
Lecture 30: Mixing in the presence of sources and sinks∗

1 Sources and Sinks

Consider the situation with a sources-sink term s(x, t),

∂tθ + u · ∇θ = κ∇2θ + s (x, t) , (1)

∇ · u = 0.

For simplicity, assume that
∫

Ω s(x, t)dΩ = 0. Otherwise, we can subtract the mean of θ. It
is convenient to think of sources and sinks as hot and cold regions.

Let us also assume that our sources and sinks are time-independent. Then, the system
eventually achieves a steady state θ(x) that satisfies

u · ∇θ = κ∇2θ + s. (2)

We define the operator
L ≡ u · ∇ − κ∇2 (3)

so that (2) can be written
Lθ = s. (4)

The steady solution is then
θ = L−1s (5)

where the mean-zero condition on θ makes this unique. Note that κ 6= 0 is needed to
achieve a steady state. So, assuming the system has reached a steady-state, we have to
determine how we measure the quality of mixing. One of the possible ways is to look at
the norms ‖θ‖Ḣq , where q = 0 represents standard derivation. But we have to decide what
we will compare to. One possibility is ‖θ‖Ḣq/‖s‖Ḣq . This ratio is a reasonable choice, but
has units of inverse time. It is preferable to use a dimensionless quantity for measuring the
quality of mixing. In this spirit, we define mixing enhancement factors:

εq =
‖θ̃‖Ḣq

‖θ‖Ḣq

, (6)

where θ̃ is the purely-diffusive solution which satisfies

L̃θ̃ = s.
∗Notes by Sam Pegler and Woosok Moon of lectures delivered at the 2010 Woods Hole Summer Program

in Geophysical Fluid Dynamics.



Figure 1: Sources and sinks: CO in the atmosphere. Red corresponds to high levels of CO
(450 parts per billion) and blue to low levels (50 ppb). Note the immense clouds due to
grassland and forest fires in Africa and South America. (Photo NASA/NCAR/CSA.)

Here, L̃ = −κ∇2 is the pure diffusive operator, so θ̃ can be interpreted as the solution
in the absence of stirring. Since ‖θ‖Ḣq is usually decreased by stirring, εq measures the
enhancement over the pure-diffusion state. Several properties are given in Doering and
Thiffeault [1], Shaw, Thiffeault and Doering [3], and Thiffeault and Pavliotis [5]; see also
the review by Thiffeault [4]. We interpret a large εq as ‘good stirring,’ since it in that case
the norm is decreased by stirring.

A natural question is whether εq can ever be less than unity, that is, if stirring can ever
be worse than not stirring. Let’s consider

ε1 =
‖∇θ̃‖2
‖∇θ‖2

Here,

θ̃ = L̃−1s =
(
−κ∇2

)−1
s = −κ−1∇−2s⇒ ∇θ̃ = −κ−1∇−1s

Also, from Lθ = s, we can multiply θ on both sides and take spatial average and then get

〈θLθ〉 = 〈sθ〉 ,

where 〈·〉 =
∫

Ω · dΩ. We expand the left-hand side:

〈θLθ〉 = 〈θu · ∇θ〉 − κ
〈
θ∇2θ

〉
=
〈
∇ ·
(
uθ2/2

)〉
− κ

〈
θ∇2θ

〉
= −κ

〈
θ∇2θ

〉
= κ

〈
|∇θ|2

〉
.

As for the right-hand side,it can be written as

〈θs〉 =
〈
θ∇ · ∇−1s

〉
= −

〈
∇θ · ∇−1s

〉
= κ

〈
∇θ · ∇θ̃

〉
,



where we used

θ̃ = L̃−1s =
(
−κ∇2

)−1
s = −κ−1∇−2s

⇐⇒ ∇θ̃ = −κ−1∇−1s .

Recall that
〈
|∇θ|2

〉
= ‖θ‖2

Ḣ1 . Therefore,

‖θ‖2
Ḣ1 =

〈
∇θ · ∇θ̃

〉
≤ ‖∇θ‖2‖∇θ̃‖2 = ‖θ‖Ḣ1‖θ̃‖Ḣ1 .

