
Lecture 29: Mix-norms∗

1 Norms

In this lecture we define a measure of mixing that does not necessarily require diffusion to
measure the amount of homogenization that occurs during the mixing process. Recall the
advection-diffusion equation

∂θ

∂t
+ u ·∇θ = κ∇2θ, (1)

where θ is a concentration field in a finite domain Ω, with no-net-flux boundary conditions.
We assume without loss of generality that∫

Ω
θ dΩ = 0, (2)

and define the L2-norm, or variance, as

‖θ‖22 =

∫
Ω
θ2 dΩ. (3)

Recall from Lecture 1 that the variance evolves according to

d

dt
‖θ‖22 = −2κ‖∇θ‖22, (4)

and decays in time as the system mixes. The variance indicates the extent to which the
concentration has homogenized and is thus a good measure of the amount of mixing that
has occurred. However, the variance requires knowledge of small scales in θ, which we are
not necessarily interested in. A measure of how well-mixed the concentration is does not
necessarily require knowledge of how much homogenization has occurred due to diffusion at
small scales. This is more in keeping with the definition of mixing in the sense of ergodic
theory [2]. In this regard, we proceed to consider the pure advection equation

∂θ

∂t
+ u ·∇θ = 0. (5)

Note that in this case equation (4) predicts that the variance satisfies

d

dt
‖θ‖22 = 0, (6)
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and cannot therefore be used as a measure of mixing.
The advection equation (5) takes us closer to the ergodic sense of mixing in which we

think of the advection due to the velocity field as a time-dependent operator St : Ω → Ω
that moves an initial patch of dye according to

θ0(x) 7→ θ(x, t) = Stθ0(x). (7)

If we consider a region A of uniform concentration defined by

θ0(x) =

{
1 if x ∈ A,
0 otherwise,

(8)

then the volume of the patch
Vol[θ(x, t)] = Vol(A), (9)

remains constant in time by incompressibility. We can associate the volume of the patch
with the Lebesgue measure and, because of (9), St is measure-preserving.

We define mixing in the sense of ergodic theory by

lim
t→∞

Vol[A ∩ St(B)] = Vol(A)Vol(B), (10)

for all patches A,B ∈ Ω. This definition follows our intuition for what good mixing is.
Referring to figure 1, when the system is well-mixed the intersection of A and StB is
proportional to both Vol(A) and Vol(B). Thus, if the condition (10) holds then St must
spread any initial patch throughout the domain. This condition is referred to as strong
mixing and can be shown to imply ergodicity.

The intersection of the advected patch B with the reference patch A is analogous to
projection onto L2 functions. This motivates the following weak convergence condition

lim
t→∞
〈θ(x, t), g〉 = 0, (11)

StB

A

Figure 1: An advected patch StB that has undergone strong mixing. At late times the
patch covers an arbitrary reference patch A.



for all functions g ∈ L2(Ω), where the inner product is defined by

〈f, g〉 =

∫
Ω
f(x)g(x) dΩ, (12)

and f ∈ L2(Ω) if
∫

Ω |f |
2 dΩ < ∞. Weak convergence is equivalent to mixing as a conse-

quence of the Riemann–Lebesgue lemma. The equivalent conditions (10) and (11) require
computing over all patches A or functions g, respectively. Thus, neither of these conditions
is useful in practice. However, we proceed to describe a theorem that shows there is a
simpler way to determine whether or not weak convergence is satisfied.

Mathew, Mezic and Petzold [5] introduced the mix-norm, which for mean-zero functions
is equivalent to

‖θ‖Ḣ−1/2 := ‖∇−1/2θ‖2 . (13)

Doering and Thiffeault [1] and Lin, Thiffeault and Doering [3] generalized the mix-norm to

‖θ‖Ḣq := ‖∇qθ‖2, q < 0, (14)

which is a negative homogeneous Sobolev norm. This norm can be interpreted for negative
q via eigenfunctions of the Laplacian operator. For example, in a periodic domain, we have

‖θ‖2
Ḣq =

∑
k

|k|2q|θ̂k|2, (15)

from which we see that, for q < 0, ‖θ‖q
Ḣ

smooths θ before taking the L2 norm. The theorem

lim
t→∞
‖θ‖Ḣq = 0, q < 0 ⇐⇒ θ converges weakly to 0, (16)

Figure 2: Comparison of the mix-norms for a flow optimized using the separate methods of
optimal control and optimal instantaneous decay. Figure from Lin et al. [3].



Figure 3: Evolution of the concentration field for the flow optimized in the case q = −1 as
computed by Lin et al. [3].

due to Mathew, Mezic and Petzold [5] and Doering, Lin and Thiffeault [3] shows that we
can track any mix-norm to determine whether a system is mixing (in the weak sense). The
existence of this quadratic norm facilitates optimization of the velocity field to achieve good
mixing. Mathew, Mezic, Grivopoulos, Vaidya and Petzold [4] have used optimal control
to optimize the decay of the q = −1/2 mix-norm. Lin, Doering and Thiffeault [3] have
optimized the instantaneous decay rate of the q = −1 norm using the method of steepest
descent, which is easier to compute numerically but yields suboptimal, but nevertheless
very effective, stirring velocity fields. A comparison of the methods for optimized mixing is
shown in figure 2. The solid line decays faster, but this is merely because the Ḣ−1 cannot
be compared directly with Ḣ−1/2. The corresponding evolution of the concentration field
for the case q = −1 from Lin et al. [3] is shown in figure 3.

References

[1] C. R. Doering and J.-L. Thiffeault, Multiscale mixing efficiencies for steady
sources, Phys. Rev. E, 74 (2006), p. 025301(R).



[2] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Springer-Verlag, New
York, 1994.

[3] Z. Lin, C. R. Doering, and J.-L. Thiffeault, Optimal stirring strategies for passive
scalar mixing, J. Fluid Mech., 675 (2011), pp. 465–476.
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