
Lecture 35: Random braids and winding numbers

1 Random walks on Cayley graphs

A physical braid is a collection of strands that are anchored at both ends.

σiσj = σjσi for |i− j| > 1; σiσjσi = σjσiσj for |i− j| = 1. (1)

A convenient representation of a group is given by its Cayley graph. Figure 2(a)
shows part of the Cayley graph for B3: the identity is at the center, and moving
by one step north, south, east, or west in the graph corresponds to multiplication
by σ1, σ

−1
1 , σ2, or σ−12 , respectively. At first glance, the Cayley graph would appear

to be a tree, but the braid group relations (1) imply that we sometimes get the same
element along different branches, or even return to the identity (since, for example,
σ1σ2σ1σ

−1
2 σ−11 σ−12 = e). The graph thus has a very complicated topology.

A random walk on a Cayley graph is defined by starting from some group element
and repeatedly moving in a random direction, typically with equal probability, to
generate a random sequence of generators. We can then ask typical questions, such

Figure 1: Magnetic flux tubes.
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Figure 2: (a) Cayley graph for B3. (b) Cayley graph for B2.
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Figure 3: (a) Two Brownian particles winding around each other. (b) Lifted trajec-
tories, with ‘time’ running vertically.

as the probability of recurrence, or if the walk is not recurrent we can ask about the
asymptotic distance from our starting point. Random walks on Cayley graphs are
also used to generate braids to study polymer entanglement, and their ‘complexity’ is
gauged by the asymptotic behavior of a knot polynomial associated with the closure
of the braid (Nechaev, 1996).

By far the simplest graph, though, is that of B2, depicted in Figure 2(b). Here
we can only twist the two strands in one direction or the other, so the braid after N
steps in the graph is σm1 , where m is a random variable with binomial distribution

PN(m) =

(
N

(N +m)/2

)
p(N+m)/2(1− p)(N−m)/2, m+N even, (2)

and PN(m) = 0 if m + N is odd. Here p is the probability of moving right in the
graph, and (1− p) is the probability of moving left. The mean of m is N(p− 1

2
), and

its variance is Np(1−p). For large N , PN(m) will converge to a normal distribution.

2 Braid of two Brownian particles

Let us formulate a somewhat more ‘physical’ version of the random walk on B2

discussed at the end of the previous section. Consider two Brownian particles on the
plane, z1(t) and z2(t), each with diffusion constant D (Figure 3(a)). We can regard
these as a braid with two strands by plotting the trajectories with time as a vertical
axis, as in Figure 3(b). How is the resulting random braid distributed for large time?

For two strands all that matters is the winding angle of one particle around the
other. We consider the vector z(t) = z1(t) − z2(t), which behaves like a Brownian
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Figure 4: (a) A single Brownian particle winding around the origin. (b) A particle
starting at z0 and ending at z in a wedge-shaped domain. (c) Particle in a disk of
radius R, with reflecting boundaries.

particle of diffusivity 2D. We define θ ∈ (−∞,∞) to be the total winding angle
of z(t) around the origin. The geometrical relationship between m from Section 1
and θ is θ = πm, though their distributions are very different. The time-asymptotic
distribution of θ is given by the classical Spitzer formula (Spitzer, 1958),

P (x) =
1

π

1

1 + x2
, x :=

2θ

log(4Dt/r20)
, 4Dt/r20 � 1, (3)

where r0 = |z(0)|2. This result can be derived from conformal invariance of the
Brownian process (Drossel & Kardar, 1996), or by solving the heat equation in polar
coordinates in the interior of a wedge-shaped domain (Fig. 4(b)), then taking the
wedge angle to infinity (Edwards, 1967; Redner, 2001). Going around the origin
then corresponds to moving to a different Riemann sheet. See Appendix A for a
derivation.

Equation 3 is a Cauchy–Lorentz distribution, which has mean zero but an infinite
variance (all even moments diverge; the odd moments are zero by symmetry if the
integrals are interpreted as principal values). This peculiarity can be traced to the
‘scale-free’ nature of a Brownian process: since the particle motion is rough at all
scales, if it comes near the origin it can wind an infinite number of times around the
origin in finite time.

A straightforward numerical simulation of a Brownian particle yields the winding
angle distribution in Fig. 6(b). Also shown is the Spitzer formula (3); the agreement
is good for small θ, but the tails are off by a wide margin. The discrepancy is due
to the numerical difficulty of recreating a true Brownian process: we cannot have an



unbounded number of windings in a small time. Thus, the observed distribution has
exponential tails rather than a power-law. Bélisle (1989) derived the distribution for
a small (but finite) step size:

P (x) = 1
2

sech (πx/2) , 4Dt/r20 � 1, (4)

with x defined as in (3). Notice that the step size does not enter the formula (for
large time). The same distribution applies to a Brownian process winding around
a small disk centered on the origin, even as the disk radius is taken to zero. Most
regularizations that prevent infinite winding around the origin will turn (3) into (4).
The latter is this the proper ‘physical’ distribution, since physical entities such as
magnetic field lines are not true Brownian processes.

