §. Write
1€||> = a + b sin 20 + ¢ cos 20 (15)

with
a = cosh? ¢ + (I + Q%) sinh* ¢, b= 2I'Qsinh? ¢, ¢ = TI'sinh 2C. (16)

The logarithm of the length is then

2log||€'|| = log(a + b sin 260 + ¢ cos 26)
= loga + log(1 + (b/a) sin 20 + (¢/a) cos 20)
= loga + log(1 + a cos(26 + ) (17)

where [ is some phase, and
a® = (b*+ %) /a®> =1 — (I cosh 2¢ — Q%) 72, 0<a<l. (18)

Note that « is zero if and only if 7 is zero. Now we average over 6:
1 2
2(log||€'||) = loga + 2—/ log(1 + a cos(20 + 3)) d6. (19)
T Jo
The phase (8 is inconsequential, so we drop it and evaluate the integral:

1 ™
2(log||€'||) = loga + —/ log(1 + a cos®) d
T Jo

= loga + log <%(1 + M))
= log (%a (1+ m)) .
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30 - - . : ; — 4

FIG. 1. Contour plot of the logarithm of the Lyapunov exponent (20) for a renovating randomly-
oriented linear flow with period 7 = 1, as a function of the strain rate v and half-vorticity w.

After some manipulation, we obtain the simple form

2 h2 2,92\, ,2
v? cosh”(T4/7? — w?) cu)7 N (20)

72_&)2

1 o
A= Llogl') = 5 tos

for the (positive) Lyapunov exponent A. This is clearly positive for 42 > w?. The expression
is also valid for the ‘vortical case w? > 2, but then it is preferable to write

1 2 n2eo0s2(rafo? — A2
)\:—log(w R GV 7)>, v <w. (21)

2T w? — 2

There are three limiting cases of interest:

(i) For w = 0, we get the pure-strain limit
1
A = —log cosh(17), w = 0. (22)
T

Since cosh|z| < el*! for x # 0, we have A < |y| for 7 # 0. The reorientation of the axes of
stretching due to renovation thus always decreases the stretching that would occur due to
constant strain, because it takes some time for our line segment to align itself with the new
axes. When 7]y| > 1, we recover A = ||, that is, the Lyapunov exponent is equal to the
rate-of-strain, since for a long period the segment has plenty of time to re-orient and stretch
fully at each period.

(i) For v = 0, we get the pure-rotation limit
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so at least some strain is required to have a nonzero Lyapunov exponent.

(iii) Finally, for ¥ — w we have A? = (y* — w?)I = 0, and we get the shear-flow limit:

1
A= 77 log (14 77w?), v = w. (24)

Note that even though a simple shear flow does not have a positive exponent (its eigen-
values are zero), a renovating shear flow does: it behaves like a hyperbolic system. This
highlights the crucial role of re-orientation as a mechanism in chaotic dynamics.

The magnitude of A as a function of v and w is plotted in Fig. 1: Notice the periodic
windows where the exponent is zero for w > 7. These occur whenever cos?(7/w? —72) =1
in (21), or T7\/w? =42 = mm, m € Z. This corresponds to ( = imm in (10), and leads
to exp(TRART) = (—1)™, with obviously no stretching.
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Lecture 12: Generalized Lyapunov exponents

Recall from last time, for a linear renewing flow:

1 ™
2(log||€'||) = loga + f/ log(1 + « cos 1)) dip. (1)
T Jo
with
a = cosh? ¢ + (I'? + Q2)sinh? ¢, a®=1- (I"%cosh2¢ — Q%) 72, 0<a<l. (2)

More generally, consider the growth rate of ||£||?, which is obtained by computing

(1€'19) = %/W((J,—l—b sin 260 + ¢ cos 20)%/2 d6 . (3)
0
Using the same method as before,
(e =a? = [7 acos i) v, (@
The integral can be evaluated in terms of a hypergeometric function,
(1% = av/? (1 = )" oFy (. —4:2: =2 ). )

We then define generalized Lyapunov exponents as
1 1 o\ 4 o
fa) = Hros(e) = Tog ((352)"" o (- g1i-) ) ©)
This is plotted in Fig. 1: observe that £(0) = {(—2) = 0, the curve has a minimum at ¢ = —1, and
it is symmetric about that value. These features all follow from the incompressibility of the flow,

as we’ll explain below.
For large ¢ > 0, we can use the saddle point method to carry out the integral (4):

1 ™
(1% = a* = [ exp(3aton(1-+ a cos) v
1 o0
~ a2 / exp(Lqlog(1 +a — ay?)) d

1 o0
=t (1402 = [ exp (~dagiz 0?) o

0

- (a(1+a))q/2,/1;7qa,

69



Math 801 Mixing

6 _4

Figure 1: Generalized Lyapunov exponents ¢(q) from (6) for v =1, w = 0, 7 = 1. The inset shows
the large-|q| asymptotes 7=|q|log((1+ @)/(1 — a)).
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so that
(q) = 3- qlog(a(l + @) — 5-logq + 5-log (F2) +O(¢ 1), a>1. (7)

T
We can do the same for ¢ < 0, |¢| > 1; the saddle point is then at the minimum ¢ = 7, and we

find the leading order form /(q) ~ ;=|q|log((1 4+ «)/(1 — @), which is shown in an inset to Fig. 1.
The ‘true’ Lyapunov exponent is A = £/(0):

[1€7]]* log|1£']])

o 1 Ly
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20 T T T T T T T
MC
—resampled MC
15 - - —exact |

=20 -15 -10 -5 0 5 10 15 20
q

Figure 2: A comparison of resampled Monte—Carlo (J. VANNESTE, Estimating generalized Lyapunov
exponents for products of random matrices, Phys. Rev. E, 81 (2010), p. 036701) and direct Monte—
Carlo for the linear renewing flow, with 7 = 1, v = 1, w = 0, K = 100, and N = 100. The
resampled MC is far better than plain MC, especially for negative q. See Fig. 3 for the Matlab code
used to generate this figure.
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% Resampled Monte-Carlo to compute the generalized Lyapunov exponents 1(q)

% See J. Vanneste, Phys. Rev. E 81, 036701 (2010).

K =

100; N = 100; gamma = 1; omega = 0; q = -20:20;

zeta = sqrt(gamma~2-omega”2);
Gamma = gamma/zeta; Omega = omega/zeta;

cz

cosh(zeta); sz = sinh(zeta);

rng(’default’);

ev = zeros(K,2); ev(:,1) =1; % initial vectors [1 0]
evh = zeros(size(ev)); normevh = zeros(1,K); beta = zeros(1,N);
ell = [1; el10 = [1; ellth = [1; A = zeros(K,2,2);
for iq = 1:length(q)
for n = 1:N
% random matrix
th2 = 2#pi*rand(1,K); ct = cos(th2); st = sin(th2);
A(:,1,1) = cz + Gamma*ct*sz; A(:,1,2) = (Gamma*st - Omega)*sz;
A(:,2,1) = (Gammaxst + Omega)*sz; A(:,2,2) = cz - Gamma*ct*sz;
% multiply matrix ev by matrix A (vectorized over realisations K)
evh(:,1) = A(:,1,1) .*%ev(:,1) + A(:,1,2) .xev(:,2);
evh(:,2) = A(:,2,1) .%ev(:,1) + A(:,2,2).*xev(:,2);
% make unit vector evh
normevh = sqrt(evh(:,1).72 + evh(:,2).72);
evh(:,1) = evh(:,1)./normevh; evh(:,2) = evh(:,2)./normevh;
% save q"th power of the norm
alpha = normevh."q(iq);
% resampling
gamma = cumsum(alpha); beta(n) = gamma(K);
eps = beta(n)*rand(1,K);
for k = 1:K
ii = find(gamma-eps(k) >= 0);
ev(k,:) = evh(ii(1),:);
end
end

YA

1(q) without resampling

el10 = [ell0 log(mean(alpha))];

)

1(q) with resampling

ell = [ell mean(log(beta))-log(K)];

YA

the analytic expression for 1(q)

aa = sqrt(l - (Gamma~2*cosh(2*zeta) - Omega~2) " -2);
ellth = [ellth log(((1-aa)/(1+aa)) " (q(iq)/4)*. ..

end

hypergeom([.5 -q(iq)/2],1,-2*aa/(1-aa)))];

plot(q,ell0,’go’,’LineWidth’,2), hold on
plot(q,ell,’-’,’LineWidth’,2)
plot(q,ellth,’r--’,’LineWidth’,2)
legend(’MC’,’resampled MC’,’exact’,’Location’,’North’)
xlabel(’$q$’, ’Interpreter’,’LaTeX’, ’FontSize’,22)
ylabel(’$\ell(q)$’, ’Interpreter’,’LaTeX’, ’FontSize’,22)
set(gca,’FontSize’,18, FontName’,’Times’)

hold off

print -dpdf resampled_mc.pdf

Figure 3: The Matlab code resampled_mc.m.
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Figure 1: Decay of the concentration Ls norm for the Type 1 flow (random amplitude)
in J. VANNESTE, Intermittency of passive-scalar decay: Strange eigenmodes in random shear flows,
Phys. Fluids, 18 (2006), p. 087108, for five realizations.
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Figure 2: Generalized eigenmode of the Type 1 flow (random amplitude) in J. VANNESTE, Intermit-
tency of passive-scalar decay: Strange eigenmodes in random shear flows, Phys. Fluids, 18 (2006),
p. 087108.
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Figure 3: Weak intermittency of the Type 1 flow (random amplitude) in J. VANNESTE, Intermit-
tency of passive-scalar decay: Strange eigenmodes in random shear flows, Phys. Fluids, 18 (2006),
p. 087108. The dashed line is the linear scaling.
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Figure 4: Decay of the concentration Ly norm for the Type 2 flow (random phase) in J. VANNESTE,
Intermittency of passive-scalar decay: Strange eigenmodes in random shear flows, Phys. Fluids, 18
(2006), p. 087108, for five realizations.

106



Jean-Luc Thiffeault

c/lcl

A

—2‘ I I I I ! [

0 | 2 3 4 5 6
i

Figure 5: Generalized eigenmode of the Type 2 flow (random phase) in J. VANNESTE, Intermit-
tency of passive-scalar decay: Strange eigenmodes in random shear flows, Phys. Fluids, 18 (2006),
p. 087108.
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Figure 6: Weak intermittency of the Type 2 flow(random phase) in J. VANNESTE, Intermittency of
passive-scalar decay: Strange eigenmodes in random shear flows, Phys. Fluids, 18 (2006), p. 087108.
The dashed line is the linear scaling.
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function Cnorm = renflow

type = 1; % the two flows in Vanneste: type 1 or 2
Nstep = 2000; Nreal = 100; N = 512;

kappa = 1le-3; alpha = pi; p = -1:2;

kmin = floor(-(N-1)/2); kmax = floor((N-1)/2); k = [0:kmax kmin:-1];
x = linspace(0,2*pi,N+1); x = x(1:end-1);

switch type

case 1

advec = @() exp(-i*alpha*randn(Nreal,1)*sin(x));

case 2

advec = @() exp(-i*alpha*sin(tensorsum(x,2*pi*rand(Nreal,1))));
end

Cnorm = zeros(Nreal,Nstep+1,length(p)); C = ones(Nreal,N);
Cnorm(:,1,:) = Cnorms(C,p);

diff = diag(sparse(exp(-kappaxk.~2)));

for n = 1:Nstep

C = advec() .*C; % advection step
Ck = £ft(C,[1,2); % Fourier transform
Ck = Ckxdiff; % diffusion step
C = ifft(Ck,[1,2); % inverse Fourier transform
Cnorm(:,n+1,:) = Cnorms(C,p);
end

Cnorm = squeeze(mean(Cnorm)); % average over realizations

yA
function Cp = Cnorms(C,p)

Cp = zeros(size(C,1),length(p));
for ip = 1:length(p)

Cp(:,ip) = sqrt(sum(C.*conj(C),2)/size(C,2)). p(ip);
end

Figure 7: A simplified version of the Matlab code renflow.m, which implements the evolution of
a passive scalar stirred by the two model flows in J. VANNESTE, Intermittency of passive-scalar
decay: Strange eigenmodes in random shear flows, Phys. Fluids, 18 (2006), p. 087108.
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Lecture 15: Homogenization Theory

I. MULTISCALE EXPANSION AND HOMOGENIZATION

We start with the advection—diffusion equation,
orp(t,r) +u(r) - Vep(t,r) = DAp(t, 7). (L.1)

Assume typical lengthscale of w is ¢, and that the initial condition varies on a scale L that
is large with respect to £. Define e = (/L < 1. We write ¢(0,7) = @o(e ).
Now introduce the large scale and slow time,

R=cr, T =¢&*t, (1.2)
and assume that the concentration depends on these scales,
o(t,r) = (T,r, R). (1.3)
Using 8; — €297, V, = V,. + Vg, Eq. (I.1) becomes
Lo + 2 0r¢° +eu(r) - Vry® =26 DV, - Vry® + 2 DARy* (I.4)

where the velocity field is assumed to only depend on the short lengthscale r, and we have
defined the linear operator
L=—-DA,+u-V,. (L.5)

We expand the concentration in a power series in ¢,
o (T,7,R) = o T, 7, R) + e oV (T, 7, R) + ... (1.6)
and at order €° obtain from Eq. (1.4),
L = 0. (1.7)

The solution to (1.7) is ¢(T, 7, R) = ®(T, R).
At order €', Eq. (I.4) with the expansion (I.6) gives

LoW 4 u-Vgd =0, (1.8)

We introduce the cell-average of a function f,

(f) = %/Q fdr, V:z/Qd?’r, (L9)

and cell-average Eq. (1.8), using <Lgp(1)> =0, to obtain
(u) - Vr®d =0 (L.10)

which is satisfied for (u) = 0.
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From Egs. (I1.8) and (I.10) we must solve
LoW tu-Vepd=0. (1.11)
The solution to this is o™ = x(r) - Vr®, where
Lx +u=0, (I.12)

the so-called cell problem. Note that we must have (Lx) = 0 for the cell problem to have
a solution, and that x is not unique since we can add a constant to it. Without loss of
generality, choose (x) = 0.

Assuming the cell problem (1.12) has been solved, we can proceed to order &2 in Eq. (1.4),

Lo® +8r® +u- Ve = 2DV, - Ve + DAR®. (1.13)
Cell-averaging (I.13) and using (£¢®) = 0, we find
Or® + Ve ((ux) - Vr®) =2DVg- ((V.x) - VR®) + DAR®. (1.14)
The average (V,.x) vanishes, and we thus finally obtain the homogenized diffusion equation
or® =Vg- (Deg - VD) (I.15)
where the effective diffusivity tensor is

Deg = D1 — (ux) . (1.16)

II. AN EXAMPLE

Consider the streamfunction for the cellular flow
U(x,y) = V2(UL/2r) sin(27m /L) sin(27y /€), (IL.1)
with velocity

u(x,y) = 0, = V2U sin(2mz /) cos(2my /L),

I1.2

v(z,y) = —0,00 = —V2U cos(2rz/€) sin(2my /0). (112)
To compute the effective diffusivity, we need to solve the cell problem (I.12). Consider the
ratio

lu-Vx| U¢
where Pe is the Péclet number. 1f the Péclet number is small, we can neglect the advection
term in the cell problem, and get the simplied equation DAx = u, or

DAY, = V2U sin(2rz /() cos(2my/0), DAy, = —V2U cos(2nz/0) sin(2my /€), (11.4)

with solution
62

- L5
92D (IL5)

X:
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t=20

FIG. 1. Concentration field at t =20 for U =1, £ =2n, D = 1.

We can then easily compute the effective diffusivity tensor by using (uw) = Ul in (L.16):

L0
Deg =D (1 Pe® | L. IT.
=1 (1.6)

Figure 1 shows the concentration field for a numerical simulation at small Pe. In Figure 2
we compare the evolution of the variance to that implied by (I1.6). Note that there is a short
transient, since the initial condition has a small scale and so must spread out before scale
separation is achieved.
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60 T x .

