Lecture 34: Permutations generated by Brownian
particles

1 Brownian particles on the real line

Consider n Brownian particles on the real line, with diffusion constant D. The
position of each particle is denoted zx(t). The position of a walker at time ¢ has a
probability density function p(x,t;2’,0) that satisfies the heat equation,

Op— DAp =d(x — 2') (), (1)

where 2/ is the initial position of the particle, with solution

1

x,t; 2, 0) = e~ (@—a)?/aDt. t>0. 2
Assume the initial ordering
21(0) < 22(0) < -+ < x,(0), (3)

and define the probability P(t,s) that the particles are ordered according to the
permutation s € S,,, the symmetric group on n symbols; thus,

P(0,5) = {1’ s=id; (4)

0, otherwise.

At later times, we have
P(tu 8_1) = / dxs(l)/ dxs(2) o / dxs(n) Hp Ts(k t y Ls(k) (0) 0) : (5)
—o0 Ts(1) Zs(n—1)

That is, the particle s(1) is to the left of all the others, s(2) is to the right of s(1)
but to the left of the rest, etc.



Now let
Y = Tsry/ VADE, ex(t) = x4 (0)/VADL, (6)

from which becomes

00 00 00 n 1
P(t, s\ = / dy / dys - / dy, Hﬁe-@k-%(t))?. (7)
— Y1 Yn—1

k=1

For large time, we have £, (t) < 1, and

o~k )" — oWk (1 4 2e4) + O(?). (8)

1 o o 0 R ) 1
W/OO dyl/yl dy2--~/y_1 dyn e Zk:lykza- (9)

(This must work for any PDF with the right symmetry, so must be the fraction of
volume occupied by an n-dimensional ‘wedge.’)

We must have

Define
1 00 00 00 Ly )
I = s dy dys - - dy, yee™ k=Y, (10)
m —o0 Y1 Yn—1
By changing order of integration and replacing yx by —yn—r+1, we can show I, , =
—Inn—ry1. Some specific values are Ioy = —Iyo = 1/(2V27), I31 = —I33 =

1/(4v2m), I35 = 0. Challenge: compute this in general (must be known...).
In any case, the time-asymptotic solution is

P(t7 8_1) = = Z 25k]n,k; + 0(52)7 (11)
which, from (), shows a rather slow approach to the uniform distribution as 1/ NG

2 Brownian particles on the unit interval

Now we turn to Brownian particles on the interval [0, 1], with reflecting boundary
conditions at the endpoints (Figure . The same heat equation ([2)) is satisfied by the
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Figure 1: Five Brownian particles on the interval [0, 1], with reflecting boundary
conditions.

probability density (Green’s function), but now the reflecting (Neumann) boundary
conditions lead to

(e—(m—z’—Qk)2/4Dt n e—(m+m’—2k)2/4Dt> L0, (12)

= 1
x,t;2',0) =
M ) kz—oo vV Ar Dt

which can also be written

plx, t;2',0) = Z cos(mka) cos(mka') e~ (KDt t > 0. (13)

k=—00
The same formula ([5]) applies for P(¢,s71). Let’s take n = 2; then after some integrals

P(t,s7!) = 1+Z' (ol Gl ) cos(mhk1y(0)) cos(mhyz)(0)) e™ FHDL (14
’ 2 &~ (k2 -0 ° °
kAt

(>~ means k # 0 and £ # 0.) The slowest exponential has k? + ¢? = 1; hence, we
have

P(t,s ) — 1| < |C|e ™Dt 15
2
where ( ( 1>k+€)
/ 1— (-
=2 "mn—a | (16)
hte

as long as C'is finite. (Challenge: does this diverge? If so need to refine the analysis.)
In any case it appears to be the right bound: see Fig. [2 Is this a cut-off? How
do we show this?
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Figure 2: Variation distance as a function of time for 2 particles, with D = 5 x 1076
(100,000 realizations). The dashed line is proportional to e ™Dt
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