A Derivation of Spitzer’s law

Consider the two-dimensional diffusion equation

∂v

∂t
−D∆v =

1

r0
δ(r − r0) δ(θ − θ0) δ(t) (5)

for the Green’s function v(r, θ, t). This equation has Laplace transform

sv̄ −D∆v̄ =
1

r0
δ(r − r0) δ(θ − θ0) (6)

where v̄(r, θ, s) is the Laplace transform of v(r, θ, t). The free space Green’s function
is

v(x, y, t |x0, y0, 0) =
1

4πDt
e−R

2/4Dt (7)

with Laplace transform

v̄(x, y, s |x0, y0) =
1

2πD
K0(Rq) (8)

where K0 is a modified Bessel function of the second kind, and

q =
√
s/D, R2 = (x− x0)2 + (y − y0)2 = r2 + r20 − 2rr0 cos(θ − θ0). (9)

We wish to find the Green’s function in an infinite domain, but over multiple
Riemann sheets. We write v = u+w and solve for w, which satisfies the homogeneous
equation

∂w

∂t
−D∆w = 0, or sw̄ −D∆w̄ = 0, (10)



and vanishes at t = 0. Assume the separable form

w̄ = R(r)T (θ). (11)

Then using

∆w̄ =
∂2w̄

∂r2
+

1

r

∂w̄

∂r
+

1

r2
∂2w̄

∂θ2
(12)

we find

∆w̄ = T R′′ + T R
′

r
+
RT ′′

r2
= q2RT (13)

or
r2R′′

R
+
rR′

R
− r2q2 = −T

′′

T
= ν2. (14)

The angular part is
T ′′ + ν2T = 0, (15)

with independent solutions

T = cos νθ and B sin νθ, (16)

whilst the radial part satisfies Bessel’s equation

r2R′′ + rR′ −
(
q2r2 + ν2

)
R = 0. (17)

The solutions are
R = Kν(qr) and Iν(qr). (18)

The solution that is regular at the origin, vanishes at∞, and is continuous at r = r0
is

R = Kν(qr>) Iν(qr<) (19)

where r> = r for r > r0, r> = r0 for r < r0 (vice versa for r<). Now use this
formula from Carslaw & Jaeger (1959, eq. 14.14(1)):

K0(Rq) = P

∫ i∞

−i∞

cos ν(π − θ + θ0)

sin νπ
Kν(qr)Iν(qr0) i dν, r > r0, (20)

where P denotes the principal value at the origin, which suggests we write w̄ as

w̄ =
1

2πD
P

∫ i∞

−i∞
(A(ν) cos νθ +B(ν) sin νθ)Kν(qr)Iν(qr0) i dν (21)



and choose A(ν) and B(ν) to satisfy the boundary conditions. The Green’s func-
tion v̄ = ū+ w̄ is then

v̄ =
1

2πD
P

∫ i∞

−i∞

(
A(ν) cos νθ +B(ν) sin νθ +

cos ν(π − θ + θ0)

sin νπ

)
Kν(qr)Iν(qr0) i dν.

(22)
Let’s try to satisfy the zero condition at θ = 0 and θ = γ, as in C&J. At θ = γ,

v̄ =
1

2πD
P

∫ i∞

−i∞

(
A(ν) cos νγ +B(ν) sin νγ

+
cos ν(π − γ + θ0)

sin νπ

)
Kν(qr)Iν(qr0) i dν = 0 (23)

so

B(ν) = −A(ν) sin νπ cos νγ + cos ν(π − γ + θ0)

sin νπ sin νγ
. (24)

At θ = 0,

v̄ =
1

2πD
P

∫ i∞

−i∞

(
A(ν) +

cos ν(π + θ0)

sin νπ

)
Kν(qr)Iν(qr0) i dν = 0. (25)

We need to be careful here: solving for A(ν) to make the expression in parentheses
vanish is possible but leads to w̄ = −ū, so v̄ = 0. What we have to to is to choose A(ν)
to remove the pole in the denominator when θ = 0:

A(ν) = −cos ν(π − θ0)
sinπν

. (26)

After combining those two expressions, we find

v̄ = − 1

πD

∫ i∞

−i∞

sin ν(γ − θ) sin νθ0
sin νγ

Kν(qr)Iν(qr0) i dν. (27)

where we removed the principal value since the integral is now regular at ν = 0. This
is the 2D version of 14.14(3) in C&J. We evaluate the integral by closing the contour
on the right and summing the residues. We obtain the residues from

sin ν(γ − θ)
sin νγ

∼ sin νk(γ − θ)
(−1)kγ(ν − νk)

