
Lecture 16: Biomixing, part 1: hitting distribution

We use a simple model described by Thiffeault & Childress (2010) and refined
by Lin et al. (2011), which is convenient for visualization and for taking limits. We
assume there are N swimmers in a volume V , so the number density of swimmers
is n = N/V . Initially, each swimmer travels at a speed U in a uniform random
direction. They keep moving along a straight path for a time τ , so that each traces
out a segment of length λ = Uτ . After this a new direction is chosen randomly and
uniformly, and the process repeats — each swimmer again moves along a straight
path of length λ. Though far from realistic, this model captures many essential
features of the system, as found by Thiffeault & Childress (2010); Lin et al. (2011)
and as we’ll explore further in this paper. We will discuss later how this model could
be refined.

We wish to follow the displacement of an arbitrary ‘target fluid particle.’ The
swimmers are all simultaneously affecting this fluid particle, but in practice only
the closest swimmers significantly displace it. It is thus convenient to introduce an
imaginary ‘interaction sphere’ of radius R centered on the target fluid particle, and
count the number Mt of ‘interactions,’ that is the number of times a swimmer enters
this sphere. (Our treatment applies to two-dimensional systems simply by changing
‘sphere’ to ‘disk’ and ‘volume’ to ‘area.’) Figure 1 illustrates the situation.

Each time a swimmer enters the interaction sphere, the target particle is dis-
placed by some distance. We will address this in the next section and see how to
sum the displacements due to many swimmers to obtain the distribution of the net
displacement x. For now, let us find the distribution of Mt, the number of times a
swimmer crosses the interaction sphere during a time t.

The probability that the swimmer starts inside a small volume dV is dV/V ,
where V is the total volume. The probability of a swimmer actually starting inside
the interaction sphere is then Vsph(R)/V , where Vsph(R) is the volume of a sphere of
radius R. (We assume the interaction sphere fits completely within the volume V .)
We define the event

Ht = a swimmer crosses the interaction sphere once during time t < τ (= λ/U),
(1)
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Figure 1: A swimmer moving inside a volume V along a series of straight paths, each
of length λ and in a uniform random direction. The interaction sphere around the
target particle (black dot) is shown in gray. Here the swimmer ‘interacts’ twice with
the target particle, since two of its paths intersect the sphere.

that is, the center of the swimmer is inside the interaction sphere at some point
while traveling on a straight path of length Ut < λ, where U is the uniform speed
of a swimmer. To determine the probability of Ht, observe that because of the
homogeneity and isotropy of the swimmers this probability is proportional to the
volume swept out by the interaction sphere if it moves a distance Ut, with 0 ≤ t < τ :

pt := P(Ht) = Vswept(R, λ)/V, Vswept(R, λ) := Vcyl(R, λ) + Vsph(R), (2)

where

Vcyl(R, λ) :=

{
2Rλ,

πR2λ,
Vsph(R) :=

{
πR2, (2D);
4
3
πR3, (3D);

(3)

are respectively the volume of the cylinder of radius R swept out in time t and the
volume of the interaction sphere, which gives the probability that a swimmer starts
inside the interaction sphere. This assumes that all points on the interaction sphere’s
surface are at least a distance λ from the boundary of V .

For N swimmers, let Mt be the total number of interactions with the sphere
during time t. In Appendix we use a generating function approach to find the
probabiliy distribution of Mt, and show that

〈Mt〉 = n {Vswept(R, λ) (t/τ) + Vsph(R)} (4)



where n = N/V is the number density of swimmers. In this form we can take
the limits N →∞ and V →∞ while keeping n constant, which doesn’t change the
expectation value.

Also from Appendix , the variance of Mt is

VarMt = N
(
pτ (1− pτ ) (t/τ) + 1

3
p2τ − 1

3
(Vsph(R)/V )(2pτ + 2(Vsph(R)/V )− 3)

)
(5)

where Vsph(R) is the volume (or area) of the interaction sphere. Any term in (5)
quadratic in Vsph(R) or pτ will vanish as V →∞, and we are left with

VarMt ∼ 〈Mt〉, V →∞. (6)

For large 〈Mt〉 we thus expect that a typical value of Mt will be very close to the
mean, since 〈Mt〉/

√
VarMt is small. In that case, the central limit theorem applies

(Mt is the sum of i.i.d. random variables) and we have the Gaussian approximation

P{Mt = m} ' 1√
2πVarMt

e−(m−〈Mt〉)2/2VarMt , 〈Mt〉 � 1, (7)

with 〈Mt〉 defined in (4). The mean and variance equations (4) and (5) are exact as
long as the interaction sphere is more than a path length λ away from the boundary
of V ; equation (7) further requires 〈Mt〉 � 1, which typically happens for long times.
Figures 2(a)–2(b) show the convergence to a Gaussian distribution for numerical
simulations of moving swimmers, in 2D and 3D.

