[Years ago INEEMVEEW

Orbits of
Asteroids, a
Braid, and
the First Link
Invariant

Moritz Epple

Column Editor’'s address:
Faculty of Mathematics, The Open University,
Milton Keynes, MK7 6AA, England

n 22 January 1833, Carl Friedrich

Gauss wrote a short passage in
one of his mathematical notebooks
which was to become widely known
among mathematicians and physicists
soon after it was first published in
1867:

Of the geometria situs, which Leibniz
Joresaw and inio which only a pair of
geometers (Euler and Vandermonde)
were granted the privilege of taking a
Jaint glance, we know and have, after
a century and a half, little more than
nothing.

A central problem in the overlapping
area of geometria situs and geometria
magnitudinis will be to count the in-
tertwinings [Umschlingungen] of two
closed or infinite curves.

Let the coordinates of an undeter-
mined point of the first curve be x, y,
2; of the second x', y’, 2'; and let

[ie —2p+ @ -y + @ 271752
[(x" — 2)(dyde’ — dzdy’) +
@' — y) dzdx’ — dxdz") +
@~ D)(dody’ ~ dyda)]= V;

then this integral taken along both
curves is

= 4mm,

m being the number of intertwinings.
The wvalue is reciprocal, i.e., it re-
mains the same if the curves are in-
terchanged.!

The elusive science of geometria si-
tus which Gauss was referring to was
soon afterward given the modern name
of Topologie—topology—by one of
Gauss’s students, Johann Benedikt
Listing.2 Geometria magnitudinis, on

the other hand, denoted the kind of an-
alytical geometry which the 18th cen-
tury had elaborated so impressively,
based on the 17th-century ideas of
Descartes, Newton, and others. The
beautiful formula Gauss wrote down
connected the geometry of magnitude
with that of position: A linking number,
dependent only on the relative positions
of two curves-in the topological sense,
was calculated by an integral involving
the coordinates of points on these
curves; topological information was ex-
tracted from analytical information.
The text of Gauss’s fragment poses
several historical riddles. As in many
other passages of his notebooks,
Gauss gave no indication of any proof
or argument for his claim, nor did he
give any reasons which had led him to
consider the linking of space curves at
all. Without further information, we
cannot even be sure how his claim
should be interpreted mathematically:
Is it a definition,; i.e., did Gauss want
to say that the possible values of the
double integral on the left side of his
formula are integer multiples of 4,
and that, therefore, the integer ap-
pearing on the right side could be de-
fined as the linking number of the two
curves involved? Or is Gauss’s formula
a theorem, computing an indepen-
dently defined numerical invariant of
intertwined curves by analytical means?
We thus have the following four ques-
tions:
1. When, and how, did Gauss find the
integral?
2. How did he know that the values of
this integral were integer multiples
of 4=7?

"Werke, Vol. V, p. 605. All emphasis in this and the following quotations is in the originals. Square brackets

are used to indicate my omigsions or additions.

2First in a letter of 18386, then in Listing’s essay Vorstudien zur Topologie, published in 1847. The name geome-
tria situs, or analysis situs, however, was retained by Riemann and later Poincaré. Only in the first decades of
the 20th century, topology gradually replaced analysis situs. Gauss’s reference to Euler is to the latter’s Solutio
problematis ad geometriam situs pertinentis of 1736, dealing with the Kénigsberg bridges; the reference to
Vandermonde is to a paper entitied Remarques sur les problémes de situation of 1771, in which Vandermonde
studied various weaving patterns and their symmetries, along with the problem of circuits of knight's moves.
Both papers are reprinted in English translation in (Biggs, et al. 1978).
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3. Did Gauss think of an independent
notion of a linking number?
4. Why did he write down the fragment

in early 18337
The historical literature has not ad-
dressed these questions in any detail.?
Fortunately, it is possible to give sub-
stantial answers to all four questions.
We will find that the line of thought
which eventually induced Gauss to
document his insight originated almost
30 years earlier, and in the context of
astronomy.

Let us start with the fourth question,
and the circumstances of the publica-
tion of the passage in 1867, in the fifth
volume of Gauss’s Werke. This volume
was edited by Ernst Schering, the
Gottingen physicist who was in charge
of Gauss’s papers until his death in 1897.
It was devoted to published and unpub-
lished work on electricity and magnet-
ism. The topological fragment was
placed in a section containing other un-
published notes, mainly on electromag-
netic induction, and Schering obviously
believed that the fragment belonged in
this context. His editorial choice was
certainly reasonable, though not beyond
criticism, as we shall see below.

