MATH 715 - Computational Mathematics II

HW #3

Due 2:30pm, Thursday Mar. 22

- 1. Let $A \in \mathbb{C}^{m \times m}$ be arbitrary. The set of all Rayleigh quotients of A, corresponding to all nonzero vectors $x \in \mathbb{C}^m$, is known as the *field of values* or the *numerical range* of A, a subset of the complex plane denoted by W(A).
- (a) Show that W(A) contains the convex hull of the eigenvalues of A.
- (b) Show that if A is normal, then W(A) is equal to the convex hull of the eigenvalues of A.
- 2. Let A be an $n \times n$ tridiagonal matrix with $a_{i,i+1} = a_{i+1,i} = -1$ and $a_{ii} = 3$, and let $b \in \mathbb{R}^n$. For which values of the parameter ω does the iteration

$$x_{k+1} = x_k + \omega(b - Ax_k), \quad k = 0, 1, 2, \dots$$
 (1)

converge to a solution of Ax = b for any starting value $x_0 \in \mathbb{R}^n$? Test your result on a computer for n = 5 and comment on your findings.

- 3. Consider the real system of linear equations Ax = b, where A is nonsingular and satisfies (x, Ax) > 0 for all real $x \neq 0$, where $(x, y) = x^T y$ is the Euclidean inner product.
- (a) Show that (x, Ax) = (x, Mx) for all real x, where $M = (A + A^T)/2$ is the symmetric part of A.
- (b) Prove that $(x, Ax)/(x, x) \ge \lambda_{\min}(M) > 0$, where $\lambda_{\min}(M)$ is the smallest eigenvalue of M.
- (c) Consider the iterative sequence $x_{n+1} = x_n + \alpha_n r_n$, where $r_n = b Ax_n$ is the residual, and α_n is chosen to minimize $||r_{n+1}||_2$ as a function of α_n . Prove that

$$\frac{\|r_{n+1}\|_2}{\|r_n\|_2} \le \left(1 - \frac{\lambda_{\min}(M)^2}{\lambda_{\max}(A^T A)}\right)^{1/2}.$$
 (2)

- 4. Let A be the 100×100 tridiagonal symmetric matrix with 1, 2, ..., 100 on the diagonal and 1 on the sub- and super- diagonals, and set $b = (1, 1, ..., 1)^T$. Write a program that takes 100 steps of the conjugate gradient algorithm, and separately a program that takes 100 steps of the steepest descent algorithm, to approximately solve Ax = b. Produce a plot with four curves: the computed residual norms $||r_n||_2$ and the actual residual norms $||b Ax_n||_2$ for CG, the residual norms $||r_n||_2$ for steepest descent, and the estimate $2(\sqrt{\kappa} 1)^n/(\sqrt{\kappa} + 1)^n$. Comment on your results.
- 5. Prove that if w is continuous on [0,1], and

$$\int_0^1 wv \, dx = 0 \ \forall v \in V, \tag{3}$$

$$V = \{ v \in C[0, 1], v_x \text{ piecewise continuous}, v(0) = v(1) = 0 \}, \tag{4}$$

then w(x) = 0 for $x \in [0, 1]$.