= − sin νkθ

γ(ν − νk)
, ν near νk = πk/γ, (28)

which leads to

v̄ =
2

γD

∞∑
k=1

sin(νkθ) sin(νkθ0)Kνk(qr)Iνk(qr0), νk = πk/γ, (29)



valid for r > r0 and 0 ≤ θ ≤ γ. We can use the symmetry of the Green’s function to
write

v̄ =
2

γD

∞∑
k=1

sin(νkθ) sin(νkθ0)Kνk(qr>)Iνk(qr<), 0 ≤ θ ≤ γ, (30)

valid for 0 < r <∞. Using formula 22 from Appendix V of C&J, we can invert the
Laplace transform to obtain finally

v =
1

γDt
e−(r

2+r20)/4Dt

∞∑
k=1

sin(νkθ) sin(νkθ0) Iνk

( rr0
2Dt

)
0 ≤ θ ≤ γ. (31)

We can center the wedge so that it extends between −γ/2 ≤ θ ≤ γ/2 by replacing θ
by θ + γ/2:

v =
1

γDt
e−(r

2+r20)/4Dt

(
∞∑

k even

sin(νkθ) sin(νkθ0) +
∞∑

k odd

cos(νkθ) cos(νkθ0)

)
Iνk

( rr0
2Dt

)
,

(32)
valid for −γ/2 ≤ θ, θ0 ≤ γ/2. This may appear more cumbersome but now we can
take the limit γ → ∞ while keeping θ and θ0 finite. The difference between two
successive νk is

dνk = νk+2 − νk = 2π/γ. (33)

Thus, in the limit as γ →∞,

v =
1

2πDt
e−(r

2+r20)/4Dt

∫ ∞
0

(sin(νθ) sin(νθ0) + cos(νθ) cos(νθ0)) Iν

( rr0
2Dt

)
dν. (34)

or

v =
1

2πDt
e−(r

2+r20)/4Dt

∫ ∞
0

cos ν(θ − θ0) Iν
( rr0

2Dt

)
dν. (35)

This form is equivalent to (see Duffy (2001, p. 215))

v =
1

π

∫ ∞
0

cos ν(θ − θ0)
∫ ∞
0

αJν(αr)Jν(αr0) e−Dα
2t dα dν. (36)

At t = 0 we can use (see http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/21/02/02/)∫ ∞
0

αJν(αr)Jν(αr0) dα =
1

r
δ(r − r0),

1

π

∫ ∞
0

cos ν(θ − θ0) dν = δ(θ − θ0) (37)

http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/21/02/02/


to explicitly recover the delta-function initial condition from (36). We can also show
that the normalization is preserved. Reversing the role of α and r, ν and θ in (37),
we have ∫ ∞

0

rJ0(αr) dr =

∫ ∞
0

rJ0(αr)J0(0r) dr =
1

α
δ(α), (38)

and
1

π

∫ ∞
−∞

cos ν(θ − θ0) dθ = 2δ(ν) , (39)

but note that
∫∞
0
δ(ν) dν = 1/2, so the factor of 2 in (39) cancels out upon integra-

tion. Together these give∫ ∞
0

∫ ∞
−∞

rv dθ dr =

∫ ∞
0

∫ ∞
0

αrJ0(αr)J0(αr0) e−Dα
2t dα dr

=

∫ ∞
0

δ(α)J0(αr0) e−Dα
2t dα = 1.

Let’s rewrite the PDF (35) in terms of the scaled variables x = r/2
√
Dt, y =

r0/2
√
Dt, and write θ for θ − θ0 without loss of generality:

p =
2

π
e−(x

2+y2)

∫ ∞
0

cos νθ Iν(2xy) dν. (40)

Since 2xy is small, we use the asymptotic form

Iν(x) ∼ 1

Γ(ν + 1)
(x/2)ν (41)

and the integral ∫ ∞
0

cos νθ ξν dν = − log ξ

θ2 + log2 ξ
, 0 < ξ < 1 (42)

to obtain

p ' − 2

π

log(xy)

θ2 + log2(xy)
e−(x

2+y2). (43)

The most interesting thing to us is the total probability of reaching a certain
angle θ for any x, so we integrate over x using log x � log y, since y is very small
whereas x varies from 0 to ∞. Thus,∫ ∞

0

x p dx ≈ 1

π

− log y

θ2 + log2 y
, y =

r0

2
√
Dt
� 1, (44)
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Figure 5: The Cauchy–Lorentz distribution (44) for various y values.
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Figure 6: Spitzer distribution compared to numerical simulation.

where we also approximated e−y
2 ' 1, to obtain a consistent normalization in θ.

The PDF (44) is a Cauchy–Lorentz distribution in θ (see Fig. 5). This is the
probability of finding the particle at θ at time t, given that it started at θ = 0 and
radius r0. The distribution is singular at y = 0: if the particle starts at the origin,
then it’s impossible to define its Riemann sheet. The form (44) compares favorably
with numerical simulations (Fig. 6(a)), though there are problems with the tails, as
is obvious in Fig. 6(b).
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