In fact, in the years following
Faraday’s discovery of induced cur-
rents in 1831, Gauss was working in-
tensely on electromagnetic induction,
together with his young friend and col-
league, the physicist Wilhelm Weber,
who had arrived in GoOttingen in
September 1831. After more than a
year of theoretical and experimental
work, the two set up the first telegraph
in Germany in Spring 1833, leading
from the Géttingen Observatory (in
which Gauss both lived and experi-
mented) to Weber's physics labora-
tory. One of the crucial laws governing
the physics of electromagnetic induc-
tion was Biot and Savart’s law, de-
scribing the force which an infinitesi-
mal current element exerted on an
“element of positive northern magnetic
fluid,” as Gauss wrote. His posthumous

fragments gave several forms of this in-
teraction. For instance, a current ele-
ment situated at a point R and directed
to an infinitesimally near point R’, of
strength u = RR’, acts on a magnetic
element at P with a force of strength

M sin R'RP
(RP)?
and direction orthogonal to the plane
determined by P, R, and R’. Rewritten

in modern symbolism, this infinitesi-
mal force is

if we denote the “vectors” RR’ and RP
by d§ and 7, respectively.

This fragment was written in the
same notebook as the one on the link-
ing integral and published by Schering
immediately following it. Indeed, the
integrand of the linking integral is pro-
portional to fd3’ if we choose ds as the
line element of one of the curves while
ds' denotes the line element of the
other. Thus, there was a compelling
electrodynamical interpretation of the
linking number: It was proportional to
the work V done when a fictitious mag-
netic test particle was carried along a
closed curve in the magnetic field in-
duced by a constant current running
through another closed curve. From
Ampére’s researches, it was known
that this work could also be deter-
mined by adding the oriented intensi-
ties of the currents intersecting a sur-
face bounded by the path of the
magnetic test particle.* Therefore, it
followed that the double integral ex-
pressing V was an integer multiple of
some constant, independent of the
metric details of the situation.

Against this background, it is quite
understandable that Schering chose to
place the fragment on the linking inte-
gral among Gauss’s electrodynamical
writings. There is even further evi-
dence showing that Gauss was think-
ing of topological matters in the years

of his cooperation with Weber. In 1847,
another astronomer and mathemati-
cian interested in topology, August
Ferdinand Mobius, wrote to Gauss:

As I have heard from W. Weber, al-
ready some years ago you intended to
write a treatise on all possible inter-
lacings [Verschlingungen) of a thread,
as an introduction to, or preparation
Jor, the theory of electrical and mag-
netic currents. May we hope that this
treatise will soon appear? The fulfill-
ment of this hope would be most de-
sirable for myself and certainly for
many others, t00.5

Apparently, Gauss was less cautious in
his remarks to colleagues than in his
own notebooks. No texts have sur-
vived which could be regarded as parts
of a treatise on topology. Nevertheless,
Weber's information was probably
right. Well before his electrodynamical
work, Gauss had had similar plans to
write on geometria situs (see below).
The resigned tone of the first lines of
his fragment on the linking integral
may well represent an admission that
he was not yet in a position to realize
his intentions, according to his high
standard of pauca sed matura.

All this seemed to confirm the elec-
trodynamic interpretation of Gauss’s
note. Accordingly, the first readers of
Gauss's fragment were physicists. The
most important one was in Scotland.
Within one year of the publication in
1867, James Clerk Maxwell read
Gauss’s fragment, and communicated
the idea to his scientific friends, in-
cluding Peter Guthrie Tait in Edin-
burgh, who was to embark on the clas-
sification of knots about 10 years later.
Maxwell also reported on it to the
London Mathematical Society in early
1869, and worked out the idea of the
passage in great detail in his major
work, the Treatise on Electricity and
Magnetism (Maxwell 1873, §§ 409-
422). Among other things, he pointed
out that there could be nontrivial links

SThe best treatments of Gauss’s topological fragments are still (Stéckel 1918) and (Pont 1974); both give little more than a listing of some relevant sources.
4This was an early, magnetostatic particular case of what came to be known as “Stokes’s theorem.” Gauss discussed this situation in his Aligemeine Theorie des

Erdmagnetismus of 1838.

SMébius to Gauss, 2 February 1847, The letter is in Gauss’s papers and was probably available to Schering. No answer to Mébius's letter seems to be extant. The
contact between Weber and Mobius was the consequence of Weber's exile from the Koénigreich Hannover. With six of his colleagues, Weber had lost his chair at the
university in 1837 for his refusal to accept the abolition of Hannover's liberal constitution. In 1843, he accepted a call to Leipzig where Mébius was working.
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Figure 1. Maxwell’s link.

of two components with vanishing link-
ing number, by an example which to-
day is often called the “Whitehead link”
(see Fig. 1). Maxwell’s discussion
closed with a variation on Gauss’s
theme of the emergence of a new math-
ematical field:

