
Lecture 19: Biomixing, part 4: Viscous swimmer

1 The dumbbell swimmer

The Green’s function for the Stokes equation

−∇p+ µ∇2u = −fδ(r), ∇ · u = 0, (1)

is f ·G(r), where G(r) is the Oseen tensor:

G(r) =
1

8πµ‖r‖

(
I +

r r

‖r‖2

)
. (2)

We model the dumbbell swimmer as two Stokeslets along the z axis Hernandez-Ortiz
et al. (2005):

u(r) = F ẑ ·G(r − A ẑ) + f ẑ ·G(r − a ẑ). (3)

Force balance then dictates
F + f = 0, (4)

so that
u(r) = F ẑ · (G(r − A ẑ)−G(r − a ẑ)) . (5)

Setting A = 0 momentarily, note that

lim
a→0

1

a
(G(r)−G(r − a ẑ)) = ẑ · ∇G(r). (6)

Recall that ∇r = I, ∇‖r‖ = r̂; we have

8πµ∂iGjk(r) = ∂i

(
1

‖r‖

)(
δjk +

rjrk
‖r‖2

)
+

1

‖r‖
∂i

(
rjrk
‖r‖2

)
= − ri
‖r‖3

(
δjk +

rjrk
‖r‖2

)
+

1

‖r‖3
(δij rk + rjδik)− 2ri

rjrk
‖r‖5

=
1

‖r‖3

(
δij − 3

rirj
‖r‖2

)
rk +

1

‖r‖3
(δikrj − δjkri) .



The first term (symmetric in i and j) is the stresslet :

Sijk :=
1

8πµ‖r‖3

(
δij − 3

rirj
‖r‖2

)
rk. (7)

The second term (antisymmetric in i and j) is the rotlet :

Rijk :=
1

8πµ‖r‖3
(δikrj − δjkri) . (8)

Hence,

u(r) ∼ aF ẑẑ : ∇G(r)

=
aF

8πµ‖r‖2

{(
1− 3

zz

‖r‖2

)
r

‖r‖
+ O(a2/‖r‖2)

}
(9)

is the far-field form of the dipole—a pure stresslet. We simply replace a by (a− A)
to restore A 6= 0, since the corrections incurred are of higher order.

Now assume our dumbbell swimmer is in a frame moving at constant velocity U ẑ,
so there is an apparent flow −U ẑ. We take the positions a(t) and A(t) to be time-
periodic in the comoving frame. The forces exerted on the fluid are due to drag on
a sphere of radius R at x = A(t) and a sphere of radius r(t) at x = a(t):

F (t) = 6πµR(U + Ȧ(t)), f(t) = 6πµr(t)(U + ȧ(t)). (10)

We take the frame to move at the mean swimming velocity U ; this is obtained from
the constraint that the time-averaged velocities of the Stokeslets must vanish in the
comoving frame:

〈Ȧ〉 = 〈ȧ〉 = 0. (11)

From (10) and (4), we have

R(U + Ȧ(t)) = −r(t)(U + ȧ(t)), (12)

which upon time-averaging gives

RU = −U〈r〉 − 〈rȧ〉, (13)

and so the mean swimming velocity is

U = −〈rȧ〉/(R + 〈r〉). (14)



The prescribed functions are ȧ(t) and r(t); U is then obtained from (14) and Ȧ(t)
from (12).

The simplest time-dependence we can put is

a(t) = a0 + a1 cos(2πt/τ), r(t) = r0 + r1 sin(2πt/τ + φ) (15)

which gives

U =
πa1r1 cosφ

τ(r0 +R)
. (16)

The phase φ = 0 yields the fastest mean swimming velocity: it corresponds to the
sphere expanding during the power stroke, and shrinking during the recovery stroke.
We thus set φ = 0 for simplicity. We then have

Ȧ(t) = −U − r(t)(U + ȧ(t))/R (17)

=
πa1r1

Rτ

{(
2r0

r1

− r1

r0 +R

)
sin(2πt/τ)− cos(4πt/τ)

}
(18)

which can be integrated to find A(t) =
∫ t
Ȧ dt. We choose the integration constant to

be zero, so that the swimmer’s main body oscillates about the origin in the comoving
frame.

The far-field stresslet coefficient from (9) with a→ (a− A) is

(a− A)F

8πµ
= −3

4
(a− A)r(U + ȧ) , (19)

which is a complicated function involving many harmonics. The time-averaged coef-
ficient of the stresslet has the simple form

1

8πµ
〈(a− A)F 〉 =

3πa0a1r1

4τ(1 + r0/R)
= 3

4
a0RU. (20)

2 Particle displacement

We now address the question of particle displacements due to a moving stresslet,
when the stresslet is aligned with the direction of motion. The other case (when the
stresslet is perpendicular to the direction of motion) is more complicated, since it is
no longer axially symmetric.
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Figure 1: Body velocity Ȧ (red), flagellum velocity ȧ (green), and stresslet coeffi-
cient (blue) as a function of time. The dashed lines are the time-averaged stresslet
coefficient (cyan) and swimming velocity (orange).
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Figure 2: The streamlines in the comoving frame for the moving stresslet (Eq. (21)).
The thick line shows the ‘atmosphere’ (closed streamline in the comoving frame).