FIG. 2. Evolution of variance for U = 1, £ = 2w, D = 1. The dots are numerical simulations, the
green dashed line is 2Dt, and the red line is 2Dqgt, where Deg is defined in (I11.6).
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FIG. 3. Concentration field at ¢t =40 for U =1, £ =27, D =0.1.
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t=40

FIG. 4. Concentration field at ¢t =40 for U =1, £ =27, D = 0.01.
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t =40

FIG. 5. Concentration field at ¢t = 40 for U =1, £ = 27w, D = 0.001.
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t=40

FIG. 6. Concentration field at ¢ = 40 for the flow ¢ (z,y) = B siny + A cosz with D = 0.01,
and B = —A = 1. This flow has closed streamlines (see Crisanti et al.l).
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t=40

FIG. 7. Concentration field at ¢ = 40 for the flow ¢(x,y) = B siny + A cosz with D = 0.01,
and B =1, A = —1.3. This flow has open streamlines (see Crisanti et al.l).
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Lecture 16: Biomixing, part 1: hitting distribution

We use a simple model described by Thiffeault & Childress (2010) and refined
by Lin et al. (2011), which is convenient for visualization and for taking limits. We
assume there are N swimmers in a volume V', so the number density of swimmers
is n = N/V. Initially, each swimmer travels at a speed U in a uniform random
direction. They keep moving along a straight path for a time 7, so that each traces
out a segment of length A = Ur. After this a new direction is chosen randomly and
uniformly, and the process repeats — each swimmer again moves along a straight
path of length A\. Though far from realistic, this model captures many essential
features of the system, as found by Thiffeault & Childress (2010); Lin et al. (2011)
and as we’ll explore further in this paper. We will discuss later how this model could
be refined.

We wish to follow the displacement of an arbitrary ‘target fluid particle.” The
swimmers are all simultaneously affecting this fluid particle, but in practice only
the closest swimmers significantly displace it. It is thus convenient to introduce an
imaginary ‘interaction sphere’ of radius R centered on the target fluid particle, and
count the number M, of ‘interactions,’ that is the number of times a swimmer enters
this sphere. (Our treatment applies to two-dimensional systems simply by changing
‘sphere’ to ‘disk’” and ‘volume’ to ‘area.’) Figure 1 illustrates the situation.

Each time a swimmer enters the interaction sphere, the target particle is dis-
placed by some distance. We will address this in the next section and see how to
sum the displacements due to many swimmers to obtain the distribution of the net
displacement x. For now, let us find the distribution of M;, the number of times a
swimmer crosses the interaction sphere during a time t.

The probability that the swimmer starts inside a small volume dV is dV/V/,
where V' is the total volume. The probability of a swimmer actually starting inside
the interaction sphere is then Vion(R)/V, where Vion(R) is the volume of a sphere of
radius R. (We assume the interaction sphere fits completely within the volume V.)
We define the event

H; = a swimmer crosses the interaction sphere once during time t < 7 (= \/U),

(1)
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interaction sphere

swimmer

Figure 1: A swimmer moving inside a volume V' along a series of straight paths, each
of length A and in a uniform random direction. The interaction sphere around the
target particle (black dot) is shown in gray. Here the swimmer ‘interacts’ twice with
the target particle, since two of its paths intersect the sphere.

that is, the center of the swimmer is inside the interaction sphere at some point
while traveling on a straight path of length Ut < A, where U is the uniform speed
of a swimmer. To determine the probability of H;, observe that because of the
homogeneity and isotropy of the swimmers this probability is proportional to the
volume swept out by the interaction sphere if it moves a distance Ut, with 0 <t < 7:

pe = P(H) = Voot (RN Ve Viwept (R, A) = Vi (RA) + Vipn(R), (2)

where

2R,
TR2),

TR?, (2D);

sTR%, (3D);

Veyi(R, A) = { Vepn(R) = { (3)
are respectively the volume of the cylinder of radius R swept out in time ¢ and the
volume of the interaction sphere, which gives the probability that a swimmer starts
inside the interaction sphere. This assumes that all points on the interaction sphere’s
surface are at least a distance A from the boundary of V.

For N swimmers, let M; be the total number of interactions with the sphere
during time ¢. In Appendix we use a generating function approach to find the

probabiliy distribution of M;, and show that

(M) = 1 {Vawept (R, A) (¢/7) + Vipn(12) } (4)
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where n = N/V is the number density of swimmers. In this form we can take
the limits N — oo and V' — oo while keeping n constant, which doesn’t change the
expectation value.

Also from Appendix , the variance of M, is

Var My = N (p.(1 = p:) (t/7) + 507 = 5(Vepn(R)/V) 2pr + 2(Vipu(R)/V') = 3)) (5)

where Vo (R) is the volume (or area) of the interaction sphere. Any term in (5)
quadratic in Vip,(R) or p, will vanish as V' — oo, and we are left with

Var My ~ (M), V — 0. (6)

For large (M,) we thus expect that a typical value of M; will be very close to the
mean, since (M,;)/+/Var M, is small. In that case, the central limit theorem applies
(M is the sum of i.i.d. random variables) and we have the Gaussian approximation

1 2
P{M, = ~ —(m—(M;))* /2 Var My M, > 1. 7
W= = N, ¢ o et

with (M;) defined in (4). The mean and variance equations (4) and (5) are exact as
long as the interaction sphere is more than a path length A away from the boundary
of V; equation (7) further requires (M;) > 1, which typically happens for long times.
Figures 2(a)-2(b) show the convergence to a Gaussian distribution for numerical
simulations of moving swimmers, in 2D and 3D.

Appendix: Generating function approach for ran-
dom phases

The generating function of a sequence {a,} is defined as Feller (1968)

[o.°]

G(an;x) = Z a,z". (8)

n=0

Now let a,, give the probability of having n events H;. For a single swimmer moving
for a time ¢ < 7, we can only have n = 0 or 1 events, with probability ag = (1 — p;)
and a; = p;; hence,

Gi(x)=ay+arx=(1—p;) +pr T, t<T. (9)
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Figure 2: Probability distribution function for N = 1000 swimmers to enter the
interaction sphere M; = m times, in (a) 2D and (b) 3D. The interaction sphere
has radius R = 100, the path length A = 200, the total volume is a sphere of
radius L = 1000, and the number of steps is k£ = |Ut/A| = 10. Shown in red
is the Gaussian approximation (7).
2D and 3D, respectively. (e)—(f) Marginal probability densities p(b) in 2D and 3D,

respectively.

(¢)-(d) Marginal probability densities p(a) in
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The expected number of events is (M;) = G}(1) = p;. If the swimmer moves for
a time t = k7, k € Z", the total number of events is the sum of the events at
each interval 7. The resulting generating function is then G¥(z), assuming that the
swimmer starts on its first path at t = 0. More generally, if the swimmer has already
started on a path before ¢ = 0, then

Gi(2) = Gry(z) G (2) Gy (2) (10)

where 7 + Tkt + 71 =, kiry = |[(t —70)/7], and 0 < 7; < 7. The two 7; pieces
account for the partial paths traversed at the beginning and at the end of the motion.
We take 79 € [0,7) to be a uniformly-distributed random variable; 7; then follows
from 1 =t — 19 — Tky 5,

Now write p; = at+ 3, where the constants a and 8 come from (2). The expected
number of events H; is

(M) = (Dry + ktryDr + Dry) = (70 + Thiry + 1) + (Kt +2)5)
=at+ B2+ (ktr))-

To compute (k;.,), let t/7 = €+ 0, { = |[t/7], 6 € [0,1). Then (k) = (|(t —
70)/7]) = €+ (|6 — 70/7]), with |6 — 7p/7| < 1, and

(6 = 70)/7)) = %/OTta—TO/TJ am :/0 5 ¢) d§=/6 (—1)de=6-1.

Thus,
(ki) =C+0—1=t/T—1, (11)

and we finally conclude
(My) = (ar + B) t/7+ B =p. (t/7) + B. (12)

The extra 8 at the end arises from the possibility of swimmers starting inside the
interaction sphere at t = 0.
We can also compute the variance exactly. For a single swimmer,

Var M, = G/ (1) + G1(1) — [GH(D)]* = pr — (p:)* = pe(1 — 1), t<T, (13)
and for longer time

Var M; = (pr, (1 — pry) + ki 0-(1 — p7) + 01, (1 — 1))
= (My) — (P2 + ke P2+ P2) < (My).
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Now we need to compute the expectation value of this over 7. This is a slightly
tedious calculation which we do not present; the final result is

Var My = p, (1 —p;) (t/7) + 2’77 + B(1 = B). (14)

For N swimmers, because we are still summing the number of displacements the
generating function will be the product of several copies of (10):

N

ki,
Giv (1‘) - H G’Fo,j (l‘) G- (1’) Gt*TO,j*Tkt,TOJ- (33) (15)

=1

where each swimmer has its own random initial partial path 75 ;. The probability
distribution will thus be a convolution of all these generating functions, and the
expected value and variance will add up. The net result is to multiply the expected
number of events (12) and its variance (14) by N. After substituting the value of «
and [ from p; = at+ 5 and (2) and using n = N/V, we obtain equations (4) and (5).
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Lecture 17: Biomixing, part 2: Effective diffusivity

In the previous lecture we derived an expression for the ditribution of number of
interactions m with a sphere of radius R:

1 N2
P{M, = ~ —(m—(My))? /2 Var My M. > 1* 1
M =mi = 7 © o (M) > 1, (1)

where the expected number of interactions is

(M) = 1 {Vawept (R, A) (¢/7) + Vepn(R) }, (2)

with n the number density of swimmers, ¢ the time elapsed, 7 the duration of a path,
A the length of a path, and Viyept(R, A) and Vipn(R) the volume of a cylinder and
sphere.

Now that we've examined how often swimmers interact with a sphere of radius R
centered around a target particle, we will look at how the particle gets displaced.
Figure 1 shows the setup of an interaction. Since the system is homogeneous and
isotropic, only two ‘impact parameters’ a and b are needed to describe an interaction.
These are depicted in the figure: here ' is the point along the line of motion that
is closest to the initial position of the particle, and a € [0, R] is this closest distance.
The parameter b € [—R, A + R] is the distance from C' to the initial position of the
swimmer. A negative value of b means the swimmer started its path beyond the
point C'.

Following Lin et al. (2011), we start from a distribution of displacements Ay (a, b)
induced by a single swimmer. Here the impact parameters a and b describe the
encounter between the swimmer and a target particle, and A is the path length of
swimming (Fig. 1). Each time a swimmer enters the interaction sphere we have
an ‘encounter,” which causes a displacement of the target particle; thus, after m
encounters, the x displacement is

Xm = Z Ay (ak, by) cos Yy, (3)
=1
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& \t\a\r\get particle

A \
a ;
E \‘\\ swimmer

-0
A
r b g
Figure 1: Definition of impact parameters a and b, displacement A = Ay(a,b),

and swimming path length \. In this picture the parameter b is positive; negative b
corresponds to the swimmer starting its trajectory past the point C' of smallest initial
perpendicular distance to the line of motion. The filled dot is the initial position
of the target particle and the hollow dot is its final position after the swimmer has
moved by a distance A. The ‘interaction sphere’ of radius R is also shown. (After Lin
et al. (2011).)

where each encounter has random i.i.d. values of the impact parameters a; and by
and angle ¥. We select the X displacement here, but by isotropy the statistics in
any direction are the same.

The probability density of X,,, can be related to that of X;, the z displacement af-
ter a time ¢, by first observing that P{X,, € [z, z + dz]} = P{X; € [z,z + dz|| M; = m},
and

P{X; € [z,z + dz|} = io:IP’{Xt € [z,z + dzx], My = m}
=Y P{X, € [z,x+ dz]| M, =m} P{M, =m}, (4)

where P{M, = m} is the probability of getting m encounters in time ¢. If the latter
is sharply peaked, such as in the Gaussian limit (1), then we can just use m ~ (M,).
But for now let us focus on P{X,, € [z, + dx]}.

We wish to derive the PDF of the total x displacement X,,, assuming that the
random variables ag, by, ¥ are independent for different £ and identically distributed,
with probabiliy densities pgy(ak, br) and py(¢y). Because of isotropy, the angular

125



Math 801 Mixing

ey

—R 0 R A—R A AR

Figure 2: The domain €, =1 U II U III of the impact parameters a and b for fixed
path length A (see Fig. 1). Region I corresponds to swimmers that start their path
inside the interaction sphere; swimmers in Region II cross the sphere completely;
swimmers in Region III finish their path inside the sphere. Note that the figure
depicts A > 2R, but all the formulas hold for A < 2R as well, when regions I and III
overlap because some trajectories both start and finish inside the sphere.

variables have simple densities:

pu(¥) =1/2m, Qu=1[0,2a] (2D);  py(¥) = 3sine, Qu=[0,7] (3D), (5)

for ¢ € Q. In two dimensions, the joint density pq(a,b) is uniform over the do-
main Q, = {0 <a < R, —vVR?>—a? <b< A+ VR? — a®} depicted in Fig. 2. These
are the values of a and b for which a swimmer’s straight path intersects the interaction
sphere. After normalizing, we find the density

Pab(@,0) = 2/ Vigept (R, A)  (2D). (6)

In three dimensions, the domain in Fig. 2 is interpreted as a surface of revolution
about a = 0, leading to the density

Pab(@, b) = 2ma/Vawept (R, A)  (3D). (7)

For both the 2D and 3D cases, pa(a,b) is then normalized such that

AV R2—q?
/ Pav(a,b) dadb—/ / Pap(a,b) dbda = 1. (8)
Qab

R27a2

We have the convenient forms

(M) pap =~ 2nt/T  (2D); (M) pap =~ 2want /T (3D), (9)
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in terms of the expected values (2). These are valid for ¢ > 7, so we can neglect the
extra added spherical volume in (2).

We can now compute the effective diffusivity. We have of course (X)) = 0
because of isotropy. The variance is then

m

(X7) = D (A3 (ax, by) cos® ¥) = m(A3(a, b)) (cos® ¢) (10)

k=1

since the variables are i.i.d. The angular average is

2—1%2(1—1 2D); 11
(costv) = 5= [ costudv =% (D) (1)
(cos? ) = 1/7r cos®siny dy = 1 (3D) (12)
2 /o 3 '
So now we define the effective diffusivity D
(X2) = = (A3(a.0)) = 2D (13)

where d is the dimension of space. We have finally

D = 32 (83(a.b)), (14)
where
(83(a.) = | pafad) (e b)dads (15)

Assume now that m = (M), which wil be satisfied if there are many encounters.
Then using (9) we find

D:%/ﬂ A2(a,b)dadb,  (2D); (16)
ab
and
zg—:/ A2(a,b)adadb,  (3D). (17)
Qab

where recall that 7 = \/U is the path length of swimming. Notice the extra a in the
3D integrand, due to the fact that there is a ‘ring’ of points a distance a from the
target. This extra a will modify the dependence in 2D and 3D quite dramatically.

So far everything is quite general, as long as the density of swimmers is low
enough. In the next lecture we will discuss the most crucial part: how to model Ay(a, b).
This depends heavily on the kind of swimmer and the type of fluid.
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Lecture 19: Biomixing, part 4: Viscous swimmer

1 The dumbbell swimmer
The Green’s function for the Stokes equation
— Vp+ uViu = —fi(r), V-u=0, (1)

is f - G(r), where G(r) is the Oseen tensor:

1 rr
) = gl <“ W) ' @)

We model the dumbbell swimmer as two Stokeslets along the z axis Hernandez-Ortiz

et al. (2005):

u(r)=Fz-Gr—A2)+ f2-G(r—az2). (3)
Force balance then dictates
F+f=0, (4)
so that
u(r)=Fz2-(Gir—A2)—-G(r—a2)). (5)
Setting A = 0 momentarily, note that
1
liné - (G(r) —G(r—az2)) =2 -VG(r). (6)

Recall that Vr =1, V||r|| = 7; we have

Tk 1 Tk
87 pd; G (r ( )(k—l-] )—I— 81-(J )
’ || 1)\ el [l \ ]2
T‘j”f‘k

TiTk 1
3 ( ’ ||7'||2) [ ’ [ ]1°

’I’ﬂ"j 1
rk+—(5ikr-—5-kri).
( T ||2> el 7
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The first term (symmetric in ¢ and j) is the stresslet:

1 ror.
2 8mMﬂP<’ TG )

The second term (antisymmetric in ¢ and j) is the rotlet:

1

Ry = —
7 Sapllr®

(5¢ij - 5jk7‘i) . (8)
Hence,

u(r) ~aF 22 : VG(r)
_alh d r 2 /1112
= g L 3o o + O} )

is the far-field form of the dipole a pure stresslet. We simply replace a by (a — A)
to restore A # 0, since the corrections incurred are of higher order.