It was the discovery by Gauss of this
very integral, expressing the work
done on a magnetic pole while de-
scribing a closed curve in presence of
a closed electric current, and indicai-
ing the geometrical connexion be-
tween the two closed curves, that led
him to lament the small progress
made in the Geometry of Position
since the time of Leitbnitz, Euler and
Vandermonde. We have now, however,
some progress to report, chiefly due to
Riemann, Helmholtz, and Listing.®

Through Schering’s edition and
Maxwell’'s reception, the electrody-
namical interpretation of the linking in-
tegral was well established. If this was
the full story, the linking number
would have to be defined by the dou-
ble integral, and we should not expect
to find references to the situation in
question in Gauss’s earlier writings.
But we do find such references, and
they allow us to develop a second way
of looking at the mathematics of the
linking integral, in a purely geometric
fashion.

In order to present the first such ref-
erence, I will go back to one of the ma-
jor breakthroughs in Gauss’s scientific

career, his calculation of the orbit of the
first observed asteroid, Ceres, in 1801.
Astronomy held a leading position in
the public appreciation of science at the
time, and Gauss’s success did more to
promote his career than his earlier
recognition by mathematicians as a
leading number-theorist. In the years to
follow, astronomers found a large num-
ber of similar celestial bodies, and
Gauss—still in Braunschweig—contin-
ued to think of asteroids. In August
1804, he published a small treatise en-
titled Uber die Grenzen der geocen-
trischen Orter der Planeten, which
took up a rather practical question,
namely the determination of the celes-
tial region in which a given new aster-
oid, or planet, might possibly appear.”
This short article is a striking example
of the diversity and density of argument
which Gauss was able to achieve in a
single text. Published in an astronomi-
cal journal, the treatise addressed, at
the same time, issues of practical as-
tronomy, such as recent observational
data and the making of star maps, and
mathematical topics in geometry, dif-
ferential equations, and geometria si-
tus.

In fact, Gauss had already been di-
rected to this latter field in the context
of his first proof of the fundamental
theorem of algebra, in 1799. On 12
October 1802, he addressed the subject
in a letter to the astronomer Heinrich
Olbers, with whom he had started a
correspondence on the occasion  of
Olbers’s observations of Ceres. Gauss
mentioned that he expected Carnot’s
Géométrie de position to appear soon,
wrongly taking this title in the sense of
geometria situs. He added:

This still almost unexploited subject, in
which we only have a few fragments
Jrom Euler and a geometer whom I
highly appreciate, Vandermonde, must
open a completely new field and form
a separate and highly interesting
branch of the sublime science of quan-
tity.8

Let me take the liberty of present-
ing the problem of Gauss’s paper in
modern mathematical language. Let
the orbit of the earth’s motion around
the sun be given by X C R3, and let
X' C R3 be the orbit of another celes-
tial body, planet, comet, or asteroid
(the sun being at the center of a suit-
able system of Cartesian coordinates).
Determine the region on the sphere
given by

{ﬁ e 52 (.i'E).(,.f}' EX'}.

This region was called zodiacus by
Gauss. Its determination helped to
limit the effort needed both in the ob-
servation of the given celestial body
and in the production of an atlas of the
smallest part of the celestial sphere
into which the orbit of the body could
be drawn. In order to solve his problem
(topologists will already have recog-
nized how it is connected to the link-
ing integral), Gauss derived a differen-
tial equation for the boundary curve or
curves of the zodiacus, implicitly as-
suming the orbits to be smooth curves.
If Z=(xy2) and &' = (x",y',2") de-
note the coordinates of orbit points, a
necessary condition that a pair of
points (Z,Z4") correspond to a boundary
point of the zodiacus is that the triple
consisting of the two tangent vectors
to the orbits at £ and #’' and the dis-
placement vector 7 := &' — & be lin-
early dependent. Gauss expressed this
condition by saying that the two tan-
gents at Z and £’ had to be coplanar.
Translating this condition into a for-
mula led to the differential equation

(& —2)dy' dz — dy dz’) +
W' — y)(dz' dx —dz dx") +
(&' — 2)(dx' dy — dx dy") = 0.

KR
Sl

For later use, let us abbreviate the dif-
ferential form on the left-hand side by
. Obviously, this form is, up to a
change of sign, nothing but the nu-
merator of the integrand in the linking
integral! At this point, Gauss inserted
a very typical remark: He had under-

SFrom (Maxwell 1873, § 421). That Helmholtz's name appears in this extension of the list of topologists points to another development which had made British physi-
cists aware of topology, namely research on vortex motion in perfect fluids. See my Topology, Matter, and Space, to appear in Archive for History of Exact Sciences,

for a detailed study of this development.
"The article is reprinted in Werke, Vol. VI, pp. 106-118.
8Schilling and Kramer (1900/1909, vol. 1, p. 103).
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taken a mathematical study of this
equation in its own right, but for the
sake of brevity, he did not wish to go
into that now.

