
Lecture 34: Permutations generated by Brownian

particles

1 Brownian particles on the real line

Consider n Brownian particles on the real line, with diffusion constant D. The
position of each particle is denoted xk(t). The position of a walker at time t has a
probability density function p(x, t;x′, 0) that satisfies the heat equation,

∂tp−D∆p = δ(x− x′) δ(t), (1)

where x′ is the initial position of the particle, with solution

p(x, t;x′, 0) =
1√

4πDt
e−(x−x

′)2/4Dt , t > 0. (2)

Assume the initial ordering

x1(0) < x2(0) < · · · < xn(0), (3)

and define the probability P (t, s) that the particles are ordered according to the
permutation s ∈ Sn, the symmetric group on n symbols; thus,

P (0, s) =

{
1, s = id;

0, otherwise.
(4)

At later times, we have

P (t, s−1) =

∫ ∞
−∞

dxs(1)

∫ ∞
xs(1)

dxs(2) · · ·
∫ ∞
xs(n−1)

dxs(n)

n∏
k=1

p(xs(k), t;xs(k)(0), 0) . (5)

That is, the particle s(1) is to the left of all the others, s(2) is to the right of s(1)
but to the left of the rest, etc.



Now let
yk := xs(k)/

√
4Dt, εk(t) := xs(k)(0)/

√
4Dt , (6)

from which (5) becomes

P (t, s−1) =

∫ ∞
−∞

dy1

∫ ∞
y1

dy2 · · ·
∫ ∞
yn−1

dyn

n∏
k=1

1√
π

e−(yk−εk(t))
2

. (7)

For large time, we have εk(t)� 1, and

e−(yk−εk(t))
2

= e−y
2
k (1 + 2εkyk) + O(ε2). (8)

We must have

1

πn/2

∫ ∞
−∞

dy1

∫ ∞
y1

dy2 · · ·
∫ ∞
yn−1

dyn e−
∑n

k=1 y
2
k =

1

n!
. (9)

(This must work for any PDF with the right symmetry, so must be the fraction of
volume occupied by an n-dimensional ‘wedge.’)

Define

In,` := − 1

πn/2

∫ ∞
−∞

dy1

∫ ∞
y1

dy2 · · ·
∫ ∞
yn−1

dyn y` e−
∑n

k=1 y
2
k . (10)

By changing order of integration and replacing yk by −yn−k+1, we can show In,` =
−In,n−`+1. Some specific values are I2,1 = −I2,2 = 1/(2

√
2π), I3,1 = −I3,3 =

1/(4
√

2π), I3,2 = 0. Challenge: compute this in general (must be known. . . ).
In any case, the time-asymptotic solution is

P (t, s−1) =
1

n!
−

n∑
k=1

2εkIn,k + O(ε2), (11)

which, from (6), shows a rather slow approach to the uniform distribution as 1/
√
t.

2 Brownian particles on the unit interval

Now we turn to Brownian particles on the interval [0, 1], with reflecting boundary
conditions at the endpoints (Figure 1). The same heat equation (2) is satisfied by the
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Figure 1: Five Brownian particles on the interval [0, 1], with reflecting boundary
conditions.

probability density (Green’s function), but now the reflecting (Neumann) boundary
conditions lead to

p(x, t;x′, 0) =
∞∑

k=−∞

1√
4πDt

(
e−(x−x

′−2k)2/4Dt + e−(x+x
′−2k)2/4Dt

)
, t > 0, (12)

which can also be written

p(x, t;x′, 0) =
∞∑

k=−∞

cos(πkx) cos(πkx′) e−(πk)
2Dt , t > 0. (13)

The same formula (5) applies for P (t, s−1). Let’s take n = 2; then after some integrals

P (t, s−1) =
1

2
+
∑
k,`

k 6=`

′ (1− (−1)k+`)

π2(k2 − `2)
cos(πkxs(1)(0)) cos(πkxs(2)(0)) e−π

2(k2+`2)Dt. (14)

(
∑′ means k 6= 0 and ` 6= 0.) The slowest exponential has k2 + `2 = 1; hence, we

have ∣∣P (t, s−1)− 1
2

∣∣ ≤ |C| e−π2Dt (15)

where

C =
∑
k,`

k 6=`

′
∣∣∣∣(1− (−1)k+`)

π2(k2 − `2)

∣∣∣∣ , (16)

as long as C is finite. (Challenge: does this diverge? If so need to refine the analysis.)
In any case it appears to be the right bound: see Fig. 2. Is this a cut-off? How

do we show this?
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Figure 2: Variation distance as a function of time for 2 particles, with D = 5× 10−6

(100,000 realizations). The dashed line is proportional to e−π
2Dt.
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