
Lecture 11: Renovating flows

Consider a two-dimensional linear divergence-free velocity field given by

u(x) = R(θ)ART (θ) · x (1)

where A is a constant traceless matrix and

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(2)

is a rotation matrix. The velocity gradient matrix is then

(∇u)T = R(θ)ART (θ). (3)

An infinitesimal line segment δx obeys

δẋ = δx · ∇u . (4)

Hence, as long as ∇u remains constant, the initial line segment δx(0) is stretched after a
time τ to

δx(τ) = exp(τRART ) · δx(0). (5)

For any traceless matrix A with determinant detA = −ζ2, we have

expA = I cosh ζ + Aζ−1 sinh ζ. (6)

Hence,
δx(τ) =

(
I cosh ζ + τRART ζ−1 sinh ζ

)
· δx(0). (7)

Now let

A =

(
γ −ω
ω −γ

)
, (8)

where γ is the rate-of-strain of the flow, and ω is half its vorticity (∇ × u = 2ωẑ). The
corresponding rotated matrix is

RART =

(
γ cos 2θ γ sin 2θ − ω

γ sin 2θ + ω −γ cos 2θ

)
, (9)

and the exponential is

exp(τRART ) =

(
cosh ζ + (γτ/ζ) cos 2θ sinh ζ ((γτ/ζ) sin 2θ − (ωτ/ζ)) sinh ζ

((γτ/ζ) sin 2θ + (ωτ/ζ)) sinh ζ cosh ζ − (γτ/ζ) cos 2θ sinh ζ

)
(10)

with
ζ =

√
− det(τRART ) = τ

√
γ2 − ω2. (11)

Note that this expression is valid for γ2 < ω2, as well as for γ2 = ω2 by taking the limit.
The latter case corresponds to a shear flow, since then A2 = (γ2 − ω2)I = 0 with A 6= 0.

To simplify expressions, we let

Γ = γτ/ζ, Ω = ωτ/ζ, (12)



whence (10) becomes

exp(τRART ) =

(
cosh ζ + Γ cos 2θ sinh ζ (Γ sin 2θ − Ω) sinh ζ

(Γ sin 2θ + Ω) sinh ζ cosh ζ − Γ cos 2θ sinh ζ

)
. (13)

The matrix RART can represent an arbitrary 2D linear flow: there a 3 free parameters
(θ, γ, ω), which is the same as the number of independent components of a traceless 2D
matrix. Now we assume that the flow renovates : for fixed γ and ω, we choose a uniformly-
distributed random angle θ ∈ [0, 2π). We allow this flow to act for a time τ , and after that
period we select a new, independent random angle and start over. The random angle θ
allows is to make analytic progress, and to compute explicitly quantities such as Lyapunov
exponents.

Equation (7) is linear in δx, so the initial length of δx is irrelevant and doesn’t have to be
infinitesimal. Moreover, the angle θ is random, so we may choose for δx a vector ` = (1 0)
that lies along the x axis with unit length. Then after one step it is transformed to the
vector

`′ = exp(τRART ) · ` =
(
cosh ζ + Γ cos 2θ sinh ζ (Γ sin 2θ + Ω) sinh ζ

)
(14)

which is just the first column of (13). The length of the transformed vector is

‖`′‖2 = (cosh ζ + Γ cos 2θ sinh ζ)2 + (Γ sin 2θ + Ω)2 sinh2 ζ

= cosh2 ζ + Γ cos 2θ sinh 2ζ + (Γ2 + Ω2 + 2ΓΩ sin 2θ) sinh2 ζ .

To find the Lyapunov exponent, we need to average log‖`′‖ over θ. Write

‖`′‖2 = a+ b sin 2θ + c cos 2θ (15)

with
a = cosh2 ζ + (Γ2 + Ω2) sinh2 ζ, b = 2ΓΩ sinh2 ζ, c = Γ sinh 2ζ. (16)

The logarithm of the length is then

2 log‖`′‖ = log(a+ b sin 2θ + c cos 2θ)

= log a+ log(1 + (b/a) sin 2θ + (c/a) cos 2θ)

= log a+ log(1 + α cos(2θ + β)) (17)

where β is some phase, and

α2 = (b2 + c2)/a2 = 1− (Γ2 cosh 2ζ − Ω2)−2, 0 ≤ α < 1. (18)

Note that α is zero if and only if γ is zero. Now we average over θ:

2〈log‖`′‖〉 = log a+
1

2π

∫ 2π

0

log(1 + α cos(2θ + β)) dθ. (19)

The phase β is inconsequential, so we drop it and evaluate the integral:

2〈log‖`′‖〉 = log a+
1

π

∫ π

0

log(1 + α cosψ) dψ

= log a+ log
(

1
2
(1 +

√
1− α2)

)
= log

(
1
2
a (1 +

√
1− α2)

)
.



ω

γ

 

 

0 5 10 15 20 25

5

10

15

20

25

30

−8

−6

−4

−2

0

2

4

FIG. 1. Contour plot of the logarithm of the Lyapunov exponent (20) for a renovating randomly-

oriented linear flow with period τ = 1, as a function of the strain rate γ and half-vorticity ω.

After some manipulation, we obtain the simple form

λ =
1

τ
〈log‖`′‖〉 =

1

2τ
log

(
γ2 cosh2(τ

√
γ2 − ω2)− ω2

γ2 − ω2

)
, γ > ω, (20)

for the (positive) Lyapunov exponent λ. This is clearly positive for γ2 > ω2. The expression
is also valid for the ‘vortical’ case ω2 > γ2, but then it is preferable to write

λ =
1

2τ
log

(
ω2 − γ2 cos2(τ

√
ω2 − γ2)

ω2 − γ2

)
, γ < ω. (21)

There are three limiting cases of interest:

(i) For ω = 0, we get the pure-strain limit

λ =
1

τ
log cosh(τγ), ω = 0. (22)

Since cosh|x| < e|x| for x 6= 0, we have λ < |γ| for τγ 6= 0. The reorientation of the axes of
stretching due to renovation thus always decreases the stretching that would occur due to
constant strain, because it takes some time for our line segment to align itself with the new
axes. When τ |γ| � 1, we recover λ = |γ|, that is, the Lyapunov exponent is equal to the
rate-of-strain, since for a long period the segment has plenty of time to re-orient and stretch
fully at each period.

(ii) For γ = 0, we get the pure-rotation limit

λ = 0, γ = 0, (23)



so at least some strain is required to have a nonzero Lyapunov exponent.

(iii) Finally, for γ → ω we have A2 = (γ2 − ω2)I = 0, and we get the shear-flow limit:

λ =
1

2τ
log
(
1 + τ 2ω2

)
, γ = ω. (24)

Note that even though a simple shear flow does not have a positive exponent (its eigen-
values are zero), a renovating shear flow does: it behaves like a hyperbolic system. This
highlights the crucial role of re-orientation as a mechanism in chaotic dynamics.

The magnitude of λ as a function of γ and ω is plotted in Fig. 1: Notice the periodic
windows where the exponent is zero for ω > γ. These occur whenever cos2(τ

√
ω2 − γ2) = 1

in (21), or τ
√
ω2 − γ2 = mπ, m ∈ Z. This corresponds to ζ = iπm in (10), and leads

to exp(τRART ) = (−I)m, with obviously no stretching.