It turned out that not all solutions
of the above differential equation rep-
resented actual boundary lines of the
zodiacus. Gauss distinguished three
possible cases: (1) The minimal dis-
tance of the celestial body to the sun
was greater than the maximal distance
between earth and sun, (2) vice versa,
(3) the two orbits were linked. He
showed that in the first two cases, the
solutions represented two disjoint
closed curves on the sphere, whereas
in the third, he found a single closed
curve. But, Gauss remarked, none of
the regions bounded by this curve
could be the zodiacus of a case (3) ce-
lestial body: In this case, one could
show “for reasons of the geometry of
position” that the zodiacus was the
whole celestial sphere. Consequently,
the solution of the differential equation
®w =0 now had a different meaning.
This, too, Gauss left as a problem to
the reader. He remarked that none of
the orbits of the known planets was
linked with that of the earth, but
“comets of the sort exist in abun-
dance.” The article closed with a cal-
culation of the zodiacus of the recently
discovered Pallas and Ceres.

What were the topological reasons
alluded to above, and what was the
content of Gauss’s further study of w?
Gauss kept quiet on this point, but we
can make a probable guess on the ba-
sis of his later remarks concerning this
differential form.1® Gauss seems to
have thought of something like the fol-
lowing geometrical situation: If one
looks at the image of a closed orbit X'
of a celestial body on the celestial
sphere of the earth, with the earth’s po-
sition fixed at a point %, one gets an
oriented, closed curve that may be de-
noted by vz This curve encloses an

oriented area, A(Z), which measures
what Gauss in later writings called the
“solid angle” enclosed by ;. As with
plane angles, this area is well defined
only up to a multiple of the total sur-
face of the sphere, 4. [In modern
terms, vz is a l-cycle on the sphere;
hence, it bounds a 2-chain a3 ¥z =
daz. The area A(X) in question is the
integral of the canonical area form
over this chain. Since «a; is well defined
only up to a 2-cycle, i.e., up to a multi-
ple of the sphere itself, A(Z) is deter-
mined only up to a multiple of 4]
When the earth moves a small distance
along its orbit, say from Z to 7, the
curve v; is continuously deformed into
a nearby curve vy, producing a contin-
uous change AA of the area enclosed.
This area change can be calculated an-
alytically. Up to a sign, it is given by
the integral

where 7 denotes the distance between
the two integration arguments of o,
and the first integration follows the
earth’s orbit between Z and §. When
the earth has completed one revolu-
tion, the planet’s orbit appears again at
its original position. Therefore, the
area change associated with a com-
plete revolution must be an integer
multiple of the total surface of the
sphere. If this multiple is different from
zero, the zodiacus of the planet is the
whole sphere. In the case of linked el-
lipses, it is easy to see that the whole
sphere is covered when the earth
moves around its orbit once. But since
this property does not depend on the
“measure,” i.e., metric structure of the
whole setting, it pertains to geometria
sttus.

Here, we have a second, geometric
way of deriving the linking integral and
its behavior.!! In modern terms, we
may describe it as the calculation of

the mapping degree of the mapping
defining the zodiacus,

D XXX - 52

I3RS

o -z
R

Of course, we should be cautious
with such reconstructions. But it is ev-
ident that Gauss knew a good deal
more than he wrote down in his arti-
cle of 1804. Even if he was not yet
thinking in terms of linking numbers,
etc., we may conclude that the phe-
nomenon of linking and the relevant
differential form were known to Gauss
at this time.

Before leaving the article on the zo-
diacus, let me add a remark on the no-
tion of oriented area upon which this
reconstruction hinges. In a letter to
Olbers of 1825, Gauss mentioned that
he had known the notion of an oriented
area of plane figures for about 30 years.
The crucial problem was to deal with
self-intersections of their “circumfer-
ence,” i.e., to determine the area of a
figure outlined by an arbitrary closed
curve with a finite number of trans-
verse double points. In this case, the
different regions of the plane sepa-
rated by the arcs of the given curve had
to be weighted with appropriate coef-
ficients. Gauss explained some exam-
ples of this phenomenon—today cap-
tured in the homological terminology
of chains, cycles, and boundaries—in
his letter to Olbers.!? This letter be-
longs to the period in which Gauss
worked on his Disquisitiones gen-
erales circa superficies curvas (1827).
There, the notion of oriented area was
needed for the calculation of the total
curvature of a curved surface in 3-

space, defined as the oriented area of

its image on the sphere under what is
usually called the “Gauss map” today.
In this way, Gauss was led to recon-
sider the geometry of closed plane
curves (or of closed curves on the