Now assume our dumbbell swimmer is in a frame moving at constant velocity U2,
so there is an apparent flow —UZz. We take the positions a(t) and A(t) to be time-
periodic in the comoving frame. The forces exerted on the fluid are due to drag on
a sphere of radius R at x = A(t) and a sphere of radius r(t) at x = a(t):

F(t) = 67uR(U + A(t)),  f(t) = 6mur(t)(U + a(t)). (10)

We take the frame to move at the mean swimming velocity U; this is obtained from
the constraint that the time-averaged velocities of the Stokeslets must vanish in the
comoving frame:

(A) = (a) = 0. (11)
From (10) and (4), we have
R(U + A(t)) = —r(t)(U + a(t)), (12)
which upon time-averaging gives
RU = —U(r) — (ra), (13)

and so the mean swimming velocity is

U=—(ra)/(R+ (r)). (14)
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The prescribed functions are a(t) and r(t); U is then obtained from (14) and A(t)
from (12).
The simplest time-dependence we can put is

a(t) = ag + ay cos(2mt/7), r(t) = ro + rysin(2nt /T + @) (15)
which gives
Tayry COs ¢
=" 7 16
’/"(7’0 + R) ( )

The phase ¢ = 0 yields the fastest mean swimming velocity: it corresponds to the
sphere expanding during the power stroke, and shrinking during the recovery stroke.
We thus set ¢ = 0 for simplicity. We then have

A(t) = -U —r(t)(U +a(t))/R (17)

Tairy 279 71

_ o {( Lo R) sin(2nt /1) — cos(m/T)} (18)

which can be integrated to find A(t) = ft Adt. We choose the integration constant to
be zero, so that the swimmer’s main body oscillates about the origin in the comoving
frame.

The far-field stresslet coefficient from (9) with a — (a — A) is

(a —AF

S —3(a—A)rU +a), (19)

which is a complicated function involving many harmonics. The time-averaged coef-
ficient of the stresslet has the simple form
1 3magairy 3

((a—AF) = ————— = 2ayRU. (20)

8 T Ar(l+ro/R) ¢

2 Particle displacement

We now address the question of particle displacements due to a moving stresslet,
when the stresslet is aligned with the direction of motion. The other case (when the
stresslet is perpendicular to the direction of motion) is more complicated, since it is
no longer axially symmetric.
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Figure 1: Body velocity A (red), flagellum velocity @ (green), and stresslet coeffi-
cient (blue) as a function of time. The dashed lines are the time-averaged stresslet
coefficient (cyan) and swimming velocity (orange).

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Figure 2: The streamlines in the comoving frame for the moving stresslet (Eq. (21)).
The thick line shows the ‘atmosphere’ (closed streamline in the comoving frame).
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2.1 Streamline pattern and atmosphere

We take the velocity field in a comoving frame to be

r
I[*”

ucomov(r) = -z + ﬁ <1 -3 ﬁ) (21)

so that the stresslet is moving at unit speed in the 2 direction, with a resulting
apparent flow in the —2 direction. The streamfunction in the comoving frame is

2

z
wcomov(pu Z) - _%PQ - 5 ||Tp||37 (22)

with
u, = —p 10,9, u, = p~t O, (23)

Figure 2 shows the streamline pattern in the comoving frame (for § = 1), which
suggests the presence of an atmosphere: a closed streamline in the comoving frame.
We can find the equation for the atmosphere by solving ¥comov = 0,

z

3-8 (02 + 22)3/2 =0, (24)
so that
Piem(2) = =2 (2 + (2B8)*(=1/2)"%) . (25)

Note that patm(0) = patm(— sign(B8)+/2|8|) = 0, which means the atmosphere extends
from z = 0 to z = —sign(B)+/2|5|. The atmosphere is plotted as a thick line in Fig. 2.

We also have an explicit expression for the volume of the atmosphere, for instance
for 8 > 0:

0

Vi = [ whunle)de = $vERIBPP, 20
—V2B

where the final expression is also valid for § < 0. The volume is useful for computing

the transport due to particles trapped in the atmosphere.

2.2 Displacement for far field

Recall the definition of the two impact parameters, a > 0 and b (see Lin et al. (2011)).
We set U = § =1, and define

(27)

u(r,t) = <1—3 ZZ) R

IRI1?/ R[>
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where

R(t) = (X,Y, Z(t)) = (z,y + a, 2 + b —1). (28)
The stresslet starts at (0, —a, —b) at t = 0 and proceeds to move in the positive z
direction. The particle starts at » = 0 and its motion takes place in the y—z plane. If

the particle is far from the swimmer, then r remains small throughout the trajectory,
and we can expand to leading order in ||r||:

_a(a® —2(b—1)?)

- (b—t)(a*—2(b—1t)?)
Y H5(a,b—t)

H>(a,b—1t)

+O(Irlh),  w.= +O([Ir[). (29)

where the hypotenuse function is
H(a,b) = Va2 + b2 (30)

At this order the particle feels a velocity field that is independent of its position. We
can then solve for the particle motion by integrating y = u, and 2 = u,:

_ab a(b—1)
© H3(a,b)  H3(a,b—t)

o e V2 H(a,V2(b - 1))
T T 4, b) H3(a,b— 1)

valid to leading order in ||r|. Both coordinates achieve extrema at ¢t = b + \/Lﬁa,
and z(t) has an additional extremum at ¢ = b. The fact that both coordinates
achieve extrema at the same time is reflected by the two ‘cusps’ visible in Fig. 3.

The coordinates of the two cusps are
_ 42 1 ab 4 ]2 -1 H>(a, Vb)
T LR e I S NE TR -

After a time ¢t = X (recall that U = 1, so A = Ut = 1), the net total displacement,
in each direction is y(A) and z(\). Examining Fig. 3 and using the location of the
cusps (32) we find that the maximum displacement in y is bounded:

y(t) (31a)

(31b)

alb| 4 -1
H3(a7 b) S Wg a . (33)

lyN| < 32507 +

The maximum displacement is achieved for A = v/2a, b = +a / V2. The displacement
in z is also bounded:

2] < —4y/20 1+ %ﬁb) <(fy/2-1)at, (34)
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. |
0.02 Z

-0.02

Figure 3: Particle trajectory for a = 10, b = 50, with ¢ running from 0 to 150.

where the maximum is achieved for A = b = a/v/2.
In the limit of infinite path length, we have

ab H?(a,/2b)
M~ — M|~ ——T A — 00. 35
If we then take b to oo as well (the swimmer starts very far away), the displacement
goes to zero. In this case, we have to expand the velocity field to next order to obtain
the net displacement. It will not be necessary to do so here.
The total net displacement is

Ax(a,b) = \/y2(\) + 22(N). (36)

To compute the effective diffusivity, we can evaluate the integral

/ / a’A3(a,b) dbd(loga) = 4\ (37)

whose integrand is plotted in Fig. 4. The resemblance to the numerical solution in
Fig. 4(b) of Lin et al. (2011) is striking. The contributions to the integral (37)
are 3\ from y(A) and $X from z(X). The displacement values for small a are not well
predicted by this small displacement approach, but since the integral (4) downplays
the importance of small a this will not lead to a large error.
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log a

[

—-100 0 100 200

Figure 4: The integrand a®A3(a, b) for A = 100.
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Finally, we can use the result (37) in Eq. (2.6) of Lin et al. (2011) to compute
the effective diffusivity:
Deg = 576°nU (38)

where we restored all units (f has units of squared length times velocity). The
path length A drops out. In Lin et al. (2011) the definition of § is slightly different
(replace our 8 by ;?; B0% to recover their definition). Converting to their prefactor, we
find a numerical coefficient of 2.356, whereas the numerical result in Lin et al. (2011)
is 2.1 — a 10% difference, which is not bad for an analytic result! The difference is
probably due to our large-a overestimating the displacement for small a.
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3-pronged
singularity N \

separatrix

injection cusp

Figure 1: A fluid stirred with rod motions corresponding to the braid oi0205 ! (see J.-L. THIF-
FEAULT, M. D. FINN, E. GOUILLART, AND T. HALL, Topology of chaotic mizing patterns, Chaos,
18 (2008), p. 033123).
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In many applications, the two-dimensional trajectories of fluid particles are available, but little is
known about the underlying flow. Oceanic floats are a clear example. To extract quantitative
information from such data, one can measure single-particle dispersion coefficients, but this only
uses one trajectory at a time, so much of the information on relative motion is lost. In some
circumstances the trajectories happen to remain close long enough to measure finite-time Lyapunov
exponents, but this is rare. We propose to use tools from braid theory and the topology of surface
mappings to approximate the topological entropy of the underlying flow. The procedure uses all the
trajectory data and is inherently global. The topological entropy is a measure of the entanglement of
the trajectories, and converges to zero if they are not entangled in a complex manner (for instance,
if the trajectories are all in a large vortex). We illustrate the techniques on some simple dynamical
systems and on float data from the Labrador Sea. The method could eventually be used to identify
Lagrangian coherent structures present in the flow. © 2010 American Institute of Physics.

[doi:10.1063/1.3262494]

Consider particles floating on top of a fluid. We can fol-
low their trajectories, either with a camera or by com-
puter simulation. If we then plot their position in a three-
dimensional graph, with time as the vertical coordinate,
we get a ‘“spaghetti plot,” which contains information
about how entangled the trajectories are. We discuss how
to measure the level of entanglements in terms of topo-
logical entropy, and the interpretation of the results. This
provides a straightforward method of estimating the level
of chaos present in a system. This approach could also be
used to determine if some trajectories remain together
for a long time, and are thus part of a Lagrangian coher-
ent structure.

I. INTRODUCTION

A. Floats in the ocean: An example

Figure 1(a) shows the trajectories of ten floats released
in the Labrador Sea, for a period of a few months. The prin-
cipal reason to release such floats is the data they measure
and transmit back—temperature, salinity, pressure, etc. How-
ever the actual trajectories of the floats are also important
since they tell us something about large-scale transport in the
ocean, a crucial component in understanding global circula-
tion. From a single float, one can deduce the single-particle
dispersion coefficient, a crude measure of how quickly a
float wanders away from its release point. However, it is
better to measure quantities that involve several floats.” For
instance, if floats happen to start near each other, then we can
see how quickly they separate and measure finite-time
Lyapunov exponents,3 which are linked to chaotic
advection.* However if the floats are nowhere near each
other, then a more global quantity is needed. In this paper we
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propose to examine the “braid” defined by the trajectories
and to measure its degree of entanglement. (All these terms
will be defined more precisely.) The number we get out of
this is called the braid’s ropological entropy. Figure 1(b)
shows a measure of the entanglement of the ten floats as a
function of time, with an exponential fit: The growth rate is
the topological entropy. (For longer times, the curve levels
off because floats start leaving the Labrador Sea, which is
not really a closed system.) Much like a Lyapunov exponent,
the topological entropy gives us a characteristic time for the
entanglement of the floats in the Labrador Sea, here about
1/0.02=50 days.

B. Topology and trajectories

Since the original paper of Boyland et al.’ topological
techniques in fluid dynamics have been applied to free point
Vortices,6 fixed blinking V01rtex,7’8 rod stirring devices,gf13
and spatially periodic systems.m’15 (See Ref. 16 for a brief
review.) More recently, the emphasis has shifted to locating
periodic orbits that play an important role in
stirringg'lz—so-called ghost rods—and even to the manufac-
ture of such orbits."” Most of these authors study periodic
motions of rods or particle orbits. For many practical appli-
cations, however, periodic motion is not directly observable
since most such orbits are highly unstable. Hence, some au-
thors examined random braids™'*'®'3 composed of arbi-
trary chaotic trajectories. (There is also related literature
from the knot theory perspective—see for example Ref. 20.)

The goal of the present paper is to give concrete tech-
niques that can be used to obtain topological information
from particle trajectories. The mathematical details are
glossed over: The emphasis is on usability. Implementation
details are discussed, and some sample MATLAB programs are
presented in Appendix A. The hope is that this will make

© 2010 American Institute of Physics
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FIG. 1. (Color online) (a) Ten floats from Davis’ Labrador Sea data (Ref. 1).
(b) The growth of L(u) for the ten floats, with a fit of the topological
entropy. For longer times, the floats leave the Labrador Sea and L(u) be-
comes constant. The details of the analysis are presented in Sec. IV.

these techniques more accessible to those with little or no
background in braid theory and topology.

The principal measurement we extract from a braid is its
topological entropy. This entropy is closely related to the
traditional Lyapunov exponent, except that being a topologi-
cal quantity it is not sensitive to the size of the sets on which
chaos is occurring. This is both a weakness and a strength: It
does not tell us everything we might like to know, but on the
other hand the topological entropy is easy to compute from
crude data. This is in contrast to Lyapunov exponents, which
require at the very least detailed knowledge of particle tra-
jectories that start close together, and at best the velocity
field and its gradient. When dealing with, for example, data
from oceanic floats (as we will later in this paper), being able
to compute a Lyapunov exponent is a rarity.

There is also a philosophical point that bears some dis-
cussion. The viewpoint of the present paper is that given
particle trajectory data, a useful thing to quantify is how
“entangled” the particle trajectories are. This can be done
from the particle data directly, without worrying about the
underlying flow. By contrast, Lyapunov exponents are de-
fined locally and are sensitive to the smooth structure of the
flow. It is exactly the (presumed) smooth nature of the flow

Jean-Luchddsigfeauisie (2010)

S TTTT——————

(b) (c)

FIG. 2. (Color online) (a) The orbits of four particles in a circular two-
dimensional domain. (b) The same orbits, lifted to a space-time diagram in
three dimensions, with time flowing from bottom to top. (c) The standard
braid diagram corresponding to (b).

that connects local information to a global quantity such as
the Lyapunov exponent, but one is left wondering why we
should care about the local picture at all in practical situa-
tions. The topological viewpoint presented here is an attempt
to sidestep this and focus directly on global information.

We begin in Sec. II by a short introduction to braid
theory, surface dynamics, and their connection to dynamical
systems. In Sec. I B we show how to extract braids from
particle trajectory data. Section III is devoted to topological
entropy: In Sec. III A we discuss its connection to flows and
in Sec. III B we show how to measure it from a braid (for a
braid corresponding to periodic orbits). In Sec. IV we intro-
duce random braids and again show how to measure entro-
pies. As an application, we calculate the entropy for floats in
the Labrador Sea, as presented in Fig. 1. We offer some
concluding remarks in Sec. V.

Il. BRAIDS

A. Physical and algebraic braids

First we describe intuitively how braids arise. Figure
2(a) shows the orbits of four particles in a circular two-
dimensional domain. The particles might be fluid elements,
solutions of ordinary differential equations, or physical par-
ticles at the surface of a fluid. Figure 2(b) shows the “world
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FIG. 3. (a) Braid group generator a;, corresponding to the clockwise inter-
change of the string at the ith and (i+1)th position, counted from left to
right. Its inverse a';l involves their counterclockwise exchange. (b) The
concatenation of o; and 0',-_1 gives the identity braid.

line” of the same orbits: They are plotted in a three-
dimensional graph, with time flowing vertically upward. The
diagram in Fig. 2(b) depicts a physical braid made up of four
strands. No strand can go through another strand as a conse-
quence of the deterministic motion of the particles (they
never occupy the same point at the same time). Moreover,
the mathematical definition of a braid requires that strands
cannot “loop back:” Here this simply means that the particles
cannot travel back in time. We will say that two braids are
equivalent if they can be deformed into each other with no
strand crossing other strands or boundaries. Throughout this
paper, we will be interested in characterizing the level of
“entanglement” of trajectories.

Since we can move the strands, it is convenient to draw
braids in a normalized form, as shown in Fig. 2(c) for the
braid in Fig. 2(b). Such a picture is called a braid diagram.
The important thing is that we record when crossings occur,
and which particle was behind and which was in front. It
matters little how we define “behind” as long as we are con-
sistent (see Sec. II B for practical considerations). In Fig.
2(c) the horizontal dashed lines also suggest that we can
divide the braid into a sequence of elementary crossings,
known as generators. Figure 3(a) shows the definition of o,
which denotes the clockwise interchange of the ith and
(i+1)th strands, keeping all other strands fixed. Note that the
index i is the position of the strand from left to right, not a
label for the particular strand. For n strands, we have n—1
distinct generators.

Figure 3(a) also shows the counterclockwise interchange
of two strands, denoted by the operation crl._l. The justifica-
tion of the “inverse” notation is evident in Fig. 3(b): If we
concatenate o; and 0,-_1, then after pulling tight on the
strands, we find that they are disentangled. We call the braid
on the right in Fig. 3(b) the identity braid. In fact, the set of
all braids on a given number n of strands forms a group in
the mathematical sense: The group operation is given by
concatenation of strands; the inverse by reversing the order
and direction of crossings; the identity is as described above;
and it is clear that concatenation is associative. This group is
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FIG. 4. Braid group relations [see Eq. (1)]: (a) relation for three adjacent
strands; (b) commutation relation for generators that do not share a strand.

called B,, the braid group on n strands, also known as the
Artin braid group.

The braid group B, is generated by the set {0, ...,0,_}:
This means that any braid in B, can be written as a product
(concatenation) of ¢;’s and their inverses. The braid group is
finitely generated even though it is itself infinite: Only a
finite number of generators give the whole group. To see that
the braid group contains an infinite number of braids, simply
consider oX, for k an arbitrary integer: No matter how large k
gets, we always get a new braid out of this, consisting of
increasingly twisted first and second strands.