2.1 Streamline pattern and atmosphere

We take the velocity field in a comoving frame to be

ucomov(r) = −ẑ + β

(
1− 3

zz

‖r‖2

)
r

‖r‖3
, (21)

so that the stresslet is moving at unit speed in the ẑ direction, with a resulting
apparent flow in the −ẑ direction. The streamfunction in the comoving frame is

ψcomov(ρ, z) = −1
2
ρ2 − β zρ2

‖r‖3
, (22)

with
uρ = −ρ−1∂zψ, uz = ρ−1 ∂ρψ. (23)

Figure 2 shows the streamline pattern in the comoving frame (for β = 1), which
suggests the presence of an atmosphere: a closed streamline in the comoving frame.
We can find the equation for the atmosphere by solving ψcomov = 0,

− 1
2
− β z

(ρ2 + z2)3/2
= 0, (24)

so that
ρ2

atm(z) = −z
(
z + (2β)2/3(−1/z)1/3

)
. (25)

Note that ρatm(0) = ρatm(− sign(β)
√

2|β|) = 0, which means the atmosphere extends

from z = 0 to z = − sign(β)
√

2|β|. The atmosphere is plotted as a thick line in Fig. 2.
We also have an explicit expression for the volume of the atmosphere, for instance

for β > 0:

Vatm =

∫ 0

−
√

2β

πρ2
atm(z) dz = 8

15

√
2π|β |3/2, (26)

where the final expression is also valid for β < 0. The volume is useful for computing
the transport due to particles trapped in the atmosphere.

2.2 Displacement for far field

Recall the definition of the two impact parameters, a > 0 and b (see Lin et al. (2011)).
We set U = β = 1, and define

u(r, t) =

(
1− 3

ZZ

‖R‖2

)
R

‖R‖3
, (27)



where
R(t) = (X, Y, Z(t)) = (x, y + a, z + b− t). (28)

The stresslet starts at (0,−a,−b) at t = 0 and proceeds to move in the positive z
direction. The particle starts at r = 0 and its motion takes place in the y–z plane. If
the particle is far from the swimmer, then r remains small throughout the trajectory,
and we can expand to leading order in ‖r‖:

uy =
a(a2 − 2(b− t)2)

H5(a, b− t)
+ O(‖r‖), uz =

(b− t)(a2 − 2(b− t)2)

H5(a, b− t)
+ O(‖r‖). (29)

where the hypotenuse function is

H(a, b) :=
√
a2 + b2. (30)

At this order the particle feels a velocity field that is independent of its position. We
can then solve for the particle motion by integrating ẏ = uy and ż = uz:

y(t) =
ab

H3(a, b)
− a(b− t)
H3(a, b− t)

, (31a)

z(t) =
H2(a,

√
2b)

H3(a, b)
− H2(a,

√
2(b− t))

H3(a, b− t)
(31b)

valid to leading order in ‖r‖. Both coordinates achieve extrema at t = b ± 1√
2
a,

and z(t) has an additional extremum at t = b. The fact that both coordinates
achieve extrema at the same time is reflected by the two ‘cusps’ visible in Fig. 3.
The coordinates of the two cusps are

ycusp = ± 2
3
√

3
a−1 +

ab

H3(a, b)
, zcusp = −4

3

√
2
3
a−1 +

H2(a,
√
b)

H3(a, b)
. (32)

After a time t = λ (recall that U = 1, so λ = Uτ = 1), the net total displacement
in each direction is y(λ) and z(λ). Examining Fig. 3 and using the location of the
cusps (32) we find that the maximum displacement in y is bounded:

|y(λ)| ≤ 2
3
√

3
a−1 +

a|b|
H3(a, b)

≤ 4
3
√

3
a−1. (33)

The maximum displacement is achieved for λ =
√

2a, b = ±a/
√

2. The displacement
in z is also bounded:

|z(λ)| ≤ −4
3

√
2
3
a−1 +

H2(a,
√

2b)

H3(a, b)
≤
(

4
3

√
2
3
− 1
)
a−1, (34)
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Figure 3: Particle trajectory for a = 10, b = 50, with t running from 0 to 150.

where the maximum is achieved for λ = b = a/
√

2.
In the limit of infinite path length, we have

|y(λ)| ∼ ab

H3(a, b)
, |z(λ)| ∼ H2(a,

√
2b)

H3(a, b)
, λ→∞. (35)

If we then take b to ∞ as well (the swimmer starts very far away), the displacement
goes to zero. In this case, we have to expand the velocity field to next order to obtain
the net displacement. It will not be necessary to do so here.

The total net displacement is

∆λ(a, b) :=
√
y2(λ) + z2(λ). (36)

To compute the effective diffusivity, we can evaluate the integral∫ ∞
−∞

∫ ∞
−∞

a2∆2
λ(a, b) db d(log a) = 4λ (37)

whose integrand is plotted in Fig. 4.The resemblance to the numerical solution in
Fig. 4(b) of Lin et al. (2011) is striking. The contributions to the integral (37)
are 4

3
λ from y(λ) and 8

3
λ from z(λ). The displacement values for small a are not well

predicted by this small displacement approach, but since the integral (4) downplays
the importance of small a this will not lead to a large error.



Figure 4: The integrand a2∆2
λ(a, b) for λ = 100.



Finally, we can use the result (37) in Eq. (2.6) of Lin et al. (2011) to compute
the effective diffusivity:

Deff = 4
3
πβ2nU (38)

where we restored all units (β has units of squared length times velocity). The
path length λ drops out. In Lin et al. (2011) the definition of β is slightly different
(replace our β by 3

4
β`2 to recover their definition). Converting to their prefactor, we

find a numerical coefficient of 2.356, whereas the numerical result in Lin et al. (2011)
is 2.1 — a 10% difference, which is not bad for an analytic result! The difference is
probably due to our large-a overestimating the displacement for small a.
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