SWerke, Vol. VI, p. 111f. In 1847, Listing counted 25 pairs of asteroids, whose orbits were known to be linked by then (Listing 1847, p. B4f.).
0See in particular Aligemeine Theorie des Erdmagnetismus of 1838, in Vol. V of the Werke, § 38.
""This geometric interpretation was first defended against Schering’s electrodynamical interpretation by Schering’s student, Otto B&ddicker. In his lectures on poten-
tial theory in 1874/75, Schering had communicated Gauss's result to his students, among them Béddicker, who decided to choose the linking integral as a disserta-
tion topic. To a large extent, his dissertation (Géttingen, 1876) is a lengthy elaboration of the geometric interpretation of the linking integral, based on the discussion
of solid angles in Gauss’s Aligemeine Theorie des Erdmagnetismus. Note that Maxwell also included the geometrical interpretation in his treatment of the linking inte-

gral (Maxwell 1873, §§ 417-421).

2Gauss to Olbers, 30 October 1825, in Werke, Voi. VIIl, p. 398.

48  THE MATHEMATICAL INTELLIGENCER

Copyright © 1998. All rights reserved.



sphere) in some detail, and it was in
this period that he apparently first
thought of preparing a treatise on
topological themes. This is again
documented in his letters to Olbers,
and, most explicitly, in a letter to
Schumacher:

Some time ago I started to take up
again a part of my general investi-
gations on curved surfaces, which
shall become the foundation of my
projected work on higher geodesy.
[. . .1 Unfortunately, I find that I will
have to go very far afield since known
things must also be developed in a dif-
ferent form, adapted to my investiga-
tions. One has to follow the tree down
to all its root threads, and some of this
costs me week-long intense thoughi.
Much of it even belongs to geometria
situs, an almost unexploited field. The
wish I have always had in all my
works, to give them such perfection ut
nihil amplius desiderari possit [that
nothing more can be desired], makes
it even more difficult, as well as the
necessity to leave my work for other
maiters.t?

The published treatise on curved sur-
faces did not contain the material re-
ferred to, but Gauss signaled his in-
tention to pursue these matters further
at the end of the sixth paragraph of the
Disquisitiones, dealing with the cal-
culation of total curvature.

It should be emphasized that these
considerations, rather than the problem
of the classification of knots, formed
the background to Gauss’s attempts to
study the topology of closed plane
curves, documented in some fragments
on geometria situs which were pub-
lished in Vol. VIII of the Werke in 1900.14

Late in his career, Gauss returned
to the astronomical problem of the lim-
its of the zodiacus. In January 1848, at
the age of 70, he published a short note
in the Astronomische Nachrichien.l®

Again, a new asteroid, Iris, had ap-
peared in the firmament, and Gauss's
assistant at the Gottingen observatory,
Goldschmidt, had calculated its zodia-
cus. Gauss himself did not miss the
occasion to communicate some new
mathematics. In his note, Gauss tells
us in his 44-year-old article on the lim-
its of the zodiacus that there had been
a problem which he had not dealt with
on the earlier occasion, “because a fur-
ther discussion would only have been
a hors d’oeuvre there, and because I re-
ally wanted to let other people have the
pleasure of occupying themselves with
a mathematical problem which in my
opinion was not uninteresting.” The
problem he was speaking of was that
of the exceptional solutions of the dif-
ferential equation w =0, i.e., those
which do not represent boundary com-
ponents of the zodiacus. What was
their geometrical meaning? Now
Gauss gave the answer: A given geo-
centric position p of a celestial body
could arise in different ways; in other
words, there might be more than one
pair of positions (£,£") which was
mapped to p = ®(Z,%"). Implicitly sup-
posing everything to be smooth and
generic in an appropriate sense, Gauss
pointed out that the celestial sphere was
divided into several regions, each of
which was covered a different number
of times by the mapping ®. The solu-
tions of the differential equation @ = 0
represented the set of singular points
of this branched covering, i.e., the lines
where the number of preimages
changed by 2. Along the solution
curves, an intermediate number of
preimages existed. (Of course, Gauss
did not speak of “branched coverings”
and their singular points, but he de-
scribed the geometrical situation very
clearly.) Gauss ended with a qualita-
tive discussion of the case of two conic
sections as orbits; here, the maximum
number of preimages of ® is 4; the dif-

ferent configurations obtained depend
on the relative position of these orbits.
For instance, in the case of linked el-
lipses, w = 0 is satisfied along a single
closed curve. Therefore, Gauss con-
cluded his note: in such a case, there
existed two regions in the celestial
sphere, one of which was covered
once, the other thrice.

We can take this second paper on the
zodiacus as further evidence for the
view that already in 1804 Gauss had a
rather detailed picture of the geometri-
cal meaning of his differential form, w.