We have now passed from physical braids, as depicted in
Fig. 2(b), to algebraic braids. The algebraic braid corre-
sponding to Fig. 2(c) is 05'a;'03' 0,07, where we read gen-
erators from left to right in time (beware: conventions differ).
In essence, an algebraic braid is simply a sequence of gen-
erators, which may or may not come from a physical braid.
How can we guarantee that physical braids and algebraic
braids describe the same group? We need to be mindful of
relations among the generators that arise because of physical
constraints. For example, Fig. 4(a) shows a relation among
adjacent triplets of strands. Staring at the picture long
enough and allowing for the deformation of strands without
crossing, the reader can perhaps see the that braids in Fig.
4(a) are indeed equal. Hence, the algebraic sequence 0,0, 0;
must be equal to o;,,0;0;,, if the generators are to corre-
spond to physical braids. Another, more intuitive relation is
shown in Fig. 4(b): Generators commute if they do not share
a strand. In summary, we have the relations

O'l'O'jO'i:(TjO'i(Tj if |i—j|:1, (13)

ooi=00; if |i—j|>1, (1b)

among the generators. Artin®’ proved the surprising fact that
there are no other relations satisfied by the generators o;
except for those that can be derived from Eq. (1) by basic
group operations (multiplication, inversion, etc.). The gen-
erators {0, ...,0,_;} together with relations (1) define the
algebraic braid group, which we also denote B,. With these
relations, the groups of physical and algebraic braids are
isomorphic.
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FIG. 5. (Color online) Detecting crossings: (a) Two possible particle paths
that are associated with different braid group generators. (b) Two crossings
that yield no net braiding. The projection line used to detect crossings is
shown dotted at the bottom, and the perpendicular lines used to determine
the braid generator are shown dashed.

A consequence of relations (1) is that it may not be im-
mediately obvious that two algebraic braids are equal. For
instance, the braids o0, and 020201020']10']1 are equal
since 010,=(010,01)07' = (0,0105) 07 = 05(01050) 07 07!
=0'2020'10'20'I10I1. This braid equality problem has seen
many refinements: The original solution of Artin®' has com-
putational complexity exponential in the number of genera-
tors, but modern techniques can determine equality in a time
quadratic in the braid lc::ngth.m*24

B. Extracting the braid from a flow

The first step in obtaining useful topological information
from particle trajectories is to compute their associated braid,
essentially going from the physical picture in Fig. 2(b) to the
algebraic picture in Fig. 2(c). A simple method to do this was
originally described in Ref. 7 but is also implicit in earlier
work such as Refs. 18 and 25 (see also Ref. 26 for a related
technique).

We start with trajectory information for n particles over
some time. We first project the position of the particles onto
any fixed projection line (which we choose to be the hori-
zontal axis), and label the particles by i=1,2,...,n in in-
creasing order of their projection. A crossing occurs when-
ever two particles interchange their positions on the
projection line. A crossing can occur as an “over-” or ‘“‘un-
derbraid,” which for us means a clockwise or counterclock-
wise interchange. These interchanges correspond to the braid
group generators introduced in Sec. IT A.

Assuming that a crossing has occurred between the ith
and (i+1)th particles, we need to determine if the corre-
sponding braid generator is o; or 0',-"]. We look at the projec-
tion of the ith and (i+1)th particles in the direction perpen-
dicular to the projection line (the vertical axis in our case). If
the ith particle is above the (i+1)th at the time of crossing,
then the interchange involves the group generator o; (we
define above as having a greater value of projection along
the perpendicular direction). Conversely, if the ith particle is
below the (i+1)th at the time of crossing, then the inter-
change involves the group generator o-,-_]. Figure 5(a) depicts
these two situations.

The net result is that from the n particle trajectories we
obtain a time-ordered sequence of the generators o; and 0',7',

Jean-Luchddsigfeauisie (2010)

i=1,...,n—1. We call this sequence the braid of the trajec-
tories. We also record the times at which crossings occur so
each generator in the sequence has a time associated with it.

Remarks:

e The method just described might seem to detect spurious
crossings if two well-separated particles just happen to in-
terchange position on the projection line several times in a
row, as shown in Fig. 5(b). However, this would imply a
sequence of o; and o-i_1 braid generators since which par-
ticle is labeled i changes at each crossing. When composed
together the generators for these crossings cancel.

e We give a simple MATLAB implementation of the method
in Appendix A 1. The program GENCROSS detects crossings
in trajectory data; it makes an effort to resolve multiple
simultaneous crossings (up to triple crossings) but will
complain if it gets confused. More sophisticated code can
be written that reinterpolates the trajectory as needed to
detect crossings.

e When the system has symmetries, such as when several
periodic orbits lie on the same line, there are ‘bad’ choices
of projection line where it is impossible to resolve the
order of crossings since orbits cross at exactly the same
time. Displacing the projection line a little cures this.

e If the braid is truly periodic, that is, if all the particles
return to their initial configuration, then changing the pro-
jection line changes the braid, but only by conjugation,
which does not affect the entropy® (Sec. III).

o If the trajectories are not periodic, then the method does
not define a braid in the traditional sense where all the
strands return to the same initial configuration. This is in-
consequential to our purposes: all that matters is the order
along the projection line (see also Ref. 25). The choice of
projection line changes the braid beyond simple conjuga-
tion, but this only creates an error in a small, finite number
of generators, which is not important when considering
long braids and does not asymptotically affect the entropy
(Sec. III).

o If the braid is generated from chaotic trajectories, then
missing a few crossings (due to, say, gaps in the data) is
fine as long as the trajectories are long enough.

lll. TOPOLOGICAL ENTROPY

In Sec. II we described how a set of trajectories in a
two-dimensional dynamical system can be described as a
braid in a three-dimensional space-time diagram. In this sec-
tion we will describe further how this braid relates to topo-
logical information for the underlying flow.

It is worth noting that braids are not always interpreted
in terms of trajectories: They arose first and are still studied
as independent geometrical and algebraic objects. The reason
they take center stage in the present study is through their
connection to mappings of surfaces (mapping class groups).
The Thurston—Nielsen theory27’3 ! classifies mappings of sur-
faces according to whether they can be “deformed” to each
other in a topological sense. Braids provide a convenient
way of labeling the isotopy classes that result. So even
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entropy = 0.805
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FIG. 6. (Color online) The length of a material line as it is advected by a
flow for many periods. The exponential growth rate is very well defined
(fitted line), even though there are identical small oscillations at each period.

though we will often speak here of the braid as being the
primary object of interest, we are really using techniques that
apply to the class of mappings labeled by a braid.

A. Entropy of a flow

Ultimately, we want to measure the topological entropy
of a system directly from a braid of trajectories. Before we
do this, we discuss the meaning of topological entropy of a
flow or map. The topological entropy of a dynamical system
measures the loss of information under the dynamics. It is
closely related to the Lyapunov exponent, which measures
the time-asymptotic rate of separation of neighboring trajec-
tories. However it is in some sense a cruder quantity since it
does not require a notion of distance. A positive entropy is
associated with chaos although it tells us nothing about the
size of the chaotic region. The topological entropy is an up-
per bound on the largest Lyapunov exponent of a flow. The
two are equal only for very simple systems where stretching
is uniform.

Although there are more fundamental ways to define it,
we shall take our working definition of entropy to be the
asymptotic growth rate of material lines™ 1t is fairly
straightforward to measure this numerically, given a suffi-
ciently accurate velocity field. We simply choose an initial
material line and follow it for some time, interpolating new
points as the line gets longer. Figure 6 shows such a line for
a numerical simulation of a stirred viscous flow. Note how
the exponential growth rate is very sharply defined. The to-
pological entropy is the supremum of the growth rate over all
such loops, but in practice almost any nontrivial loop (i.e.,
that spans the domain) will grow exponentially at a rate Ay,

In practical applications we often do not have access to
an accurate representation of the velocity field. This is where
braids come in, as a way of approximating the topological
entropy. As we will see in Sec. III B, the braid provides a
lower bound on the flow’s topological entropy.

B. Entropy of a braid

Figure 7 illustrates how the motion of n=3 point par-
ticles can be used to set a lower bound on the topological
entropy, defined here as the growth rate of material lines or
loops. Here, the point particles undergo a motion described
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FIG. 7. (Color online) For n=3 particles, a loop is initially wrapped around
the second and third particles. The generator o is applied, interchanging
clockwise the first and second particles, followed by o—;‘, which inter-
changes the second and third particles counterclockwise. The loop is forced
to stretch under this application. The final loop on the lower right underwent
two applications of the braid (71051. If we keep applying this braid, the
length of the loop will grow exponentially.

by the braid 01051. Two full periods are shown. Notice that
an initial loop that is “caught” on the particles is forced to
follow along since determinism implies that it cannot occupy
the same point in phase space as the particles. In fact, a
straightforward calculation® shows that for this braid the total
length of ;he loop must grow exponentially at least at a rate
log((3++5)/2) per period. We call this rate the topological
entropy of the braid, h"., to distinguish it from the true
topological entropy of the flow, A4, as defined in Sec. III A.
We have

hitow = hiia (2)

for any braid obtained from the motion of n particles in the
flow. Typically, the more particles are included in the braid,
the closer hg;aid is to hﬂow.14 Note that h:)lr;id and hl(ﬁiid are
always zero.

An essential property of hggﬂ 4 1s that the growth rate of
the loop is independent of specific details: For instance, if the
particles are not equally spaced, or if the loop is “tightened”
around the particles, then the length will change, but the
asymptotic growth rate will not because all these changes
amount to an additive constant in the logarithm, which gets
divided by a large time.

We are now faced with a task: Given a sequence of
generators o;, measured in some way or obtained numeri-
cally from a flow, what is hg;;i 47 The method used in Ref. 7,
based on a matrix representation of the braid group, only
provides a lower bound on the braid entropy. An accurate
and efficient computation has since become a lot simpler due
to a new algorithm by Moussafir,”> who used a set of coor-
dinates to encode a loop. We describe this briefly below; for
more details see Refs. 33-35. The reader who is mostly in-
terested in using the method can skip to the end of the sec-
tion to procedure 1.

The basic idea is simple: Consider the closed loop in
Fig. 8, which is wrapped around n=5 particles. The loop
does not intersect itself, so in two dimensions the allowable
paths it can follow around the particles are far from arbitrary.
The amazing fact is that we can reconstruct the entire loop,
or at least the way it is threaded around the particles, by
counting how many times it intersects the vertical lines in
Fig. 8.

In Fig. 9 we give specific labels to the crossing numbers.
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FIG. 8. (Color online) A nonintersecting closed loop wrapped around n=>5
particles. Up to trivial deformations, the loop can be reconstructed by count-
ing intersections with the vertical lines. In terms of the crossing numbers
defined in Fig. 9, this loop has v|=1,=2, ry=v,=4, u;=2, us=1, us=4,
Mr=pm6=0, p,=3, and Dynnikov coordinate vector u=(-1,1,-2,0,-1,0)
[see Eq. (4)].

For n particles, u,;_3 (odd index) gives the number of cross-
ings of a loop above the ith particle, and u,,_, (even index)
below the same particle. The number v; counts the crossings
between particle i and i+ 1. We have a total of 3n—35 crossing
numbers.

This set of crossing numbers (which are all non-
negative) can be reduced further: Define

a;= %(#2,' ~ Moic1), b= %(Vi ~ Vis1) (3)
for i=1,...,n=2. The vector of length (2n-4),

’ bn—Z) > (4‘)

is called the Dynnikov coordinates of a loop. (As far as we
know, this specific encoding was originally introduced by
Dynnikov,34 but it is implicit in earlier work of Thurston,
Dehn, and others.) The components @; and b; are signed in-
tegers. They can be used to exactly reconstruct the loop,35
but we shall not need to do this here. This set of coordinates
is minimal: It is not possible to achieve the same reconstruc-
tion with fewer numbers.

u= (al, ,a”_z,bl,

FIG. 9. (Color online) Definition of the crossing numbers w; and v;. The w;
for i odd count crossings above a particle, and below a particle for i even.
The v; count crossings between particles.

Jean-Luchddsigfeauisie (2010)

We can also obtain the minimum number of intersections
L(u) of the loop with the horizontal line through the
particlf:s,33

n-3 n-1

L) = |ay| + |a,| + 2 @iy — al + 2 |b;
i=1 i=0

: (5)

where b, and b,_; can be obtained from the other coordinates

35
as

i-1 n—2
bo=— max ||a|+bf+2b;|, bi=—by—2b;. (6)
j=1

1=i=n-2 Jj=1

The formula for L(u) is encoded in the MATLAB function
LOOPINTER in Appendix A 2. For example, the loop in Fig. 8
intersects the horizontal axis (the line through all the par-
ticles) 12 times. The crucial observation, which will allow a
simple computation of hl()"rzli o 18 that if the length of the loop
grows exponentially, then L(u) also grows exponentially at
the same rate.”’

Now that we have a way of encoding any loop, we need
to find how the loop is transformed by a braid. What makes
all this work is that there is a very efficient way of doing this:
Given a loop encoded by u as in Eq. (4), each generator of
the braid group o; simply transforms these coordinates in a
predetermined manner. (Mathematically, this defines an ac-
tion of the braid group on the set of Dynnikov coordinates.)
We call these transformations the update rules for a genera-
tor.

The update rules are straightforward to code on a com-
puter. (See Appendix A 2 for a MATLAB implementation.) To
express them succinctly,36 first define for a quantity f the
operators,

f"+=max(f,0), f :=min(f,0). (7)
After we define

¢ =i —a;=b +b_, (8)
we can express the update rules for the o; acting on
u=(a1 b e ,an_z,bl . ,b”_z) as

aiy=ai b — (b} + i), (9a)

biy=b;+ciy, (9b)

ai=a;=b; = (b —ci1), (9¢)

bi=bi1—ci, (9d)

fori=2,...,n-2. For this and the following update rules, all
the other unlisted components of u are unchanged under the
action of o; or o;'. The leftmost (i=1) and rightmost
(i=n—1) generators require special treatment, having update

rules

al=—b,+(a, +b})", (10a)
bi=a,+b} (10b)
for oy, and
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a/,1—2 == bn—Z + (an—Z + b;_z)_’ (1 la)

b =a, ,+b,_ (11b)
n-2 n-=2

for o,_;.
We need to give separate update rules for the generators
o7'. With the definition

dioy=a,—a;+b; —b_,, (12)
the update rules for the o' are
aiy=ai+bi+ (b —diy), (13a)
b, =b;—d} |, (13b)
a, =a;+b; + (b, +d;_))", (13¢c)
bl’ =bi—1 +d;~+_1 (13d)
for i=2,...,n—2. We also have
ay=by—(b] —ay)*, (14a)
by =bj-a, (14b)
for 0]1, and
all1—2 = bll—Z - (b;—Z - an—2)_’ (153)
rII—Z = ;—2 —dy (15b)

-1
n—1°

Update rules of this form are known as piecewise linear:
once the minima and maxima are resolved, what is left is
simply a linear operation. However, the minima and maxima
are what keep this from being a simple linear algebra prob-
lem and make the braid dynamics so rich.

Here then is a recipe for computing hgl',;i o the topological

entropy of a braid of n particle trajectories:

for

Procedure 1. (Entropy of periodic braid)

(1) Start with an arbitrary initial loop, encoded as a vector
u [Eq. (4)]; set m to 0;

(2) for each generator in the braid, use the appropriate
update rule from (8)—(15) to modify u;

(3) compute the intersection number L(u) using Eq. (5);

(4) repeat steps (2) and (3) for all generators in the braid,

(5) add 1 to m; calculate hggﬁd=m_' log L(u);

(6) repeat steps (2)—(5) until ht(ﬁ;id converges in step (5).

Remarks:

e The procedure above assumes that the braid is periodic,
i.e., is obtained from periodic orbits of the flow. In Sec. IV
we will discuss how the method differs for random braids
obtained from sampling arbitrary trajectories (which do not
necessarily repeat).

¢ The dimension of hg;;i d is inverse time, where the unit of
time is the period over which the braid is repeated.

* Even though the discussion so far has described u as a
vector of integers, the initial condition for & in step (1) can

in practice be chosen to be a random set of real numbers.
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FIG. 10. (Color online) For the braid 03'05'05 0,0, in Fig. 2. (a) Entropy
estimate m~! log L(u) as a function of period m using procedure 1. (b) Error
(deviation from the true entropy ~0.831 44), showing the 1/m convergence
(dashed line).

(This is called a projectivized version of the coordinates.35)

e As is typical of such exponential growth calculation, it is
possible that the components of u becomes so large that
they overflow double-precision arithmetic. In that case
standard “renormalization” techniques can be used: Divide
u by a large constant L., Dut keep track of how many
times this division was done. Then add that multiple of
10g Loyerfiow to the logarithm in step (5). Another option is
to use real or integer arbitrary precision arithmetic, but this
slows down the calculation.

