RAYLEIGH QUOTIENT ITERATION

JEAN-LUC THIFFEAULT

To help with the last part of Problem 5 in homework 2, here is a clarification of the convergence of Rayleigh Quotient Iteration (Theorem 27.3 of Trefethen & Bau, p. 208). We follow the notation of T&B throughout.

First assume that the normalized estimate $v^{(k)}$ is close to the normalized eigenvector q_J with eigenvalue λ_J :

(1)
$$\|\boldsymbol{v}^{(k)} - \boldsymbol{q}_J\| = \varepsilon$$

for ε small. This means that

(2)
$$\boldsymbol{v}^{(k)} = C_{k,\varepsilon} \left(\boldsymbol{q}_J + \varepsilon \, \boldsymbol{u}^{(k)} \right),$$

with

(3)
$$C_{k,\varepsilon} = (1 + \varepsilon^2 \| \boldsymbol{u}^{(k)} \|^2)^{-1/2}$$
 and $(\boldsymbol{q}_J)^T \boldsymbol{u}^{(k)} = 0.$

The corresponding Rayleigh quotient estimate is then

$$\lambda^{(k)} = (\boldsymbol{v}^{(k)})^T A \boldsymbol{v}^{(k)}$$

= $(\boldsymbol{q}_J + \varepsilon \, \boldsymbol{u}^{(k)})^T A (\boldsymbol{q}_J + \varepsilon \, \boldsymbol{u}^{(k)}) + O(\varepsilon^2)$
= $\lambda_J + \varepsilon^2 (\boldsymbol{u}^{(k)})^T A \boldsymbol{u}^{(k)} + O(\varepsilon^2).$

Hence, $|\lambda^{(k)} - \lambda_J| = O(\varepsilon^2)$. Now take an inverse iteration step: we must solve

(4)
$$(A - \mu I) \boldsymbol{w} = \boldsymbol{v}^{(k)} = C_{k,\varepsilon} \left(\boldsymbol{q}_J + \varepsilon \, \boldsymbol{u}^{(k)} \right)$$

for \boldsymbol{w} . The solution is

$$\boldsymbol{w} = C_{k,\varepsilon} (A - \mu I)^{-1} (\boldsymbol{q}_J + \varepsilon \, \boldsymbol{u}^{(k)})$$

= $C_{k,\varepsilon} (\lambda_J - \mu)^{-1} \boldsymbol{q}_J + C_{k,\varepsilon} \, \varepsilon (A - \mu I)^{-1} \boldsymbol{u}^{(k)}.$

Hence,

(5)
$$C_{k,\varepsilon}^{-1} (\lambda_J - \mu) \boldsymbol{w} = \boldsymbol{q}_J + \varepsilon (\lambda_J - \mu) (A - \mu I)^{-1} \boldsymbol{u}^{(k)}.$$

Now letting $\mu = \lambda^{(k)}$, we have $\lambda_J - \mu = \lambda_J - \lambda^{(k)} = O(\varepsilon^2)$, so that

(6)
$$\varepsilon (\lambda_J - \lambda^{(k)}) (A - \lambda^{(k)} I)^{-1} \boldsymbol{u}^{(k)} =: \varepsilon^3 \boldsymbol{u}^{(k+1)} = \mathcal{O}(\varepsilon^3).$$

Date: 28 February 2018.

JEAN-LUC THIFFEAULT

This is true as long as $(A - \lambda^{(k)} I)^{-1} \boldsymbol{u}^{(k)}$ doesn't blow up, but it doesn't since $\boldsymbol{u}^{(k)}$ is orthogonal to \boldsymbol{q}_J . Note also that $\boldsymbol{u}^{(k+1)}$ remains orthogonal to \boldsymbol{q}_J . Thus, to leading order in ε we get the improved estimate to \boldsymbol{q}_J by normalizing \boldsymbol{w} :

(7)
$$\boldsymbol{v}^{(k+1)} = \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} = C_{k+1,\varepsilon^3} \left(\boldsymbol{q}_J + \varepsilon^3 \, \boldsymbol{u}^{(k+1)} \right).$$

To get the next level of improvement, start again from (2) with ε replaced by ε^3 and k by k + 1, yielding an $(\varepsilon^3)^3 = \varepsilon^9$ improvement for the estimate $\boldsymbol{v}^{(k+2)}$.