Up to this point, we have answered
questions 4, 1, and 2 relating to the
fragment on the linking integral. We
have seen two interpretations, one
physical and one geometrical, of the
linking integral, which explain how
Gauss knew that its values were inte-
ger multiples of 4. The crucial third
question remains: Did Gauss think of
an independent notion of the linking
number of two space curves so that his
formula represents a computation
rather than a definition? A search in
Gauss’s mathematical notebooks in
summer 1994 brought to light an un-
published page on a topological topic
which reveals the answer.6 The editor
of Gauss’s fragments on geometria si-
tus, Paul Stickel, did not see its im-
portance in 1900, for the simple reason
that the mathematical world had not
yet directed its attention to the type of
mathematical objects discussed by
Gauss on this page: braids. Even today,
it seems to be a widespread opinion
that braids were introduced into math-
ematics by Emil Artin in 1926, despite
Wilhelm Magnus’s repeated indica-
tions that Adolf Hurwitz had studied the
braid group (without its name) in a sem-
inal paper on Riemann surfaces in
1891.17 A close reading of Tait’s papers
of 1877-1885 and Listing's Vorstudien
reveals, however, that braidlike ob-
jects had been of interest to both of

13Gauss to Schumacher, 21 November 1825, in Werke, vol. VIll, p. 400.
TWeil (1979) has called attention to an interesting letter of 1863 in which Betti reported that Riemann had told him about some attempts by Gauss to study knots.
Riemann’s communication, however, refers only to the last years of Gauss’s life, i.e., the period after Listing had discussed the knot problem in his Vorstudien zur
Topologie. No documents seem to survive in Gauss's papers which definitely relate to studies of knots rather than closed plane curves.

1SReprinted in Werke, Vol. Vi, pp. 313~-316.

18NSUB Gottingen, Cod. Ms. Gauss, Handbuch 7, p. 283.

17For a reference to Artin (1926), see (Burde and Zieschang 1985, p. 161). Magnus’s aliusions to (Hurwitz 1891) can be found in his survey on braid groups (Magnus
1974) and in his book with Chandler (Chandler and Magnus 1982).
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them.1® Given that Listing had been in
direct contact with Gauss, we cannot
exclude the possibility that these ideas
were connected with the even earlier
ones of Gauss, which I will now present.

On the page in question is nothing
less than a nicely drawn picture of the
four-strand braid which we would
write as 030105 203, using Artin’s pres-
entation of the braid group, together
with some mathematical comments. It
probably belongs roughly to the period
of the Disquisitiones circa superfi-
cies curvas. In the notebook, it imme-
diately precedes some pages with geo-
detical calculations, dated 1830. On the
preceding pages, we find further, un-
dated, geodetical calculations. The last
date appearing on previous pages is
1815; apparently, the notebook in ques-
tion had been out of use for long peri-
ods of time. On the back of the page,
there is a reading of a weaving pattern
of bands. The signs “St” above and be-
low the passage are Stickel’s, showing
that he had seen it while editing vol-
ume VIII of the Werke. Since this frag-
ment has never been discussed in the
literature, I will give a detailed inter-
pretation with a complete translation
as I go along.

The drawing shows that Gauss
thought of the braid as being divided
into six segments, extending from one
crossing to the next. Gauss numbered
these segments and labeled the four
strands a, b, ¢, and d. Then he wrote
down a table with the title “change of
coordination.” Its rows correspond to
the labeled strands, its columns to the
numbered segments.

alll|l 2+%|3+7 [2+24|2+2¢
b 212 1 1 1 1
c |34 4 4 4 3
dlidl3+113+712+2¢713+2014+ 3

Obviously, Gauss attempted to develop
a notation for braids keeping track of
(1) the permutations of the strands as
one follows the braid and (2) the twists
of the strands around each other. The
real parts of the numbers appearing in
the table specify the positions of the
strands, and the imaginary parts were
intended to record the twists. The as-
signment of an 7 to one of the strands
at a crossing of the diagram is am-
biguous, however; there seems to be
no definite convention adopted in the
table (this can be seen already at the
first two crossings). The ambiguity is
probably due to the fact that Gauss did

18See Listing’s discussion of “vielfache Helikoiden" and “Helikoiden héherer Ordnungen” (Listing 1847, pp.
43-51), or Tait on “clear coils” (Tait 1877, §§ 25, 26).
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not yet distinguish between the two
possible orientations of a half-twist of
two strands. That Gauss used complex
integers to encode the composition of
the braid might be motivated by his
well-known fascination with these
numbers; it might, however, also have
a more serious reason (see below).

Gauss himself seems to have been
dissatisfied with his table. Immediately
below it, he wrote

What matters is to represent the
whole [Inbegriff] of the entanglement
[Verwicklung] in such a way as the
aggregate of its parts that one sees
which parts destroy each other.