* We stress that Moussafir’s technique for the computation
of a braid’s entropy is extremely rapid compared to previ-
ous methods, which typically use train tracks and the
Bestvina—Handel algorithm,37 or combinatorial methods.”®
The rapidity arises from the fact that the algorithm keeps a
bare minimum of information (the vector u) to express the
topology of an arbitrarily long curve. The Bestvina—
Handel algorithm, however, gives more information about
the braid (such as the existence of invariant curves—see
Sec. V).

The speed of convergence of this procedure is discussed
in Refs. 14 and 33. As an example, Fig. 10(a) shows the
result of applying the procedure to the braid in Fig. 2, and
Fig. 10(b) shows the convergence rate to the exact entropy.

IV. RANDOM BRAIDS

From the point of view of data analysis, looking at peri-
odic braid is not general enough. Most periodic orbits in a
dynamical system are unstable, and thus they cannot be de-
tected directly. The trajectories we have access to are typi-
cally chaotic. Nevertheless, we can ask what the braid corre-
sponding to a set of orbits tells us about a dynamical system.
The answer is that its entropy approximates the “true” topo-
logical entropy of the flow, and the approximation gets better
as more particles are added.

There are two ways to analyze random braids generated
by chaotic trajectories: without and with ensemble averag-
ing. “Without averaging” means that we have a single real-
ization to study, say »n trajectories integrated or measured up
to some final time. Unless the final time is extremely long,
this is not very accurate. “With averaging” means that we
have the luxury of repeating the experiment several times,
following the same number of trajectories at each realization
(assuming the flow is the same for each realization, at least in
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a statistical sense). We then average over the total number of
realizations of the experiment, in the manner described
below.

A. Entropy without averaging

Let us first describe the procedure without averaging: We
assume that we have obtained a sequence of generators from
the trajectories of n particles, as well as the time at which
each crossing occurs (see Sec. II B). In the examples pre-
sented here, those trajectories were either computed from
randomly selected initial conditions, or they were obtained
from measured data (the oceanic floats).

Procedure 2. (Entropy of random braid, without averaging)

(1) Start with an arbitrary initial loop, encoded as a vector
u [Eq. (4)];

(2) for each generator in the braid, use the appropriate
update rule from (8)—(15) to modify u;

(3) compute the intersection number L(u) using Eq. (5);

(4) plot log L(u) versus t, where t is a vector of times when
each crossing occurs;

(5) repeat steps (2)—(4) until we can fit a line in step (4).

Remarks:

* Since the braid is random, we must keep track of the time
when crossings occur.

* Most of the remarks from the periodic procedure 1 of Sec.
T B still apply.

Figure 11 shows an example of applying procedure 2 to
n=3 particles advected by a blinking vortex flow*”® in the
regular regime [Fig. 11(a)] and chaotic regime [Fig. 11(b)].
In the first case, the growth of L(u) is roughly linear so the
entropy is zero. In the second case the growth is exponential.
Note that the integration time is quite long, and in Fig. 11(b)
L(u) becomes enormous. For such long integration time, the
fit for the entropy is good.

B. Entropy with averaging

To get a more accurate measurement of hg'r';i 4 for random

braids, ensemble averaging is desirable if we have that
luxury. To implement this, we integrate a set of n trajectories
Nieq times, randomizing the initial condition for each real-
ization. We obtain a list of n X N, trajectories for times 0
==t from which we compute N, braids and vectors
of crossing times. To do the averaging, we need to be able to
compare L(u) at the same times for each braid, but since
crossings occur at different times we cannot do this directly.
We instead break up the total time interval into equal sub-
intervals of length At, and for each subinterval and each
realization we record L(u) up to time gAz, where ¢ is an
integer with 0=¢gAr=t,,.. We finally obtain N, lists of
[#max/ Af] (square brackets denote the integer part) intersec-
tion numbers L(u), all sampled at the same times corre-
sponding to each subinterval. The whole procedure is sum-
marized as follows.

Jean-Luchddsigfeauisie (2010)

crossings = 227

0 200 400 600 800 1000

entropy = 0.2498

crossings = 5846

50 |

10°

(b)
FIG. 11. (Color online) (a) The number of crossings of a loop vs time for the
blinking vortex flow in the regular regime (circulation I'=0.5, corotating
vortices; see Ref. 7). The growth of L(u) is linear. (b) Same as in (a) but in
the chaotic regime (circulation I'=16.5, counter-rotating vortices; see Ref.
7). The vertical axis is now on a log scale; the slope of the line gives the
braid entropy (procedure 2).

0 200 400 600 800 1000
t

Procedure 3. (Entropy of random braid, with averaging)

(1) Start with N, lists of intersection numbers L(u) and
their crossing times, generated following procedure 2,
steps (1)—(3);

(2) for each realization, record the intersection numbers up
to fixed times qAt, 0=qA1=t,,.,

(3) at each time qAt, compute the average {log L(u)) over
all N, realizations;

(4) plot {log L(u)) versus qAt, 0=qAt=t,,,,, and fit a line
to get hg;;id.

Remarks:

e We average log L(u) rather than L(u): Not only does this
ensure that procedures 2 and 3 give the same entropy but it
also leads to smaller fluctuations.

* For best results, the number of subintervals [7,,,,/Af] has
to be large enough to get a good fit, but small enough that
there are several crossings within each subinterval of
length At

Figure 12 shows an example of applying procedure 3
with N, =50 realization of n=3 particles advected by the
same blinking vortex flow as for Fig. 11(b). Notice that the
fit is much better, even though the integration time is shorter.
We used [#,,,/ dt]=10 time subintervals of length Az=10. An
explicit example in MATLAB (for the Duffing oscillator) is
given in Appendix A 3 (Fig. 13).
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entropy = 0.2572

0 20 40 . 60 80 100

FIG. 12. (Color online) Similar plot to Fig. 11(b) but after averaging
(log L(u)) over N,.;=50 shorter trajectories (f,,,,=100 time units rather than
1000). The average is plotted at each Ar=10 time units (see procedure 3).
The individual trajectories are shown in the background.

C. Oceanic floats

As a more practical application of random braids, we
consider data for oceanic floats in the Labrador Sea (North
Atlantic)," discussed in Sec. T A. The position of ten floats
for a few months is shown in Fig. 1(a). Note that the float
trajectories seem more entangled while they are confined to
the Labrador Sea (between Greenland and Labrador), and
some eventually escape. To compute the braid, we linearly
interpolate the float positions to determine when crossings
occur between the n=10 floats. We then use procedure 2 to
compute the entropy, as shown in Fig. 1(b), since ensemble
averaging is not available here (we only have data from one
experiment). We see in Fig. 1(b) that L(x) has a convincing
exponential regime for about 150 days, after which floats
tend to escape the Labrador Sea and L(u) reaches a plateau.
The entropy gives us a time scale for the entanglement of
floats in the Labrador Sea, here about 1/0.02=50 days.
This number is easy to obtain from the raw data: There is no
need for a model of the velocity field. However, the trajec-
tories need to be long enough for a significant number of
crossings to occur, and localized enough for particles to ac-
tually braid.

More contexts will be needed to fully understand what it
means to say that the time scale for entanglement is 50 days.
For instance, the method could be benchmarked by following

2r A
entropy = 0.0192 p
T
1.5 >
///
5 pZ
=
I e
20 1 /
2
///
0.5 =
-
/
0 . . . .
0 20 40 60 80 100

t

FIG. 13. (Color online) Output of PROC3 EXAMPLE (Appendix A 3).
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tracers in simulations of flows comparable to the Labrador
Sea, in which braids can be easily computed. The measure is
also useful for comparing different regions of the ocean.

Note that there has been previous work on bounding the
topological entropy of experimental data. Amon and
Lefranc™® obtained lower bounds on entropy and evidence of
chaotic behavior in a nonstationary optical system. See also
the review by Gilmore.*

V. DISCUSSION

There are two ways to interpret the data obtained from
braids of particles. The first is to accumulate data for enough
particle trajectories that a good approximation to the topo-
logical entropy hy4,, is obtained. The drawback to this is that
the convergencli: of hgzid to Aoy as n gets larger appears to
be fairly slow, " although more work is needed to determine
this convergence rate. In this interpretation, the braid ap-
proach is seen as a practical way of measuring hy,,. This
interpretation is in the same spirit as a Lyapunov exponent.
Its main advantage is that a single number is easy to com-
prehend and compare; its main drawback is that a single
number does not capture the subtleties of a particular system.

The second interpretation is to regard hg;;i g as the
“n-particle braiding time,” in a similar fashion that n-particle
correlation functions are measured. Thus, the behavior of
hg;;id with n carries real information, as it tells us the typical
time for three particle trajectories to become entangled, then
four particles, etc. We might call this the “spectrum of braid
entropies” for a dynamical system. The drawback of this
approach is that it requires a more careful analysis of the
data.

The method presented in this paper is limited to two-
dimensional flows. Indeed, a four-dimensional braid of three-
dimensional particle trajectories is not very useful, as this
and all higher-dimensional braid groups are trivial (strands
can always be disentangled without crossing“). The best al-
ternative is to lift the trajectories of material lines to sheets in
four dimensions, but this presents some daunting visualiza-
tion challenges, and there is little developed theory (but see
Ref. 40).

Finally, the topological entropy hg;ai 4 1s only the crudest
piece of information that can be extracted from a braid.
Many other types of invariants can be computed.41 However,
those invariants do not necessarily have a clear interpretation
in terms of dynamics. A promising avenue for obtaining
much more precise information on a dynamical system is to
find the isotopy class of the random braid (see Sec. IIT). This
would tell us, for instance, whether some floats merely orbit
each other and thus behave as one “trajectory” from the point
of view of braiding and entropy. This is akin to making a
braid out of thick rope: Even though each rope is made up of
tiny strands, these contribute to the braid as one large strand.
This sort of approach could help to identify Lagrangian co-
herent structures from particle trajectory data, by looking for
decomposable braids. However, the tools available to do this,
such as the Bestvina—Handel algorithm,3 7 are still slow and

)
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difficult to use on large braids. A promising approach was
recently used in Ref. 35 but needs to be developed further.
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APPENDIX A: maTLAB EXAMPLE PROGRAMS

The source code of the MATLAB files in this appendix is
available online.*

The function GENCROSS computes the generators and crossing times for particle trajectories (see Sec. II B). The function
INTERPCROSS is a helper function to GENCROSS that interpolates crossings. Both these functions are simple implementations
with few bells and whistles: GENCROSS deals with two or three adjacent particles crossing between successive time steps, but
it does not attempt to refine the trajectory (by interpolation or integration) to resolve crossings. If it gets confused because too
many crossings are occurring between two successive time steps, there is no other option but to refine the data further.

function [varargout]=gencross(t,X,Y)

%GENCROSS Find braid generators from crossings of trajectories.

% G=GENCROSS(T,X,Y) finds the braid group generators associated with

% crossings of particle trajectories. Here T is a column vector of times,

% and X and Y are coordinates of particles at those times. X and Y have

% the same number of rows as T, and N columns, where N is the number of

% particles. A projection on the X axis is used to define crossings.

%o

% [G,TC]=GENCROSS(T,X,Y) also returns a vector of times TC when the
% crossings occurred.

% Find the permutation at each time.

[Xperm, Iperm]=sort(X,2);

dperm=diff(Iperm, 1); % Crossings occur when the permutation changes.
icr=find(any(dperm,2)); % Index of crossings.

gen=[ J; ter=[ ];

for i=1:length(icr)
% Order (from left to right) of particles involved in crossing.
igen=find(dperm(icr(i),:));
=L
while j<length(igen)
if “sum(dperm(icr(i),igen(j:j+1)))

%

% Crossing involves a pair of particles.

%

P=Iperm(icr(i),igen(j:j+1)); % The two particles involved in crossing.

[tt,dY]=interpcross(t, X, Y ,icr(i),p(1),p(2));
ter=[ter;tt]; gen=[gen;igen(j) *dY];
j=j+2;

elseif “sum(dperm(icr(i),igen(j:j+2)))
%o
% Crossing involves a triplet of particles.
% Two cases are possible:
%o
if Iperm(icr(i),igen(j)) =Iperm(icr(i) +1,igen(j) + 1)
% Case 1: ABC—>CAB

% Particles B&C cross first
P=Iperm(icr(i),igen([j+ 1j+2]));
[tt,dY]=interpcross(t,X,Y ,icr(i),p(1),p(2));
ter=[ter;tt]; gen=[gen;igen(j+1)*dY];

% Particles A&C cross second
P=Iperm(icr(i),igen([jj+2]));
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[tt,dY]=interpcross(t,X,Y ,icr(i),p(1),p(2));
ter=[ter;tt]; gen=[gen;igen(j)*dY];

elseif Iperm(icr(i),igen(j)) =Iperm(icr(i) +1,igen(j) +2)
% Case 2: ABC—>BCA

% Particles A&B cross first
P=Iperm(icr(i),igen([jj+1]));
[tt,dY]=interpcross(t,X,Y ,icr(i),p(1),p(2));
ter=[ter;tt]; gen=[gen;igen(j)*dY];

% Particles A&C cross second
P=Iperm(icr(i),igen([jj+2]));
[tt,dY]=interpcross(t,X,Y ,icr(i),p(1),p(2));
ter=[ter;tt]; gen=[gen;igen(j+1)*dY];
else
error("something”s wrong with triple crossing—increase resolution’)
end
j=i+3;
else
error(’too many simultaneous crossings—increase resolution’)
end
end
end
varargout{1}=gen;
if nargout> 1, varargout{2}=tcr; end

function [tc,dY]=interpcross(t,X,Y ,itc,pl,p2)

P%INTERPCROSS Interpolate a crossing.

% [TC,DY]=INTERPCROSS(T,X,Y,ITC,P1,P2) is a helper function for

% GENCROSS. The input is the data T,X,Y (described in the help for

% GENCROSS); the index ITC of the time of crossing (i.e., the particles

% cross between T(ITC) and T(ITC+1); and the indices P1 and P2 of the two
% particles that are crossing. INTERPCROSS returns the interpolated

% crossing time TC, as well as DY (the sign of the difference in Y

% coordinates) which determines the sign of the generator.

% Refine crossing time and position (linear interpolation).
dt=t(itc+ 1) —t(itc); % Time interval.
% Particle velocities in that interval.
Ul=(X(ite+1,pl)—X(itc,pl))/dt;
V1=(Y(ite+1,pl)=Y(itc,pl))/dt;
U2=(X(ite+1,p2)—X(itc,p2))/dt;
V2=(Y(itc+1,p2)-Y (itc,p2))/dt;
% Interpolated crossing time and Y coordinates.
dte=—(X(itc,p2)—X(itc,p1))/(U2-U1);
te=t(itc) +dtc;
Yic=Y(itc,pl)+dtc*V1;
Y2c=Y(itc,p2)+dtc* V2;
dY=sign(Ylc-Y2c);
% The sign of Ylc-Y2c determines if the crossing is g or g”-1
if dY=0,

error(’can”t resolve sign of generator—increase resolution’);
end

2. LOOPSIGMA and LOOPINTER

The function LOOPSIGMA applies a sequence of braid group generators to a loop [Sec. III B, Egs. (8)—(15)]. The function
LOOPINTER computes L(u), the minimum number of intersections of a loop with the horizontal axis [Sec. III B, Eq. (5)].

function up=1loopsigma(ii,u)

%LOOPSIGMA Act on a loop with a braid group generator sigma.

% UP=LOOPSIGMA(J,U) acts on the loop U (encoded in Dynnikov coordinates)
% with the braid generator sigma_J, and returns the new loop UP. J can be

% a positive or negative integer (inverse generator), and can be specified

% as a vector, in which case all the generators are applied to the loop

% sequentially from left to right.
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n=length(u)/2+2;
a=u(1:n-2); b=u((n—1):end);
ap=a; bp=b;
pos= @ (x)max(x,0); neg= @ (x)min(x,0);
for j=1:length(ii)
i=abs(ii(j));
if () >0
switch(i)
case 1
bp(1)=a(1)+pos(b(1));
ap(1)==b(1)+pos(bp(1));
case n-1
bp(n—2)=a(n-2)+neg(b(n-2));
ap(n—2)=-b(n-2)+neg(bp(n-2));
otherwise
c=a(i—1)—a(i)—pos(b(i))+neg(b(i—1));
ap(i—1)=a(i—1)—pos(b(i—1))—pos(pos(b(i))+c);
bp(i—1)=b(i)+neg(c);
ap(i)=a(i)—neg(b(i)) —neg(neg(b(i—1))—c);
bp(i)=b(i~1)-neg(c);
end
elseif ii(j) <0
switch(i)
case 1
bp(1)=—a(1)+pos(b(1));
ap(1)=b(1)—pos(bp(1));
case n-1
bp(n—2)=-a(n—2)+neg(b(n-2));
ap(n—2)=b(n-2)—neg(bp(n—2));
otherwise
d=a(i—1)—a(i)+pos(b(i))—neg(b(i—1));
ap(i—1)=a(i—1)+pos(b(i—1))+pos(pos(b(i))—d);
bp(i-1)=b(i)—pos(d);
ap(i)=a(i) +neg(b(i)) +neg(neg(b(i- 1)) +d);
bp(i)=b(i—1)+pos(d);
end
end
a=ap; b=bp;
end
up=[ap bpl;

function int=loopinter(u)

%LOOPINTER The number of intersections of a loop with the real axis.