We conclude that
‖θ‖Ḣ1 ≤ ‖θ̃‖Ḣ1 ⇐⇒ ε1 ≤ 1 . (7)

This is somewhat counter-intuitive because gradients are usually increased by stirring. How-
ever, the gradients in a steady-state have been affected by diffusion.
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Figure 2: The pattern of velocity field and source for the ‘unmixing’ flow and source distri-
bution (8).

What about εq for values of q other than 1? We tried and failed to prove εq ≤ 1, simply
because it is not true. Following a challenge by Charlie Doering at a workshop at the IMA
in 2010, Jeff Weiss came up with something like:

u = (2 sinx cos 2y ,− cosx sin 2y) , (8a)

s =
(
cosx− 1

2

)
sin y . (8b)

This velocity field manages to concentrate the source and sink distribution more than dif-
fusion alone. Streamlines of u and level sets of s are shown in figure 2. In this example, we
could get ε0 ' 0.978 and ε−1 ' 0.945, which are slightly less than 1. It is an open problem
to characterize such ‘unmixing’ flows.



2 Optimization

We defined the mixing enhancement factors based on Sobolev norms. Large mixing en-
hancement factor indicates good mixing for a given source and sink pattern. One of the
relevant questions in this step is what kinds of flow give the largest εq given source and sink
distribution s(x).

Here is a simple but surprising example. The source and sink distribution is given
by s(x) = sinx with periodic boundary conditions on θ. The optimal solution for this
source and sink distribution is u = Ux̂, which is constant flow from the hot region to the
cold region [2,3,5] (figure 3). This example demonstrates that, with body sources, the best
stirring often has more to do with transport than with creation of small scales.

More generally, we have to solve the optimization problem numerically. Figure 4 shows
contours of the streamfunction for the optimal stirring velocity (lines) for a source s(x) =
sinx sin y, for q = 0 and q = −1. The optimal velocity fields are identical for the two values
of q, because the source is an eigenfunction of the Laplacian.

Contrast this to the optimal solutions in figure 5, for the source distribution s(x) =
cosx cos y + cos 3y + (1/4) sin 3y. This source is not an eigenfunction of the Laplacian, and
we expect optimal solutions to depend on q. Comparing the left (q = 0) and right (q = −1)
figures, we see this is indeed the case, though the difference in this case is fairly small.

Finally, given an optimization code, it is simple to turn it around to anti-optimize, that
is, find the worst stirring velocity for a given source distribution. Figure 6 shows this for
the source (8b) and q = 0. Note how the velocity field seems to work to concentrate the
source sink, thereby increasing the variance. The efficiency for this anti-optimal solution
is ε0 = 0.9736, which is not much lower than Jeff Weiss’s unoptimized flow (8a), which
had ε0 ' 0.978.

To reproduce the 5 figures in this section run the program example(n) in the Appendix,
where n is a number from 1 to 5.
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Figure 3: The optimal velocity field (solid arrows) for the source distribution s(x) = sinx.
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Figure 4: Optimal stirring velocity field (solid lines) for the source s(x) = sinx sin y (colored
background), for q = 0 (left) and q = −1 (right). The optimal velocity is the same in
both cases because the source is an eigenfunction of the Laplacian. (Matlab programs
example(1) and example(2) in the Appendix.)
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Figure 5: Optimal stirring velocity field (solid lines) for the source cosx cos y + cos 3y +
(1/4) sin 3y (colored background), for q = 0 (left) and q = −1 (right). The optimal velocities
are different since the source is not an eigenfunction of the Laplacian. (Matlab programs
example(3) and example(4) in the Appendix.)
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Figure 6: Optimal ‘unmixing’ solution for the source
(
cosx− 1

2

)
sin y, with mixing effi-

ciency ε0 = 0.9736. (Matlab program example(5) in the Appendix.)

Appendix: Matlab code

1 Program file example.m

function example(ex)

if nargin < 1, ex = 1; end

N = 11; % Number of gridpoints

L = 1; k1 = 2*pi/L; % Physical size of domain

x = L*(0:N-1)/N; y = x’; [xx,yy] = meshgrid(x,y);

switch ex

% Examples 1 and 2 use the same cellular source, for q=0 and q=-1.

% Since the source is an eigenfuntion of the Laplacian, the optimal

% flow is the same for q=-1.

case {1,2}

src = cos(k1*xx).*cos(k1*yy) * 2/L;

psi0 = sin(k1*xx).*sin(k1*yy) * 1/sqrt(2)/pi;

kappa = .1; q = 1-ex;

% Examples 3 and 4 use the same two-mode source, for q=0 and q=-1.