In “parts” of a braid which may “de-
stroy” each other, we can perceive the
idea of a composition of braids and of
braid equivalence. The meaning of the
sentence is thus: Starting from its ele-
mentary parts (involving only one
crossing), find a representation of a
braid as a whole which allows one to
decide whether it (or any part of it) is
trivial or not. In other words, this pas-
sage contains a first formulation of the
classification problem for braids (or,
more anachronistically, of the word
problem in the braid group).

The next remark formulated a con-
Jecture:

Probably it will suffice to list the half
twists of one line around the other ac-
cording to a certain sense of rotation.

Here, Gauss came back to the idea un-
derlying his table, now explicitly ad-
dressing orientation. The conjecture
can be read in two ways. A minimal
reading is to understand it as a new
proposal for a concise notation of
braids; for a stronger reading, see be-
low. In fact, Gauss returned to his ex-
ample and wrote down

cd, ab, da, ad

—but then he stopped and struck out
the whole line. Also, the second try
ended without success; we read

cd, ab .

It seems clear what happened.
Gauss stumbled at the third crossing,
where the orientation of the half-twists
of the strands changes for the first time
(in modern terms: the inverse of a gen-



erator appears in the braid word). At
this point, Gauss seems to have real-
ized the necessity of finding an ade-
quate way of keeping track of the ori-
entations of the half-twists composing
a braid. On the margin of the page,
Gauss drew another sketch showing a
curve winding around two points,
probably illustrating the winding of a
braid strand around two others as seen
from above. Then follows the last sen-
tence of the fragment:

One only has to count tn every line
how often + changes with —.

Given that Gauss did not specify what
his signs + and — mean, the interpre-
tation of this remark can only be ten-
tative. The earlier mentioning of a
“sense of rotation,” the drawing on the
right margin, and the notes “south be-
fore/north behind” on the left margin
make it probable, however, that the
signs do, indeed, refer to the two pos-
sible orientations of a half-twist. On
this reading, Gauss proposed to count
the difference between the numbers of
positive and negative half-twists a
given strand experiences in a possibly
complex braid. For a two-strand braid,
and on division by 2, this amounts to
the modern combinatorial definition of
the linking number.

The drawing on the margin and
Gauss’s knowledge of the index of
plane curves make it probable that al-
ready at the time of writing, he was
aware of an analytical method for the
computation of the linking number, us-
ing the projection of a braid to a trans-
versal plane: If the coordinates of two
braid strands in R3 = C®R are given
by (21(8),t) and (22(8),t), respectively,
then their linking number is, of course,
the (half-integer-valued) index of the
curve ¢ +> 21(t) — 2o(t) with respect to
zero. In this light, the fragment of 1833
would, indeed, be just another compu-
tation of the linking number, and not
a definition.

The second reading of Gauss’s con-
jecture (and the whole fragment)
would be much stronger. On this read-
ing, we would ascribe to Gauss the be-
lief that in order to solve the classifi-
cation problem for braids, it would
possibly suffice to determine, in addi-
tion to the permutation associated

with a braid, just the numbers of
(signed) half-twists between all pairs
of strands. The remarks following the
conjecture do not contradict this
stronger interpretation. Even though
the conjecture is false, it would show
a remarkable insight (and note that
Gauss qualified his conjecture with the
cautious “Probably . ..”).

There is a sort of amiddle course be-
tween the two readings discussed:
While Gauss was looking for a notation
for braids which enabled one to decide
whether or not two braids were equiv-
alent, he came close to defining a non-
trivial invariant for braids, namely the
last row of the table he set up (with a
definite convention on crossings
adopted). Allow me to sketch a corre-
sponding elaboration of Gauss'’s ideas,
freely using modern mathematical lan-
guage. These variations on Gauss’s
theme are not intended to represent an
historical reconstruction of his line of
thought. At best, they might indicate the
space of mathematical speculation in
which Gauss was moving when he gave
an afternoon’s thought to the first braid.

A Gaussian Invariant of Braids
Let the n-strand braid group B,, be gen-
erated by oy, ..., 0,—1, with defining
relations

ooy = ooy, if ‘k - l[ =2;
Ox0k+10% = Op+1050%+1
fork=1...,n—2.
An action a of B, on the lattice of

Gaussian integers Z[i] may be defined
by

z, Rez#kk+1

a(op)(@) =12+ 1, Rez=k
2—1+4% Rez=k+1
k=1,2...,n~ 1)
The action of the inverse is given by
2, Rez#kk+1

ooy D) =12+ 1—14,Rez =k
2 -1, Rez =k + 1.

One easily verifies the defining rela-
tions of B,, for this action.

