
Lecture 15: Homogenization Theory

I. MULTISCALE EXPANSION AND HOMOGENIZATION

We start with the advection–diffusion equation,

∂tϕ(t, r) + u(r) · ∇rϕ(t, r) = D∆rϕ(t, r). (I.1)

Assume typical lengthscale of u is `, and that the initial condition varies on a scale L that
is large with respect to `. Define ε = `/L� 1. We write ϕ(0, r) = ϕ0(ε r).

Now introduce the large scale and slow time,

R = ε r, T = ε2t , (I.2)

and assume that the concentration depends on these scales,

ϕ(t, r) = ϕε(T, r,R). (I.3)

Using ∂t → ε2 ∂T , ∇r → ∇r + ε∇R, Eq. (I.1) becomes

Lϕε + ε2 ∂Tϕ
ε + εu(r) · ∇Rϕ

ε = 2εD∇r · ∇Rϕ
ε + ε2D∆Rϕ

ε (I.4)

where the velocity field is assumed to only depend on the short lengthscale r, and we have
defined the linear operator

L := −D∆r + u · ∇r . (I.5)

We expand the concentration in a power series in ε,

ϕε(T, r,R) = ϕ(0)(T, r,R) + ε ϕ(1)(T, r,R) + . . . (I.6)

and at order ε0 obtain from Eq. (I.4),

Lϕ(0) = 0. (I.7)

The solution to (I.7) is ϕ(0)(T, r,R) = Φ(T,R).
At order ε1, Eq. (I.4) with the expansion (I.6) gives

Lϕ(1) + u · ∇RΦ = 0. (I.8)

We introduce the cell-average of a function f ,

〈f〉 :=
1

V

∫
Ω

f d3r, V :=

∫
Ω

d3r, (I.9)

and cell-average Eq. (I.8), using
〈
Lϕ(1)

〉
= 0, to obtain

〈u〉 · ∇RΦ = 0 (I.10)

which is satisfied for 〈u〉 = 0.



From Eqs. (I.8) and (I.10) we must solve

Lϕ(1) + u · ∇RΦ = 0 . (I.11)

The solution to this is ϕ(1) = χ(r) · ∇RΦ, where

Lχ+ u = 0 , (I.12)

the so-called cell problem. Note that we must have 〈Lχ〉 = 0 for the cell problem to have
a solution, and that χ is not unique since we can add a constant to it. Without loss of
generality, choose 〈χ〉 = 0.

Assuming the cell problem (I.12) has been solved, we can proceed to order ε2 in Eq. (I.4),

Lϕ(2) + ∂TΦ + u · ∇Rϕ
(1) = 2D∇r · ∇Rϕ

(1) +D∆RΦ . (I.13)

Cell-averaging (I.13) and using
〈
Lϕ(2)

〉
= 0, we find

∂TΦ +∇R · (〈uχ〉 · ∇RΦ) = 2D∇R · (〈∇rχ〉 · ∇RΦ) +D∆RΦ . (I.14)

The average 〈∇rχ〉 vanishes, and we thus finally obtain the homogenized diffusion equation

∂TΦ = ∇R · (Deff · ∇RΦ) (I.15)

where the effective diffusivity tensor is

Deff := D I− 〈uχ〉 . (I.16)

II. AN EXAMPLE

Consider the streamfunction for the cellular flow

ψ(x, y) =
√

2 (U`/2π) sin(2πx/`) sin(2πy/`), (II.1)

with velocity

u(x, y) = ∂yψ =
√

2U sin(2πx/`) cos(2πy/`),

v(x, y) = −∂xψ = −
√

2U cos(2πx/`) sin(2πy/`).
(II.2)

To compute the effective diffusivity, we need to solve the cell problem (I.12). Consider the
ratio

|u · ∇χ|
|D∆χ|

∼ U`

D
=: Pe, (II.3)

where Pe is the Péclet number. If the Péclet number is small, we can neglect the advection
term in the cell problem, and get the simplied equation D∆χ = u, or

D∆χx =
√

2U sin(2πx/`) cos(2πy/`), D∆χy = −
√

2U cos(2πx/`) sin(2πy/`), (II.4)

with solution

χ = − `2

9π2D
u. (II.5)



FIG. 1. Concentration field at t = 20 for U = 1, ` = 2π, D = 1.

We can then easily compute the effective diffusivity tensor by using 〈uu〉 = 1
2
U2I in (I.16):

Deff := D

(
1 +

1

16π2
Pe2

)
I. (II.6)

Figure 1 shows the concentration field for a numerical simulation at small Pe. In Figure 2
we compare the evolution of the variance to that implied by (II.6). Note that there is a short
transient, since the initial condition has a small scale and so must spread out before scale
separation is achieved.
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FIG. 2. Evolution of variance for U = 1, ` = 2π, D = 1. The dots are numerical simulations, the

green dashed line is 2Dt, and the red line is 2Defft, where Deff is defined in (II.6).

FIG. 3. Concentration field at t = 40 for U = 1, ` = 2π, D = 0.1.



FIG. 4. Concentration field at t = 40 for U = 1, ` = 2π, D = 0.01.
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FIG. 5. Concentration field at t = 40 for U = 1, ` = 2π, D = 0.001.



FIG. 6. Concentration field at t = 40 for the flow ψ(x, y) = B sin y + A cosx with D = 0.01,

and B = −A = 1. This flow has closed streamlines (see Crisanti et al. 1).



FIG. 7. Concentration field at t = 40 for the flow ψ(x, y) = B sin y + A cosx with D = 0.01,

and B = 1, A = −1.3. This flow has open streamlines (see Crisanti et al. 1).