% 1=LOOPINTER(U) computes the minimum number of intersections of a loop
% (encoded in Dynnikov coordinates) with the real axis. (See Moussafir

% (2006), Proposition 4.4.) U is either a row-vector, or a matrix of

% row-vectors, in which case the function acts vectorially on each row.

n=size(u,2)/2+2;

a=u(:,1:n-2); b=u(:,(n—1):end);

cumb=[zeros(size(u, 1), I)cumsum(b,2)];

% The number of intersections before/after the first and last punctures.

% See Hall & Yurttas (2009).

bO0=-max(abs(a)+max(b,0)+cumb(:,1:end-1),[ ],2); bn=—b0—sum(b,2);

int=sum(abs(b),2)+sum(abs(a(:,2:end)—a(:,1:end—1)),2)...
+abs(a(:,1))+abs(a(:,end))+abs(b0) +abs(bn);

3. PROC3_EXAMPLE

The function PROC3_EXAMPLE computes L(z) for a random braid of four particles advected by the Duffing oscillator, using
averaging over 100 realizations (see Sec. IV, procedure 3).
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function proc3_example

% Procedure 3 example:
% 4 particles advected by the Duffing oscillator, average over realizations.
N=4; Nreal=100;
tmax=100; dt=10; npts=3000;
X=zeros(npts,n); Y=zeros(npts,n);
Ll=zeros(Nreal, tmax/dt); tl=dt:(1:tmax/dt);
rand(’twister’,2);
for r=1:Nreal
fprintf(1°,’Realization %d’,r)
% Compute n particle trajectories, from random initial conditions.
fori=1:n
[t,xy]=0de45(@duffing, linspace(0, tmax,npts)’, 4 *rand(1,2)-2);
X(:,1)=xy(:,1); Y(:,1)=xy(:,2);
end
[gen,tc]=gencross(t,X,Y); % Find generators and crossing times.
% Act with the generators on a random initial loop.
up=rand(1,2#(n—2)); up=up/loopinter(up);
for i=1:length(gen), up=[up;loopsigma(gen(i),up(end,:))]; end
% Find the number of intersections with the real axis.
L{r}=loopinter(up);
% Keep intersections at a list of fixed time intervals dt, for averaging.
for q=1:(tmax/dt)
idx=find(tc < =tl(q));
Li(r,q)=L{r}(idx(end));
end
end
loglavg=[0 mean(log(L1),1)]; t1=[0 t];
m=polyfit(tl,loglavg, 1); % Fit a line
figure 2, plot(tl,logLavg,’b.-"), hold on
text(10,1.6,sprintf(’entropy = %.4f",m(1)))
plot(tl,m(1)#tl+m(2), ‘r="), hold off
xlabel(’t’), ylabel(’<log L>’)

ChaosMii Xi117516 (2010)

%
function yt=duffing(t,y)

delta=1; gamma=4; omega=2;
yt=zeros(size(y));
yi(L,:)=y(2,2);

yt(2,:)=y(1,:). % (1—y(1,:).*y(1,:))+gammas*cos(omega+t)—deltaxy(2,:);

'WOCE  subsurface float data
wfdac.whoi.edu.
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Lecture 28: The braidlab Matlab package

1 Installing braidlab

The package braidlab is defined inside a Matlab namespace, which are specified as
subfolders beginning with a ‘+” character. The Matlab path must contain the folder
that contains the subfolder +braidlab, and not the +braidlab folder itself:

>> addpath ’path to folder containing +braidlab’

To execute a braidlab function, either call it using the syntax braidlab. function, or
import the whole namespace:

>> import braidlab.x*

This allows invoking function by itself, without the braidlab prefix. For the remain-
der of this document, we assume this has been done and omit the braidlab prefix.
The addpath and import commands can be added to startup.m to ensure they are
executed at the start of every Matlab session.

2 A tour of braidlab

2.1 The braid class

braidlab defines a number of classes, most importantly braid and loop. The
braid ¢,05 " is defined by

>> a = braid([1 -21) % defaults to 3 strings
a=<1-2>

which defaults to the minimum required strings, 3. The same braid on 4 strings is

defined by
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> a4 = braid([1 -2],4) % force 4 strings
ad = < 1 -2 >

Two braids can be multiplied:

>> a = braid([1 -2]1); b = braid([1 2]);
>> a*b, bxa

ans = < 1 =2 1 2 >

ans = < 1 2 1 -2 >

Powers can also be taken, including the inverse:

>> a5, inv(a), axa~-1

ans = < 1 -2 1 -2 1 -2 1 -2 1 -2 >
ans = < 2 -1 >
ans = <1 -2 2 -1 >

Note that this last expression is the identity braid, but is not simplified. The method
compact attempts to simplify the braid:

>> compact (a*a”-1)
ans = < e >

The method compact is based on the heuristic algorithm of Bangert et al. (2002),
since finding the braid of minimum length in the standard generators is in general
difficult (Paterson & Razborov, 1991).

The number of strings is

>> a.n

ans = 3

Note that
>> help braid

describes the class braid. To get more information on the braid constructor, invoke
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>> help braid.braid

which refers to the method braid within the class braid. (Use methods(braid) to
list all the methods in the class.) There are other ways to construct a braid, such
as using random generators, here a braid with 5 strings and 10 random generators:

>> braid(’random’ ,5,10)

ans = <1 4 -4 2 4 -1 -2 4 4 4 >

The constructor can also build some standard braids:

>> braid(’halftwist’,5)

ans = <4 3 2 1 4 3 2 4 3 4 >

In Section 2.2 we will also show how to construct a braid from a trajectory data set.
The braid class also handles equality of braids:

>> a = braid([1 -2]); b = braid([1 -2 2 1 2 -1 -2 -1]);
>>a==b

ans = 1

These are the same braid. Equality is determined efficiently by acting on loop (Dyn-
nikov) coordinates (Dynnikov, 2002), as described by Dehornoy (2008). See Sec-
tions 2.3-2.4 for more details.

We can extract a subbraid by choosing specific strings: for example, if we take
the 4-string braid o,0905 U and discard the third string, we obtain oy05 L.

>> a = braid([1 2 -31);
>> subbraid(a,[1 2 4]) % subbraid using strings 1,2,/

ans = < 1 -2 >

There are a few methods that exploit the connection between braids and homeo-
morphisms of the punctured disk. Braids label isotopy classes of homeomorphisms,
so we can assign a topological entropy to a braid:

>> entropy (braid([1 2 -3]1))

ans = 0.8314
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The entropy is computed by iterated action on a loop (Moussafir, 2006). This can
fail if the braid is finite-order or has very low entropy:

>> entropy(braid ([1 2]))

Warning: Failed to converge to requested tolerance; braid is
likely finite-order or has low entropy.

> In braid.entropy at 89

ans = 0

To force the entropy to be computed using the Bestvina-Handel train track algo-
rithm Bestvina & Handel (1995), we add an optional parameter:

>> entropy(braid([1 2]),’trains’)
ans = 0

Note that for large braids the Bestvina—Handel algorithm is impractical. But when
applicable it can also determine the Thurton—Nielsen type of the braid (Fathi et al.,
1979; Thurston, 1988; Casson & Bleiler, 1988; Boyland, 1994):

>> tntype(braid ([1 2 -31))

ans = pseudo-Anosov
>> tntype(braid ([1 2]))

ans = finite-order
>> tntype(braid ([1 2]1,4)) % reducing curve around 1,2,3

ans = reducible

braidlab uses Toby Hall’s implementation of the Bestvina—Handel algorithm (Hall,
2012).
Finally, we can also find the Burau matrix representation (Burau, 1936; Birman,

1975) of a braid:
>> burau(braid ([1 -2]),-1)

ans = 1 =
-1 2

where the last argument (—1) is the value of the parameter ¢ in the Laurent polyno-
mials that appear in the entries of the Burau matrices.
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Figure 1: (a) A dataset of four trajectories, (b) projected alond the X axis. (¢) The
compacted braid o705 07 %02050; corresponding to the X projection in (b). (d)
The compacted braid o 7010§ Yoy corresponding to the Y projection, with closure
enforced. The braids in (¢) and (d) are conjugate.

2.2 Constructing a braid from data

One of the main purposes of braidlab is to analyze two-dimensional trajectory data
using braids. We can assign a braid to trajectory data by looking for crossings along
a projection line (Thiffeault, 2005, 2010). The braid constructor allows us to do this
easily.

The folder testing contains a dataset of trajectories, from laboratory data for
granular media Puckett et al. (2012). From the testing folder, we load the data:

>> clear; load testdata

>> whos
Name Size Bytes Class Attributes
XY 9740x2x4 623360 double
ti 1x9740 77920 double

Here ti is the vector of times, and XY is a three-dimensional array: its first component
specifies the timestep, its second specifies the X or Y coordinate, and its third
specifies one of the 4 particles. Figure 1(a) shows the X and Y coordinates of these
four trajectories, with time plotted vertically. Figure 1(b) shows the same data, but
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projected along the X direction. To construct a braid from this data, we simply
execute

>> b = braid(XY);
>> b.length

ans = 894

This is a very long braid! But Figure 1(b) suggests that this is misleading: many
of the crossings are ‘wiggles’ that cancel each other out. Indeed, if we attempt to
shorten the braid:

>> b = compact (b)

p=<-1-2-1-1-1-1-1-1-1-1 3 3 2 1>
>> b.length

ans = 14

we find the number of generators (the length) has dropped to 14! We can then plot
this shortened braid as a braid diagram using plot(b) to produce Figure 1(c). The
braid diagram allows us to see topological information clearly, such as the fact that
the second and third particles undergo a large number of twists around each other;
we can check this by creating a subbraid with only those two strings:

>> subbraid (bX,[2 3])
ans = < -1 -1 -1 -1 -1 -1 -1 -1 >

which shows that the winding number between these two strings is —4.

The braid was constructed from the data by assuming a projection along the X
axis (the default). We can choose a different projection by specifying an optional
angle for the projection line; for instance, to project along the Y axis we invoke

>> b = braid (XY,pi/2); % project onto Y axzis
>> b.length

ans = 673
>> b.compact

ans = < -3 -3 -3 -3 -3 -3 -3 1 -3 >

In general, a change of projection line only changes the braid by conjugation (Boy-
land, 1994; Thiffeault, 2010). We can test for conjugacy:
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>> bX = compact(braid(XY,0)); bY = compact(braid(XY,pi/2));
>> conjtest (bX,DbY) % test for conjugacy of braids

ans = 0

The braids are not conjugate. This is because our trajectories do not form a ‘true’
braid: the final points do not correspond exactly with the initial points, as a set. If
we truly want a rotationally-conjugate braid out of our data, we need to enforce a
closure method:

closure (XY) ; % close braid and avoid new crossings
compact (braid (XY,0)), bY = compact(braid(XY,pi/2))

>> XY
>> bX

bX <-1-2-1-1-1-1-1-1-1-1 3 3 2 1>

bY < -3 -3-3-3-3-3-3 1-3 15>

This default closure simply draws line segments from the final points to the initial
points in such a way that no new crossings are created in the X projection. Hence,
the X-projected braid bX is unchanged by the closure, but here the Y-projected braid
bY is longer by one generator (bY is plotted in Figure 1(d)). This is enough to make
the braids conjugate:

>> [“,c] = conjtest(bX,bY) % ~ means discard first return arg

c =<3 2>

where the optional second argument c is the conjugating braid, as we can verify:

>> bX == c*b¥Yxc~"-1

ans = 1

There are other ways to enforce closure of a braid (see help closure), in particular
closure (XY, ’mindist’), which minimizes the total distance between the initial and
final points.

Note that conjtest uses the library C'Braid (Cha, 2011) to first convert the braids
to Garside canonical form (Birman & Brendle, 2005), then to determine conjugacy.
This is very inefficient, so is impractical for large braids.
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Figure 2: (a) A simple close loop in a disk with n = 5 punctures. (b) Definition of
intersection numbers p; and v;. [From Thiffeault (2010).]

2.3 The loop class

A simple closed loop on a disk with 5 punctures is shown in Figure 2(a). We consider
equivalence classes of such loops under homotopies relative to the punctures. In
particular, the loops are essential, meaning that they are not null-homotopic or
homotopic to the boundary or a puncture. The intersection numbers are also shown
in Figure 2(a): these count the minimum number of intersections of an equivalence
class of loops with the fixed vertical lines shown. For n punctures, we define the
intersection numbers p; and v; in Figure 2(b).

Any given loop will lead to a unique set of intersection numbers, but a general
collection of intersection numbers do not typically correspond to a loop. It is therefore
more convenient to define

ai:%(ﬂm—ﬂ%—l)a bi:%(yi_l/i+1)= i=1,...,n—2 (1)
We then combine these in a vector of length (2n — 4),
u = (ala"'7an72>b17"'7bn72)7 (2)

which gives the loop coordinates (or Dynnikov coordinates) for the loop. (Some
authors such as Dehornoy (2008) give the coordinates as (ay, by, ..., an—2,bp—2).)
There is now a bijection between Z?"~* and essential simple closed loops (Dynnikov,
2002; Moussafir, 2006; Hall & Yurttas, 2009; Thiffeault, 2010). Actually, multiloops:
loop coordinates can describe unions of disjoint loops.

Let’s create the loop in Figure 2(a) as a loop object:
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(a)
(b)
Figure 3:

>> 1 = loop([-1 1 -2 0 -1 0])
1 =(C-11-20 -10))

Figure 3(a) shows the output of the plot(1) command. Now we can act on this
loop with braids. For example, we define the braid b to be ¢; * with 5 strings, corre-
sponding to the 5 punctures, and then act on the loop 1 by using the multiplication
operator:

>> b = braid([-1],5); % one generator with &5 strings
>> bx1l % act on a loop with a braid

ans = (( -1 1 -2 1 -1 0 )

Figure 3(b) shows plot(b*1). The first and second punctures were interchanged
counterclockwise (the action of o7'), dragging the loop along.

The minimum length of an equivalence class of loops is determined by assuming
the punctures are one unit of length apart and have zero size. After pulling tight the
loop on the punctures, it is thus made up of unit-length segments. The minimum
length is thus an integer. For the loop in Figure 3(a),

>> minlength(1l)

ans = 12

The entropy method computes the topological entropy of a braid by repeatedly
acting on a loop, and monitoring the growth rate of the loop.
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e

Figure 4: (a) The multiloop created by loop(5). (b) The multiloop b*loop(5), where
b is the braid 010203(7;1.

>> b = braid([1 2 3 -4]1);
% apply braid 100 times to 1, then compute growth of length
>> log(minlength(b~100%1)/minlength (1)) / 100

ans = 0.7637
>> entropy (b)

ans = 0.7672

The entropy value returned by entropy(b) is more precise, since that method moni-
tors convergence and adjusts the number of iterations accordingly.

2.4 Loop coordinates for a braid

The loop coordinates allow us to define a unique normal form for braids. Consider
the multiloop depicted in Figure 4(a), which is the output of plot(loop(5)). Notice
that loop(5) defaulted to a loop on a disk with 6 punctures. The reason is that this
default multiloop is used to define loop coordinates for braids. The extra puncture is
regarded as the outer boundary of the disk, and the loops form a generating set for
the fundamental group of the disk with 5 punctures. The canonical loops coordinates
for braids exploit the fact that two braids are equal if and only if they act the same
way on the fundamental group of the disk. Hence, if we take a braid and act on
loop(5),

>> b = braid([1 2 3 -4]1);
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>> bx*loop(5)
ans = (0 0 3 -1 -1 -1 -4 3 )))

then the set of numbers (( 0 0 3 -1 -1 -1 -4 3 )) can be thought of as uniquely
characterizing the braid. It is this property that is used to rapidly determine equality
of braids (Dehornoy, 2008). (The loop b*loop(5) is plotted in Figure 4(b).) The
same loop coordinates for the braid can be obtained without creating an intermediate
loop with

>> loopcoords (b)

ans = (C 0 O 3 -1 -1 -1 -4 3 ))
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Lecture 29: Mix-norms*

1 Norms

In this lecture we define a measure of mixing that does not necessarily require diffusion to
measure the amount of homogenization that occurs during the mixing process. Recall the
advection-diffusion equation

0
gt +u- Vo= rV?, (1)

where 6 is a concentration field in a finite domain €2, with no-net-flux boundary conditions.
We assume without loss of generality that

/QGdQ:O, (2)

and define the L?-norm, or variance, as
o1 = [ & ag. 3)
Q
Recall from Lecture 1 that the variance evolves according to
d o 2
1012 = —2&[ V02, (4)

and decays in time as the system mixes. The variance indicates the extent to which the
concentration has homogenized and is thus a good measure of the amount of mixing that
has occurred. However, the variance requires knowledge of small scales in 6, which we are
not necessarily interested in. A measure of how well-mixed the concentration is does not
necessarily require knowledge of how much homogenization has occurred due to diffusion at
small scales. This is more in keeping with the definition of mixing in the sense of ergodic
theory [2]. In this regard, we proceed to consider the pure advection equation
00

5 tu vI=0. (5)

Note that in this case equation (4) predicts that the variance satisfies

d
0l =o. (6)

“Notes by Sam Pegler and Woosok Moon of lectures delivered at the 2010 Woods Hole Summer Program
in Geophysical Fluid Dynamics.
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and cannot therefore be used as a measure of mixing.