Given a braid word w in the gener-
ators oy, we can consider the corre-
sponding path of a point 2z € Z[7]. In
Gauss’s example, we have w =
030105 203, so for z = 1, we get the se-
quence
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1,1,2 8-4 2—

The paths of the n points 1,2, ..., n €
Z[i] determine the braid word com-
pletely, since in each step we can see
which generator has been acting. In
fact, we can take these paths as the en-
tries of an improved version of Gauss’s
table, making each path one row of the
table. In the example, the modified
table reads

%, 2 —1.

alll |l 2 3—-tl2—1|2—1%
bli2 |2 1+4|1+2i1+¢|1+4%
cl||3 (4 4 4 4 3+14
a4 13+413+112+413 4

The columns of this table can easily be
read off a diagram of the given braid:
Just take the positions of the strands
as real parts and at each crossing, add
*+4 to the lower strand according to the
orientation of the crossing. By con-
struction, the last column of the table
is an easily calculated invariant of the
given braid. It is determined by the per-
mutation associated with w and, for
each strand, the sum of the signs of its
undercrossings. Of course, this invari-
ant is not complete, as it is determined
by the linking numbers between the
strands of the braid.

The above construction may evi-
dently be modified in various ways.
For instance, we could consider a sym-
metric version of the action:

2, Rez+#kk+1
Blo)(@):=12+1+4, Rez =k
z2—1+4 Rez=k+1

*k=12...,n-1.

For this action, the last column of the
table for a braid word is of the form

mo(D) +J(DE,  me(2) + 52, - . .,
mp(n) + J(n)i,

where 7, is the permutation associ-
ated with a braid, and j(k) is the sum
of the signs of all crossings in which
the kth strand is involved; in other
words, j(k) is twice the sum of the link-
ing numbers between the kth strand
and all other strands of the braid.
Very probably, the few lines in
Gauss’s notebook are the only trace of
a mathematical activity in which one
of the genuine objects of topology was
first conceived. It would be difficult
and unnecessary to decide which of
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the above readings comes closest to
“what Gauss reslly did.” Nevertheless,
this fragment documents the invention
of a new type of mathematical object,
which would be called braids a century
later. To be sure, there is no detailed
discussion of the idea of composing
braids, and, in any case, no explicit
group-theoretical thinking. From the
letter to Olbers written in 1802, we also
know that Gauss had previousiy read
Vandermonde's paper on weaving pat-
terns. But still there is a certain acuity
in Gauss's fragment which marks the
borderline between vague ideas and 2
fairly definite object of thought.

The least we can say is that the frag-
ment reveals that Gauss had an idea of
how to describe the phencmenon of
linking in braids by a number counting
the signs of diagram crossings. This
closes the gap in our interpretation of
the fragment on the linking integral. We
have thus obtained a rather clear pic-
ture of how this fragment was situated
in Gauss’s mathematical practice.
Having first encountered the differen-
tial form dominating the mathematics
of linking in the astronomical context
of the zodiacus of asteroids, Gauss was
led to recognize its topological content
when he considered linked orbits of ce-
lestial bodies. Then, during his studies
of the differential geometry of curved
surfaces, motivated by geodetical
work, he felt bound to reconsider topo-
logical issues. Among other things, he
discussed the notion of an oriented
area of closed curves in the piane or on
the sphere, a topic which he most prob-
ably had considered already in the con-
text of his investigation of the zodia-
cus. Avound this time, he also gave
some hours of thought to his braid and
discovered the combinatorial way of
determining the linking number. When
he finally was led back to geometria si-
tus in the context of his joint work with
Weber on electromagnetic induction, it
was easy for him to recall his earlier re-
sults. If we are o believe the indirect
report by Mobius, Gauss renewed his
earlier wish to write a treatise on linked
{and perhaps knotted) space curves,
but (as before) he was unable to pro-
duce something which satisfied his ex-
traordinary publication standards. In
his notebook, he made only this single
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mention, in a tone of resignation, and
it gave the core result of Gauss’s own
contributions to the new discipline.

What is striking about this story are
the roles of the varicus disciplines in
the context of which the linking phe-
nomenon was discussed. Although
Gauss was, throughout his career, very
clear that in the conceptual hierarchy
of mathematics, geometria situs was
furdamental, the practical motivation
of dealing with linking and related top-
ics came from the exact sciences of as-
tronomy, geodesy, and electromagnet-
ism. The mathematical activity of
which the fragment of 1833 is an ex-
tremely condensed trace was one of
mathematization, of a domain of very
intwitive problems which had net yet
been treated within the “sublime sci-
ence of quantity,” with the partial ex-
ception of those immediately related to
complex integration. That these prob-
lems continued to reappear in several
of the leading sciences of Gauss’s day
must be one of the reasons for the very
high value he put on the slowly emerg-
ing science of topology.
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