
Lecture 17: Biomixing, part 2: Effective diffusivity

In the previous lecture we derived an expression for the ditribution of number of
interactions m with a sphere of radius R:

P{Mt = m} ' 1√
2πVarMt

e−(m−〈Mt〉)2/2 VarMt , 〈Mt〉 � 1, (1)

where the expected number of interactions is

〈Mt〉 = n {Vswept(R, λ) (t/τ) + Vsph(R)} , (2)

with n the number density of swimmers, t the time elapsed, τ the duration of a path,
λ the length of a path, and Vswept(R, λ) and Vsph(R) the volume of a cylinder and
sphere.

Now that we’ve examined how often swimmers interact with a sphere of radius R
centered around a target particle, we will look at how the particle gets displaced.
Figure 1 shows the setup of an interaction. Since the system is homogeneous and
isotropic, only two ‘impact parameters’ a and b are needed to describe an interaction.
These are depicted in the figure: here C is the point along the line of motion that
is closest to the initial position of the particle, and a ∈ [0, R] is this closest distance.
The parameter b ∈ [−R, λ+R] is the distance from C to the initial position of the
swimmer. A negative value of b means the swimmer started its path beyond the
point C.

Following Lin et al. (2011), we start from a distribution of displacements ∆λ(a, b)
induced by a single swimmer. Here the impact parameters a and b describe the
encounter between the swimmer and a target particle, and λ is the path length of
swimming (Fig. 1). Each time a swimmer enters the interaction sphere we have
an ‘encounter,’ which causes a displacement of the target particle; thus, after m
encounters, the x displacement is

Xm =
m∑
k=1

∆λ(ak, bk) cosψk (3)
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Figure 1: Definition of impact parameters a and b, displacement ∆ = ∆λ(a, b),
and swimming path length λ. In this picture the parameter b is positive; negative b
corresponds to the swimmer starting its trajectory past the point C of smallest initial
perpendicular distance to the line of motion. The filled dot is the initial position
of the target particle and the hollow dot is its final position after the swimmer has
moved by a distance λ. The ‘interaction sphere’ of radius R is also shown. (After Lin
et al. (2011).)

where each encounter has random i.i.d. values of the impact parameters ak and bk
and angle ψk. We select the X displacement here, but by isotropy the statistics in
any direction are the same.

The probability density of Xm can be related to that of Xt, the x displacement af-
ter a time t, by first observing that P{Xm ∈ [x, x+ dx]} = P{Xt ∈ [x, x+ dx] |Mt = m},
and

P{Xt ∈ [x, x+ dx]} =
∞∑
m=0

P{Xt ∈ [x, x+ dx] , Mt = m}

=
∞∑
m=0

P{Xt ∈ [x, x+ dx] |Mt = m}P{Mt = m}, (4)

where P{Mt = m} is the probability of getting m encounters in time t. If the latter
is sharply peaked, such as in the Gaussian limit (1), then we can just use m ' 〈Mt〉.
But for now let us focus on P{Xm ∈ [x, x+ dx]}.

We wish to derive the PDF of the total x displacement Xm, assuming that the
random variables ak, bk, ψk are independent for different k and identically distributed,
with probabiliy densities ρab(ak, bk) and ρψ(ψk). Because of isotropy, the angular
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Figure 2: The domain Ωab = I ∪ II ∪ III of the impact parameters a and b for fixed
path length λ (see Fig. 1). Region I corresponds to swimmers that start their path
inside the interaction sphere; swimmers in Region II cross the sphere completely;
swimmers in Region III finish their path inside the sphere. Note that the figure
depicts λ > 2R, but all the formulas hold for λ < 2R as well, when regions I and III
overlap because some trajectories both start and finish inside the sphere.

variables have simple densities:

ρψ(ψ) = 1/2π, Ωψ = [0, 2π] (2D); ρψ(ψ) = 1
2

sinψ, Ωψ = [0, π] (3D), (5)

for ψ ∈ Ωψ. In two dimensions, the joint density ρab(a, b) is uniform over the do-
main Ωab = {0 ≤ a ≤ R, −

√
R2 − a2 ≤ b ≤ λ+

√
R2 − a2} depicted in Fig. 2. These

are the values of a and b for which a swimmer’s straight path intersects the interaction
sphere. After normalizing, we find the density

ρab(a, b) = 2/Vswept(R, λ) (2D). (6)

In three dimensions, the domain in Fig. 2 is interpreted as a surface of revolution
about a = 0, leading to the density

ρab(a, b) = 2πa/Vswept(R, λ) (3D). (7)

For both the 2D and 3D cases, ρab(a, b) is then normalized such that∫
Ωab

ρab(a, b) da db =

∫ R

0

∫ λ+
√
R2−a2

−
√
R2−a2

ρab(a, b) db da = 1. (8)

We have the convenient forms

〈Mt〉ρab ' 2nt/τ (2D); 〈Mt〉ρab ' 2πant/τ (3D), (9)



in terms of the expected values (2). These are valid for t� τ , so we can neglect the
extra added spherical volume in (2).

We can now compute the effective diffusivity. We have of course 〈XM〉 = 0
because of isotropy. The variance is then

〈X2
m〉 =

m∑
k=1

〈∆2
λ(ak, bk) cos2 ψk〉 = m〈∆2

λ(a, b)〉〈cos2 ψ〉 (10)

since the variables are i.i.d. The angular average is

〈cos2 ψ〉 =
1

2π

∫ 2π

0

cos2 ψ dψ = 1
2

(2D); (11)

〈cos2 ψ〉 =
1

2

∫ π

0

cos2 ψ sinψ dψ = 1
3

(3D). (12)

So now we define the effective diffusivity D

〈X2
m〉 =

m

d
〈∆2

λ(a, b)〉 = 2Dt (13)

where d is the dimension of space. We have finally

D =
m

2dt
〈∆2

λ(a, b)〉, (14)

where

〈∆2
λ(a, b)〉 =

∫
Ωab

ρab(a, b) ∆2
λ(a, b) da db. (15)

Assume now that m = 〈Mt〉, which wil be satisfied if there are many encounters.
Then using (9) we find

D =
n

2τ

∫
Ωab

∆2
λ(a, b) da db, (2D); (16)

and

D =
πn

3τ

∫
Ωab

∆2
λ(a, b) a da db, (3D). (17)

where recall that τ = λ/U is the path length of swimming. Notice the extra a in the
3D integrand, due to the fact that there is a ‘ring’ of points a distance a from the
target. This extra a will modify the dependence in 2D and 3D quite dramatically.

So far everything is quite general, as long as the density of swimmers is low
enough. In the next lecture we will discuss the most crucial part: how to model ∆λ(a, b).
This depends heavily on the kind of swimmer and the type of fluid.
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