The advection equation (5) takes us closer to the ergodic sense of mixing in which we
think of the advection due to the velocity field as a time-dependent operator S* : 0 —
that moves an initial patch of dye according to

Oo(x) — O(x,t) = S'0p(x). (7)
If we consider a region A of uniform concentration defined by

1 ifxeA,
0 otherwise,

to(e) = { (®)

then the volume of the patch
Vol[f(z,t)] = Vol(A), 9)

remains constant in time by incompressibility. We can associate the volume of the patch
with the Lebesgue measure and, because of (9), S? is measure-preserving.
We define mixing in the sense of ergodic theory by

Jim Vol[AN SH(B)] = Vol(A)Vol(B), (10)

for all patches A, B € Q. This definition follows our intuition for what good mixing is.
Referring to figure 1, when the system is well-mixed the intersection of A and S!B is
proportional to both Vol(A4) and Vol(B). Thus, if the condition (10) holds then S* must
spread any initial patch throughout the domain. This condition is referred to as strong
mixing and can be shown to imply ergodicity.
The intersection of the advected patch B with the reference patch A is analogous to
projection onto L? functions. This motivates the following weak convergence condition
lim (6(x,t),g9) =0, (11)

t—o00

S'B

Figure 1: An advected patch S!B that has undergone strong mixing. At late times the
patch covers an arbitrary reference patch A.
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for all functions g € L?(2), where the inner product is defined by

(f.9) = /Q f(@)g() ag, (12)

and f € L*(Q) if [ |f]|* dQ < co. Weak convergence is equivalent to mixing as a conse-
quence of the Riemann Lebesgue lemma. The equivalent conditions (10) and (11) require
computing over all patches A or functions g, respectively. Thus, neither of these conditions
is useful in practice. However, we proceed to describe a theorem that shows there is a
simpler way to determine whether or not weak convergence is satisfied.

Mathew, Mezic and Petzold [5] introduced the mix-norm, which for mean-zero functions
is equivalent to

1611 gr-1/2 2= V71202 (13)
Doering and Thiffeault [1] and Lin, Thiffeault and Doering [3] generalized the mix-norm to
101l gra := V90112, ¢ <0, (14)

which is a negative homogeneous Sobolev norm. This norm can be interpreted for negative
q via eigenfunctions of the Laplacian operator. For example, in a periodic domain, we have

1611, = > 1K1k, (15)
k
from which we see that, for ¢ < 0, H@H% smooths @ before taking the L2 norm. The theorem
lim [|f]|;0 =0, ¢<0 <= @ converges weakly to 0, (16)
t—o00
100 I f f : :

].07 IRREDDORED : : : Ll

---[1ll2/1/6ol2

....... 191, -3 /10l
by Mathew et. al.
----- 1611 5-2 /160l ;-3

10 "7 — 16| —1/fo]| -1

0 0.2 0.4 0.6 0.8 1

Figure 2: Comparison of the mix-norms for a flow optimized using the separate methods of
optimal control and optimal instantaneous decay. Figure from Lin et al. [3].
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Figure 3: Evolution of the concentration field for the flow optimized in the case ¢ = —1 as
computed by Lin et al. [3].

due to Mathew, Mezic and Petzold [5] and Doering, Lin and Thiffeault [3] shows that we
can track any mix-norm to determine whether a system is mixing (in the weak sense). The
existence of this quadratic norm facilitates optimization of the velocity field to achieve good
mixing. Mathew, Mezic, Grivopoulos, Vaidya and Petzold [4] have used optimal control
to optimize the decay of the ¢ = —1/2 mix-norm. Lin, Doering and Thiffeault [3] have
optimized the instantaneous decay rate of the ¢ = —1 norm using the method of steepest
descent, which is easier to compute numerically but yields suboptimal, but nevertheless
very effective, stirring velocity fields. A comparison of the methods for optimized mixing is
shown in figure 2. The solid line decays faster, but this is merely because the H~! cannot
be compared directly with /2. The corresponding evolution of the concentration field
for the case ¢ = —1 from Lin et al. [3] is shown in figure 3.
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Lecture 30: Mixing in the presence of sources and sinks*

1 Sources and Sinks

Consider the situation with a sources-sink term s(a,t)

b

0 +u - VO = kV20 + 5 (x,1), (1)
V-u=0.

For simplicity, assume that [, s(a,#)d = 0. Otherwise, we can subtract the mean of 6. It
is convenient to think of sources and sinks as hot and cold regions.

Let us also assume that our sources and sinks are time-independent. Then, the system
eventually achieves a steady state f(x) that satisfies

u -Vl = rkV30 +s. (2)
We define the operator
L=u -V —kV? (3)
so that (2) can be written
L0 = s. (4)
The steady solution is then
6=L"1s (5)

where the mean-zero condition on 6 makes this unique. Note that £ # 0 is needed to
achieve a steady state. So, assuming the system has reached a steady-state, we have to
determine how we measure the quality of mixing. One of the possible ways is to look at
the norms ||0|| z,, where ¢ = 0 represents standard derivation. But we have to decide what
we will compare to. One possibility is ||6|| g4 /|5l 74- This ratio is a reasonable choice, but
has units of inverse time. It is preferable to use a dimensionless quantity for measuring the
quality of mixing. In this spirit, we define mizing enhancement factors:

1l .

T8l

where 0 is the purely-diffusive solution which satisfies

L0 =s.
“Notes by Sam Pegler and Woosok Moon of lectures delivered at the 2010 Woods Hole Summer Program
in Geophysical Fluid Dynamics.

220



Jean-Luc Thiffeault

Figure 1: Sources and sinks: CO in the atmosphere. Red corresponds to high levels of CO
(450 parts per billion) and blue to low levels (50 ppb). Note the immense clouds due to
grassland and forest fires in Africa and South America. (Photo NASA/NCAR/CSA.)

Here, £L = —xV? is the pure diffusive operator, so 6 can be interpreted as the solution
in the absence of stirring. Since ||0||;, is usually decreased by stirring, £, measures the
enhancement over the pure-diffusion state. Several properties are given in Doering and
Thiffeault [1], Shaw, Thiffeault and Doering [3], and Thiffeault and Pavliotis [5]; see also
the review by Thiffeault [4]. We interpret a large ¢, as ‘good stirring,” since it in that case
the norm is decreased by stirring.

A natural question is whether €, can ever be less than unity, that is, if stirring can ever
be worse than not stirring. Let’s consider

A
1982

€1
Here,
0=L"1s= (—KVQ)_l s=—k"V 2= V0=—k"1V1s
Also, from L0 = s, we can multiply # on both sides and take spatial average and then get
(00) = (s6)
where (-) = [, - d2. We expand the left-hand side:
(0L0) = (fu-VO) — K <0V29>
= (V- (u6?/2)) —  (0V?0)
= —r(0V°0) = K (|VO]*).
As for the right-hand side,it can be written as

() = (67 - V7is) = = (V0 Vi) = 5 (V6 VO),
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where we used
0=L"1s= (f&VQ)il s= k" IV 2s
= Vlh=r1vis,

Recall that (|V6[*) = H9||§{1 Therefore,

1013 = (V6 - V) < |V6]21Val2 = 6]l 1] 51 -
We conclude that B
10l < 101 = e < 1. (7)

This is somewhat counter-intuitive because gradients are usually increased by stirring. How-
ever, the gradients in a steady-state have been affected by diffusion.

(b)

00 1A
0

1000
1906
©

X X

Figure 2: The pattern of velocity field and source for the ‘unmixing’ flow and source distri-
bution (8).

What about g, for values of ¢ other than 1?7 We tried and failed to prove ¢, < 1, simply
because it is not true. Following a challenge by Charlie Doering at a workshop at the IMA
in 2010, Jeff Weiss came up with something like:

u = (2sinx cos 2y, — cosx sin 2y) , (8a)
s = (cosz — 1) siny. (8b)

This velocity field manages to concentrate the source and sink distribution more than dif-
fusion alone. Streamlines of u and level sets of s are shown in figure 2. In this example, we
could get g9 ~ 0.978 and €_; ~ 0.945, which are slightly less than 1. It is an open problem
to characterize such ‘unmixing’ flows.
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2 Optimization

We defined the mixing enhancement factors based on Sobolev norms. Large mixing en-
hancement factor indicates good mixing for a given source and sink pattern. Omne of the
relevant questions in this step is what kinds of flow give the largest g4 given source and sink
distribution s(x).

Here is a simple but surprising example. The source and sink distribution is given
by s(x) = sinz with periodic boundary conditions on #. The optimal solution for this
source and sink distribution is w = UZ, which is constant flow from the hot region to the
cold region [2,3,5] (figure 3). This example demonstrates that, with body sources, the best
stirring often has more to do with transport than with creation of small scales.

More generally, we have to solve the optimization problem numerically. Figure 4 shows
contours of the streamfunction for the optimal stirring velocity (lines) for a source s(x) =
sinz siny, for ¢ = 0 and ¢ = —1. The optimal velocity fields are identical for the two values
of ¢, because the source is an eigenfunction of the Laplacian.

Contrast this to the optimal solutions in figure 5, for the source distribution s(x) =
cos x cosy + cos 3y + (1/4) sin 3y. This source is not an eigenfunction of the Laplacian, and
we expect optimal solutions to depend on ¢q. Comparing the left (¢ = 0) and right (¢ = —1)
figures, we see this is indeed the case, though the difference in this case is fairly small.

Finally, given an optimization code, it is simple to turn it around to anti-optimize, that
is, find the worst stirring velocity for a given source distribution. Figure 6 shows this for
the source (8b) and ¢ = 0. Note how the velocity field seems to work to concentrate the
source sink, thereby increasing the variance. The efficiency for this anti-optimal solution
is g = 0.9736, which is not much lower than Jeff Weiss’s unoptimized flow (8a), which
had g9 ~ 0.978.

To reproduce the 5 figures in this section run the program example(n) in the Appendix,
where n is a number from 1 to 5.

Figure 3: The optimal velocity field (solid arrows) for the source distribution s(x) = sin x.
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Figure 4: Optimal stirring velocity field (solid lines) for the source s(x) = sin x siny (colored

background), for ¢ = 0 (left) and ¢ = —1 (right).
both cases because the source is an eigenfunction of the Laplacian.
example(1) and example(2) in the Appendix.)
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Figure 5: Optimal stirring velocity field (solid lines) for the source cosx cosy + cos3y +
(1/4) sin 3y (colored background), for ¢ = 0 (left) and ¢ = —1 (right). The optimal velocities
are different since the source is not an eigenfunction of the Laplacian. (Matlab programs

example(3) and example(4) in the Appendix.)
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Figure 6: Optimal ‘unmixing’ solution for the source (cosx — %) siny, with mixing effi-

ciency g = 0.9736. (Matlab program example(5) in the Appendix.)

Appendix: Matlab code

1 Program file example.m

function example(ex)
if nargin < 1, ex = 1; end

N = 11; % Number of gridpoints

L = 1; k1 = 2xpi/L; % Physical size of domain
x = L*(0:N-1)/N; y = x’; [xx,yy] = meshgrid(x,y);
switch ex

% Examples 1 and 2 use the same cellular source, for gq=0 and g=-1.
% Since the source is an eigenfuntion of the Laplacian, the optimal
% flow is the same for g=-1.

case {1,2}

src = cos(kl*xx).*cos(kl*yy) * 2/L;

psi0 = sin(k1lx*xx).*sin(klxyy) * 1/sqrt(2)/pi;

kappa = .1; q = 1-ex;
% Examples 3 and 4 use the same two-mode source, for gq=0 and g=-1.
% Since the source is not an eigenfuntion of the Laplacian, the optimal
% flow is different for q=-1.

case {3,4%}

src = (cos(kl*xx).*cos(kl*yy)+cos(3xklxyy)+.25%sin(3xkixyy)) * 4*sqrt(2)/5/L;
psi0 = sin(kilx*xx).*sin(klxyy) * 1/sqrt(2)/pi;

kappa = .1; q = 3-ex;

case 5

% Unmixing solution

src = (cos(kl*xx) - .5).*sin(klxyy) * 2+sqrt(2/3)/L;

psi0 = sin(k1l*xx).*sin(2*klxyy) * 1/sqrt(5)/pi;

scalefac = -N"2; Y Set scale factor negative to minimize instead
kappa = 1/4; q = 0;
end

if “exist(’scalefac’), scalefac = N°2; end

[psi,Effql = velopt(psiO,src,kappa,q,L,scalefac);
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fprintf(1,’Eff_%d=%f\n’,q,Effq)

figure(1)

Nplot = 64; 7 Interpolate solution for plotting

psir = refine2(psi,Nplot); srcr = refine2(src,Nplot);
xplot = L*(0:Nplot-1)/Nplot; yplot = xplot’;
imagesc(xplot,yplot,srcr), colorbar, hold on

contour (xplot,yplot,psir,10, ’EdgeColor’, ’k’), hold off

2 Program file velopt.m

function [psi,Effq] = velopt(psiO,src,kappa,q,L,scalefac)

% Problem parameters for Matlab’s optimizer fmincon.

psi0O = psiO(:); problem.x0 = psiO(2:end);

problem.objective = @(x) normHq2(x,src,kappa,q,L,scalefac);

problem.nonlcon = @(x) nonlcon(x,src,kappa,q,L,scalefac);

problem.solver = ’fmincon’;

problem.options = optimset(’Display’,’iter’,’TolFun’,le-10,...
’GradObj’,’on’,’GradConstr’,’on’, ...
’algorithm’,’interior-point’);

[psi,Hq2] = fmincon(problem);

% Mixing efficiency: call normHq2 with no flow to get pure-conduction solution.
Effq = sqrt(normHq2(zeros(size(psi)),src,kappa,q,L,scalefac) / Hq2);

psi = reshape([0;psil,size(src)); % Convert psi back into a square grid

%

function [varargout] = normHq2(psi,src,kappa,q,L,scalefac)

N = size(src,1); src = src(:);

% 2D Differentiation matrices and negative-Laplacian
[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); mlap = -(Dxx+Dyy);
if q "= 0 & q "= -1, error(’This code only supports q = 0 or -1.°); end

psi = [0;psil; ux = Dy#*psi; uy = -Dx*psi;
ugradop = diag(sparse(ux))*Dx + diag(sparse(uy))*Dy;

if q ==

Aop2 = (-ugradop + kappa*mlap) ;
elseif q == -1

Aop2 = mlap#*(-ugradop + kappa*mlap) ;
end

Aopl = (ugradop + kappa*mlap)*Aop2;

% Solve for chi, dropping corner point to fix normalisation.
chi = [0; Aopl(2:end,2:end) \ src(2:end)];

theta = Aop2#*chi;

% The squared H"q norm of theta.
varargout{1} = L"2*sum(theta."2)/N"2 * scalefac;

if nargout > 1
% Gradient of squared-norm Hqg2.
gradHg2 = 2*((Dx*theta).*(Dyxchi) - (Dy*theta).*(Dx*chi));
varargout{2} = gradHq2(2:end) / N"2 * scalefac;

end

%

function [c,ceq,gc,gceq]l = nonlcon(psi,src,kappa,q,L,scalefac)
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[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); % 2D Differentiation matrices
U2 = L"2*(sum((Dx*psi) .2 + (Dy*psi)."2)/N"2);
ceq(1) = (U2-1) * scalefac;

if nargout > 2

% Gradient of constraints

mlappsi = -(Dxx+Dyy)*psij;

gceq(:,1) = 2*mlappsi(2:end) / N"2 * scalefac;
end
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Lecture 34: Permutations generated by Brownian
particles

1 Brownian particles on the real line

Consider n Brownian particles on the real line, with diffusion constant D). The
position of each particle is denoted z(t). The position of a walker at time ¢ has a
probability density function p(x,t;2’, 0) that satisfies the heat equation,

Op — DA = d(z — 2') 8(1). (1)

where 2’ is the initial position of the particle, with solution

1 /
p(x, t;2',0) = ez )2/4Dt, t>0. (2)

vVAar Dt

Assume the initial ordering
21(0) < 22(0) < -+ < z,(0), (3)

and define the probability P(t,s) that the particles are ordered according to the
permutation s € S, the symmetric group on n symbols; thus,

P(0.5) = {1’ s =id ()

0, otherwise.