% Since the source is not an eigenfuntion of the Laplacian, the optimal

% flow is different for q=-1.

case {3,4}

src = (cos(k1*xx).*cos(k1*yy)+cos(3*k1*yy)+.25*sin(3*k1*yy)) * 4*sqrt(2)/5/L;

psi0 = sin(k1*xx).*sin(k1*yy) * 1/sqrt(2)/pi;

kappa = .1; q = 3-ex;

case 5

% Unmixing solution

src = (cos(k1*xx) - .5).*sin(k1*yy) * 2*sqrt(2/3)/L;

psi0 = sin(k1*xx).*sin(2*k1*yy) * 1/sqrt(5)/pi;

scalefac = -N^2; % Set scale factor negative to minimize instead

kappa = 1/4; q = 0;

end

if ~exist(’scalefac’), scalefac = N^2; end

[psi,Effq] = velopt(psi0,src,kappa,q,L,scalefac);



fprintf(1,’Eff_%d=%f\n’,q,Effq)

figure(1)

Nplot = 64; % Interpolate solution for plotting

psir = refine2(psi,Nplot); srcr = refine2(src,Nplot);

xplot = L*(0:Nplot-1)/Nplot; yplot = xplot’;

imagesc(xplot,yplot,srcr), colorbar, hold on

contour(xplot,yplot,psir,10,’EdgeColor’,’k’), hold off

2 Program file velopt.m

function [psi,Effq] = velopt(psi0,src,kappa,q,L,scalefac)

% Problem parameters for Matlab’s optimizer fmincon.

psi0 = psi0(:); problem.x0 = psi0(2:end);

problem.objective = @(x) normHq2(x,src,kappa,q,L,scalefac);

problem.nonlcon = @(x) nonlcon(x,src,kappa,q,L,scalefac);

problem.solver = ’fmincon’;

problem.options = optimset(’Display’,’iter’,’TolFun’,1e-10,...

’GradObj’,’on’,’GradConstr’,’on’,...

’algorithm’,’interior-point’);

[psi,Hq2] = fmincon(problem);

% Mixing efficiency: call normHq2 with no flow to get pure-conduction solution.

Effq = sqrt(normHq2(zeros(size(psi)),src,kappa,q,L,scalefac) / Hq2);

psi = reshape([0;psi],size(src)); % Convert psi back into a square grid

%=======================================================================

function [varargout] = normHq2(psi,src,kappa,q,L,scalefac)

N = size(src,1); src = src(:);

% 2D Differentiation matrices and negative-Laplacian

[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); mlap = -(Dxx+Dyy);

if q ~= 0 && q ~= -1, error(’This code only supports q = 0 or -1.’); end

psi = [0;psi]; ux = Dy*psi; uy = -Dx*psi;

ugradop = diag(sparse(ux))*Dx + diag(sparse(uy))*Dy;

if q == 0

Aop2 = (-ugradop + kappa*mlap);

elseif q == -1

Aop2 = mlap*(-ugradop + kappa*mlap);

end

Aop1 = (ugradop + kappa*mlap)*Aop2;

% Solve for chi, dropping corner point to fix normalisation.

chi = [0; Aop1(2:end,2:end) \ src(2:end)];

theta = Aop2*chi;

% The squared H^q norm of theta.

varargout{1} = L^2*sum(theta.^2)/N^2 * scalefac;

if nargout > 1

% Gradient of squared-norm Hq2.

gradHq2 = 2*((Dx*theta).*(Dy*chi) - (Dy*theta).*(Dx*chi));

varargout{2} = gradHq2(2:end) / N^2 * scalefac;

end

%=======================================================================

function [c,ceq,gc,gceq] = nonlcon(psi,src,kappa,q,L,scalefac)



psi = [0;psi]; N = size(src,1);

c = []; gc = [];

[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); % 2D Differentiation matrices

U2 = L^2*(sum((Dx*psi).^2 + (Dy*psi).^2)/N^2);

ceq(1) = (U2-1) * scalefac;

if nargout > 2

% Gradient of constraints

mlappsi = -(Dxx+Dyy)*psi;

gceq(:,1) = 2*mlappsi(2:end) / N^2 * scalefac;

end
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