Appendix: Generating function approach for ran-

dom phases

The generating function of a sequence {an} is defined as Feller (1968)

G(an;x) =
∞∑
n=0

anx
n. (8)

Now let an give the probability of having n events Ht. For a single swimmer moving
for a time t < τ , we can only have n = 0 or 1 events, with probability a0 = (1− pt)
and a1 = pt; hence,

Gt(x) = a0 + a1x = (1− pt) + pt x , t < τ. (9)
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Figure 2: Probability distribution function for N = 1000 swimmers to enter the
interaction sphere Mt = m times, in (a) 2D and (b) 3D. The interaction sphere
has radius R = 100, the path length λ = 200, the total volume is a sphere of
radius L = 1000, and the number of steps is k = bUt/λc = 10. Shown in red
is the Gaussian approximation (7). (c)–(d) Marginal probability densities ρ(a) in
2D and 3D, respectively. (e)–(f) Marginal probability densities ρ(b) in 2D and 3D,
respectively.



The expected number of events is 〈Mt〉 = G′t(1) = pt. If the swimmer moves for
a time t = kτ , k ∈ Z+, the total number of events is the sum of the events at
each interval τ . The resulting generating function is then Gk

τ (x), assuming that the
swimmer starts on its first path at t = 0. More generally, if the swimmer has already
started on a path before t = 0, then

Gt(x) = Gτ0(x)G
kt,τ0
τ (x)Gτ1(x) (10)

where τ0 + τkt,τ0 + τ1 = t, kt,τ0 = b(t − τ0)/τc, and 0 ≤ τi < τ . The two τi pieces
account for the partial paths traversed at the beginning and at the end of the motion.
We take τ0 ∈ [0, τ) to be a uniformly-distributed random variable; τ1 then follows
from τ1 = t− τ0 − τkt,τ0 .

Now write pt = αt+β, where the constants α and β come from (2). The expected
number of events Ht is

〈Mt〉 = 〈pτ0 + kt,τ0pτ + pτ1〉 = 〈α(τ0 + τkt,τ0 + τ1) + (kt,τ0 + 2)β〉
= αt+ β(2 + 〈kt,τ0〉).

To compute 〈kt,τ0〉, let t/τ = ` + δ, ` = bt/τc, δ ∈ [0, 1). Then 〈kt,τ0〉 = 〈b(t −
τ0)/τc〉 = `+ 〈bδ − τ0/τc〉, with |δ − τ0/τ | < 1, and

〈b(δ − τ0)/τc〉 =
1

τ

∫ τ

0

bδ − τ0/τc dτ0 =

∫ 1

0

bδ − ξc dξ =

∫ 1

δ

(−1) dξ = δ − 1.

Thus,
〈kt,τ0〉 = `+ δ − 1 = t/τ − 1, (11)

and we finally conclude

〈Mt〉 = (ατ + β) t/τ + β = pτ (t/τ) + β. (12)

The extra β at the end arises from the possibility of swimmers starting inside the
interaction sphere at t = 0.

We can also compute the variance exactly. For a single swimmer,

VarMt = G′′t (1) +G′t(1)− [G′t(1)]2 = pt − (pt)
2 = pt(1− pt), t < τ, (13)

and for longer time

VarMt = 〈pτ0(1− pτ0) + kt,τ0 pτ (1− pτ ) + pτ1(1− pτ1)〉
= 〈Mt〉 − 〈p2τ0 + kt,τ0 p

2
τ + p2τ1〉 ≤ 〈Mt〉.



Now we need to compute the expectation value of this over τ0. This is a slightly
tedious calculation which we do not present; the final result is

VarMt = pτ (1− pτ ) (t/τ) + 1
3
α2τ 2 + β(1− β) . (14)

For N swimmers, because we are still summing the number of displacements the
generating function will be the product of several copies of (10):

GN
t (x) =

N∏
j=1

Gτ0,j(x)G
kt,τ0,j
τ (x)Gt−τ0,j−τkt,τ0,j (x) (15)

where each swimmer has its own random initial partial path τ0,j. The probability
distribution will thus be a convolution of all these generating functions, and the
expected value and variance will add up. The net result is to multiply the expected
number of events (12) and its variance (14) by N . After substituting the value of α
and β from pt = αt+β and (2) and using n = N/V , we obtain equations (4) and (5).
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