At later times, we have

P(t,s™") —/ d$3(1)/ dxs(g)"-/ dzymy [ ] P(@sr). i 251 (0),0) . (5)

—00 Ts(1) Ts(n-1) k=1

That is, the particle s(1) is to the left of all the others, s(2) is to the right of s(1)
but to the left of the rest, etc.
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Now let
Y *— l‘s(k)/v 4Dt, 8k(t) — -Ts(k) (O)/ 4Dt, (6)

from which (5) becomes

P(t,s™") :/ dy1/ dy2-~/ dyy Hﬁe_(y’“_g’“(t))Z- (7)
—0 Y1 Yn—1

k=1

For large time, we have €, (t) < 1, and

OV (14 2eyr) + 0(52>' (8)

1 %) %) %) R ) 1
W/_oo dyl/yl dyz---/yl dy e Zk:“’kza- (9)

(This must work for any PDF with the right symmetry, so must be the fraction of
volume occupied by an n-dimensional ‘wedge.”)

We must have

Define
1 0o 00 oo s )
Lo = —=7 dy, dys - - dy, ye e~ &h=1%, (10)
n —o0 Y1 Yn—1
By changing order of integration and replacing yx by —¥n_x+1, we can show I, , =
—Innry1- Some specific values are Ioy = —Ilyo = 1/(2V27), I31 = —I33 =

1/(4v/2m), I35 = 0. Challenge: compute this in general (must be known. .. ).
In any case, the time-asymptotic solution is

P(ta 3_1) = Z 2€kIn,k + 0(82)7 (11)
which, from (6), shows a rather slow approach to the uniform distribution as 1/+v/%.

2 Brownian particles on the unit interval

Now we turn to Brownian particles on the interval [0, 1], with reflecting boundary
conditions at the endpoints (Figure 1). The same heat equation (2) is satisfied by the
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00 1000 2000 3000 4000 5000

Figure 1: Five Brownian particles on the interval [0, 1], with reflecting boundary
conditions.

probability density (Green’s function), but now the reflecting (Neumann) boundary
conditions lead to

< —(z—a'~2k)? /4Dt | e—(m+a:’—2k)2/4Dt> L t>0, (12

plx, t;2',0) = ZW

which can also be written

p(z,t;2',0) = Z cos(mkz) cos(mka') e~ (TR t>0. (13)

k=—o0

The same formula (5) applies for P(t,s1). Let’s take n = 2; then after some integrals
_+Z 7T2 k‘2

(>~ means k # 0 and £ # 0.) The slowest exponential has k% + ¢* = 1; hence, we
have

[,
) ) cos(mka1y(0)) cos(mhkayay(0)) e™™ FHODPE - (14)

P(t,s7) = 4] < O] (15)

C= Z
k;éé

as long as C'is finite. (Challenge: does this diverge? If so need to refine the analysis.)
In any case it appears to be the right bound: see Fig. 2. Is this a cut-off? How
do we show this?

where
_ )k+€)
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Figure 2: Variation distance as a function of time for 2 particles, with D =5 x 10~°

(100,000 realizations). The dashed line is proportional to e

—m2Dt
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Lecture 35: Random braids and winding numbers

1 Random walks on Cayley graphs
A physical braid is a collection of strands that are anchored at both ends.
o,0; = o0j0; for |i—j|>1; o,0j0; = oo;0; for |i—j|=1. (1)

A convenient representation of a group is given by its Cayley graph. Figure 2(a)
shows part of the Cayley graph for Bs: the identity is at the center, and moving
by one step north, south, east, or west in the graph corresponds to multiplication
by o1, o7, 02, or 05", Tespectively. At first glance, the Cayley graph would appear
to be a tree, but the braid group relations (1) imply that we sometimes get the same
element along different branches, or even return to the identity (since, for example,
01090105 ‘07 o5 = €). The graph thus has a very complicated topology.

A random walk on a Cayley graph is defined by starting from some group element
and repeatedly moving in a random direction, typically with equal probability, to

generate a random sequence of generators. We can then ask typical questions, such

W\lekC {;'lj'{ /

\
”LM," ’& 0{ ]

Sun ’rot

Figure 1: Magnetic flux tubes.
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Figure 2: (a) Cayley graph for Bs. (b) Cayley graph for Bs.
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2,09 z, (Y

\ 1t

(a) (b)

Figure 3: (a) Two Brownian particles winding around each other. (b) Lifted trajec-
tories, with ‘time’ running vertically.

as the probability of recurrence, or if the walk is not recurrent we can ask about the
asymptotic distance from our starting point. Random walks on Cayley graphs are
also used to generate braids to study polymer entanglement, and their ‘complexity’ is
gauged by the asymptotic behavior of a knot polynomial associated with the closure
of the braid (Nechaev, 1996).

By far the simplest graph, though, is that of Bs, depicted in Figure 2(b). Here
we can only twist the two strands in one direction or the other, so the braid after N
steps in the graph is o*, where m is a random variable with binomial distribution

N
Pr(m) = ((N +m)/2

and Py(m) = 0 if m + N is odd. Here p is the probability of moving right in the

graph, and (1 —p) is the probability of moving left. The mean of m is N(p — %), and

2
its variance is Np(1 —p). For large N, Py(m) will converge to a normal distribution.

> p(N+m)/2(1 _p)(N—m)/Q’ m + N even, (2)

2 Braid of two Brownian particles

Let us formulate a somewhat more ‘physical’ version of the random walk on B,
discussed at the end of the previous section. Consider two Brownian particles on the
plane, z1(t) and 25(t), each with diffusion constant D (Figure 3(a)). We can regard
these as a braid with two strands by plotting the trajectories with time as a vertical
axis, as in Figure 3(b). How is the resulting random braid distributed for large time?

For two strands all that matters is the winding angle of one particle around the
other. We consider the vector z(t) = 21(t) — 22(t), which behaves like a Brownian
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()

Figure 4: (a) A single Brownian particle winding around the origin. (b) A particle
starting at zp and ending at z in a wedge-shaped domain. (c) Particle in a disk of
radius R, with reflecting boundaries.

particle of diffusivity 2D. We define § € (—o00,00) to be the total winding angle
of z(t) around the origin. The geometrical relationship between m from Section 1
and 0 is 6§ = mm, though their distributions are very different. The time-asymptotic
distribution of @ is given by the classical Spitzer formula (Spitzer, 1958),

1 1 20
S — = 4Dt/rg > 1 3
(z) ml+ 22’ . log(4Dt/r3)’ /o> 1, )
where o = |2(0)|?. This result can be derived from conformal invariance of the

Brownian process (Drossel & Kardar, 1996), or by solving the heat equation in polar
coordinates in the interior of a wedge-shaped domain (Fig. 4(b)), then taking the
wedge angle to infinity (Edwards, 1967; Redner, 2001). Going around the origin
then corresponds to moving to a different Riemann sheet. See Appendix A for a
derivation.

Equation 3 is a Cauchy—Lorentz distribution, which has mean zero but an infinite
variance (all even moments diverge; the odd moments are zero by symmetry if the
integrals are interpreted as principal values). This peculiarity can be traced to the
‘scale-free’ nature of a Brownian process: since the particle motion is rough at all
scales, if it comes near the origin it can wind an infinite number of times around the
origin in finite time.

A straightforward numerical simulation of a Brownian particle yields the winding
angle distribution in Fig. 6(b). Also shown is the Spitzer formula (3); the agreement
is good for small 6, but the tails are off by a wide margin. The discrepancy is due
to the numerical difficulty of recreating a true Brownian process: we cannot have an
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unbounded number of windings in a small time. Thus, the observed distribution has
exponential tails rather than a power-law. Bélisle (1989) derived the distribution for
a small (but finite) step size:

P(z) = Lsech (7z/2), 4Dt/rg > 1, (4)

2
with z defined as in (3). Notice that the step size does not enter the formula (for
large time). The same distribution applies to a Brownian process winding around
a small disk centered on the origin, even as the disk radius is taken to zero. Most
regularizations that prevent infinite winding around the origin will turn (3) into (4).
The latter is this the proper ‘physical’ distribution, since physical entities such as
magnetic field lines are not true Brownian processes.

A Derivation of Spitzer’s law

Consider the two-dimensional diffusion equation

ov 1
E—DAUZ T—O(S(T—To) 5(0 —6y) (1) (5)

for the Green’s function v(r, 6, t). This equation has Laplace transform

55— DAG = - 8(r — 10) 5(0 — 0y) (6)

To

where v(r, 0, s) is the Laplace transform of v(r, ,t). The free space Green’s function
is

1 o2
v(z,y,t|z0,0,0) = D R /abt (7)
with Laplace transform
N 1
v(x,y, 5|20, y0) = oD Ko(Rq) (8)

where K is a modified Bessel function of the second kind, and
q=+/s/D, R = (x—20)*+ (y —w0)> =71+ 715 — 2rrgcos(d — 6y).  (9)

We wish to find the Green’s function in an infinite domain, but over multiple
Riemann sheets. We write v = u+w and solve for w, which satisfies the homogeneous
equation

%—Z] — DAw =0, or sw— DAw =0, (10)
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and vanishes at ¢ = 0. Assume the separable form

w = R(r)T(6) (11)
Then using
Pw 10w 10w
A= —+-——+ — 12
R R R N TE (12)
we find TR RT
Aw=TR" + = *RT (13)
or QRII RI 7’//
r r 9 o 9
_ - — 14
R (14)
The angular part is
T"+ VT =0, (15)
with independent solutions
T =cosvf and Bsinvb, (16)
whilst the radial part satisfies Bessel's equation
"R"+rR — (¢r* + v*)R = 0. (17)
The solutions are
R=K,(qr) and I,(qr). (18)

The solution that is regular at the origin, vanishes at oo, and is continuous at r = r
is

R =K,(qrs) L(qr<) (19)

where r~ = r for v > ro, r~ = rg for r < ro (vice versa for r.). Now use this
formula from Carslaw & Jaeger (1959, eq. 14.14(1)):

2 cosv(m — 0+ 6)

sin v

Ko(Rq) = P/ K, (qr)I,(qro)idv, r > ro, (20)

—ioco

where P denotes the principal value at the origin, which suggests we write w as

1 ioc
w = 22D P/ (A(v) cosvl + B(v)sinvl) K, (qr)1,(qro) idv (21)
m —ioo
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and choose A(v) and B(v) to satisfy the boundary conditions. The Green’s func-
tion v = u + w is then
1 ico

V=55 P (A(y) cosvl + B(v)sinvb +

cosv(m — 6+ 6p)
sin v

) K, (qr)1,(qro)idv.

(22)
Let’s try to satisfy the zero condition at 6 = 0 and 6 = v, as in C&J. At 6 = ~,

27TD / ( ) cosvy + B(v) sin vy

cosv(m —ry

—ioco

i 00))Ky(q7’)[,,(q7'0) idv=0 (23)

sin v
SO ‘
B(v) = _A(V) sin v co's vy —}—.cos v(m — v +6p) | o)
sin v sin vy
At 6 =0,
- 27rD / ( + = SDI(HW; 00)) K, (qr)1,(qro) idv = 0. (25)

We need to be careful here: solving for A(r) to make the expression in parentheses
vanish is possible but leads to w = —u, so v = 0. What we have to to is to choose A(v)
to remove the pole in the denominator when 6 = 0:

cosv(m — Bp)

Aly) = — 26
v) sin v (26)
After combining those two expressions, we find
- 1 [ sinv(y — ) sin v, )
= —— K,(qr)1, dv. 2
] s (4T {aro) i dv 27)

where we removed the principal value since the integral is now regular at v = 0. This
is the 2D version of 14.14(3) in C&J. We evaluate the integral by closing the contour
on the right and summing the residues. We obtain the residues from

i y S —0 sin v.0
qmu‘(y ) _sm Zk('Y ) __ % , v near v =mk/7, (28)
sinvy (DR —w) A -
which leads to
2 [e.@]
U= _D Z () sin(vibo) Ko, (qr) 10, (qr0), ve = mk/7, (29)
k=1
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valid for r > rg and 0 < 6 <. We can use the symmetry of the Green’s function to

write
o0

0=—Y sin(wb)sin(vpby)K,, (qr=)1, (qr<), 0<0<n, (30)
k=1

valid for 0 < r < co. Using formula 22 from Appendix V of C&J, we can invert the
Laplace transform to obtain finally

1 o«
v = D o~ (77 478)/4Dt Zsin(ka) sin(v6p) L,,(%) 0<6<n. (31)
k=1

We can center the wedge so that it extends between —v/2 < 8 < /2 by replacing 6
by 6 + v/2:

1 2,2 - - T
v (§ E SIN(V,0) SIn( V0 E COS( ViU ) COS( V10 Ve ,
’)/Dt (k even k odd 2Dt
(32)

valid for —y/2 < 6,6y < /2. This may appear more cumbersome but now we can
take the limit 7 — oo while keeping 6 and 6, finite. The difference between two
successive v, is

dvg = Vggo — v = 27 /7. (33)

Thus, in the limit as v — oo,

1 = : T
V=5 e(TQJ””g)/‘“jt/0 (sin(v0) sin(vby) + cos(v0) cos(vby)) L’<2_Dot> dv. (34)
or . -
24,2 rr
V= 5 e +T0)/4Dt/0 cos (6 — 6) IV(Q_DOt> dv. (35)
This form is equivalent to (see Duffy (2001, p. 215))
1 [ o 2
v = —/ cosv(0 — 6y) / ad,(ar)J,(ary) e P dadv. (36)
T Jo 0

At t = 0 we can use (see http://functions.wolfram.com/Bessel—TypeFunctions/BesselJ/21/02/02/)

/00 ad,(ar)J,(ary) da = %5(7" —70), %/00 cosv(0 —0y) dv = (0 — 6y) (37)
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to explicitly recover the delta-function initial condition from (36). We can also show
that the normalization is preserved. Reversing the role of a and r, v and 6 in (37),
we have

/000 rdo(ar) dr = /000 rdo(ar)Jo(Or) dr = é&(a), (38)
and ~
%/ cosv(f —0y)do = 26(v), (39)

but note that [~ 6(r) dv = 1/2, so the factor of 2 in (39) cancels out upon integra-
tion. Together these give

/ / rodfdr = / / arJy(ar)Jo(are) e Pt da dr
0 Jooo o Jo

:/ () Jo(arg) e Pt da = 1.
0

Let’s rewrite the PDF (35) in terms of the scaled variables x = r/2v/Dt, y =
ro/2V Dt, and write 8 for  — 6, without loss of generality:

2 oo
p=—e @) / cos v 1,(2xy) dv. (40)
0

™

Since 2zy is small, we use the asymptotic form

1
I(z) ~ —— (z/2)" 41
@)~ gy @/ (a1)
and the integral
o 1
/ cosyeﬁ”dy:—Lgo, 0<é<l (42)
0 02 + log= &
to obtain
p 2 log(zy) e ("), (43)

T 62 + log?(xy)
The most interesting thing to us is the total probability of reaching a certain

angle # for any x, so we integrate over = using logz < logy, since y is very small
whereas z varies from 0 to co. Thus,

> 1 —logy To
rpdr ~ — ———5—, = < 1, 44
/0 b T 62 4+1og’y Y 2/ Dt (44)
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10° 10°
y = 5e-01 y=1e-01
a 107 a 107
107 107
-20 0 20 -20 0 20
0 0
10° 10°
y=1e-02 y=1e-04
: 10_2 i} 10_2 /\
107 107
-20 0 20 -20 0 20
0 0

Figure 5: The Cauchy—Lorentz distribution (44) for various y values.
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P(6)

Figure 6: Spitzer distribution compared to numerical simulation.

where we also approximated eV ~ 1, to obtain a consistent normalization in 6.

The PDF (44) is a Cauchy—Lorentz distribution in 6 (see Fig. 5). This is the
probability of finding the particle at 6 at time ¢, given that it started at § = 0 and
radius rg. The distribution is singular at y = 0: if the particle starts at the origin,
then it’s impossible to define its Riemann sheet. The form (44) compares favorably
with numerical simulations (Fig. 6(a)), though there are problems with the tails, as
is obvious in Fig. 6(b).
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