
MATH 715 - Computational Mathematics II

HW #1

Due 2:30pm, Thursday Feb. 8

1. Download the image UWlogo.jpg from the course website. Convert the file to three matrices (R, G, B)
using your favorite software. In MATLAB, for instance, you would type
“A = imread(’UWlogo.jpg’);”, which results in a three-dimensional array. Each pixel of the image is
converted to three 8-bit (1 byte) integers ranging from 0 to 255. For instance, [0, 0, 0] is black, [255, 0, 0]
is red, and [255, 255, 255] is white. Be sure you can visualize the full image; in MATLAB, you would type
“image(A)”.

(a) Determine the memory required to store this image with no compression (easy! multiply...).

(b) Use a built-in SVD to decompose each of the three matrices. You may need to convert the matrices to
double precision first (A = double(A) in MATLAB). To verify completion, reconstruct the original matrix
using the SVD’s of the three matrices; in Matlab you must revert back to uint8 to properly view the
image. Plot the singular values on a semi-logarithmic scale.

(c) Construct and plot approximating images using only 1, 3, 5, and 50 singular values. For each case indi-
cate the memory required to store the image if you only stored the singular values and their corresponding
left- and right-singular vectors.

(Just turn in one page with the above requested plots — it’s ok to print in black and white — and
corresponding memory costs.)

2. Determine the SVDs for the following matrices (by hand)

(a)

(
3 0
0 −2

)
, (b)

(
2 0
0 3

)
, (c)

0 2
0 0
0 0

 , (d)

(
1 1
0 0

)
, (e)

(
1 1
1 1

)
.

3. Suppose A ∈ Cm×m has an SVD given by A = UΣV ∗. Find an eigenvalue decomposition A = XΛX−1

of the 2m× 2m Hermitian matrix (
0 A∗

A 0

)
.

4. If P is an orthogonal projector, then I − 2P is unitary. Prove this algebraically, and give a geometric
interpretation.

5. Let x ∈ Rm , and let E be the m × m matrix that extracts the “even part” of an m-vector: Ex =
(x + Fx)/2, where F is the m ×m matrix that flips (x1, . . . , xm)T to (xm, . . . , x1)

T . Is E an orthogonal
projector, an oblique projector, or not a projector at all? What are its entries?

6. Let A be a matrix with the property that columns 1, 3, 5, 7. . . are orthogonal to columns 2, 4, 6, 8,. . . .
In a reduced QR factorization A = QR, what special structure does R possess? Assume that A has full
rank.

http://www.math.wisc.edu/~jeanluc/lecturing/715/UWlogo.jpg


7. Write a function that computes the reduced QR factorization of a matrix A ∈ Rm×n with m ≥ n using
the classical Gram–Schmidt algorithm. Write a second function that computes the same but with the
modified Gram–Schmidt algorithm. Follow through Experiment 2 in the handout from T&B at the end
of this homework, and reproduce Fig. 9.1 using your code. This time, attach a copy of your code to your
homework set.
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Experiment 2: Classical vs. Modified Gram—Schmidt
Our second example has more algorithmic substance. Its purpose is to explore
the difference in numerical stability between the classical and modified Gram-
Schmidt algorithms.

First, we construct a square matrix A with random singular vectors and
widely varying singular values spaced by factors of 2 between 2~l and 2~80.

[U,X] = qr(randn(80)); Set U to a random orthogonal matrix.
[V,X] = qr(randn(80)) ; Set V to a random orthogonal matrix.
S = diag(2. ~ (-1: -1: -80)); Set 5 to a diagonal matrix with expo-

nentially graded entries.
A = U*S*V; Set A to a matrix with these entries as

singular values.

Now, we use Algorithms 7.1 and 8.1 to compute QR factorizations of A. In
the following code, the programs clgs and rags are MATLAB implementations,
not listed here, of Algorithms 7.1 and 8.1.

[QC,RC] = clgs ( A ) ; Compute a factorization Q(c}R{c) by
classical Gram-Schmidt.

[QM.RM] = mgs(A): Compute a factorization Q^R^ by
modified Gram Schmidt.

Finally, we plot the diagonal elements TJJ produced by both computations
(MATLAB code not shown). Since r^ — ||.P,-aj||, this gives us a picture of the
size of the projection at each step. The results are shown on a logarithmic
scale in Figure 9.1.

The first thing one notices in the figure is a steady decrease of TJJ with
j, closely matching the line 2~J. Evidently rj3 is not exactly equal to the
j'th singular value of A, but it is a reasonably good approximation. This
phenomenon can be roughly explained as follows. The SVD of A can be
written in the form (5.3) as

where {uj} and {vj} are the left and right singular vectors of A, respectively.
In particular, the j'th column of A has the form

Since the singular vectors are random, we can expect that the numbers Vji
are all of a similar magnitude, on the order of 80^1//2 « 0.1. Now, when we
take the QR factorization, it is evident that the first vector q\ is likely to be
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Figure 9.1. Computed TJJ versus j for the QR factorization of a matrix with
exponentially graded singular values. On this computer with about 16 digits of
relative accuracy, the classical Gram-Schmidt algorithm produces the numbers
represented by circles and the modified Gram-Schmidt algorithm produces the
numbers represented by crosses.

approximately equal to MI, with r\\ on the order of 2 l x 80 1//2. Orthogo-
nalization at the next step will yield a second vector g2 approximately equal
to U2-, with r22 on the order of 2~2 x 80~1//2—and so on.

The next thing one notices in Figure 9.1 is that the geometric decrease of
TJJ does not continue all the way to j = 80. This is a consequence of rounding
errors on the computer. With the classical Gram-Schmidt algorithm, the
numbers never become smaller than about 10~8. With the modified Gram-
Schmidt algorithm, they shrink eight orders of magnitude further, down to the
order of 10~16, which is the level of machine epsilon for the computer used in
this calculation. Machine epsilon is defined in Lecture 13.

Clearly, some algorithms are more stable than others. It is well established
that the classical Gram-Schmidt process is one of the unstable ones. Conse-
quently it is rarely used, except sometimes on parallel computers in situations
where advantages related to communication may outweigh the disadvantage
of instability.

Experiment 3: Numerical Loss of Orthogonality
At the risk of confusing the reader by presenting two instability phenomena
in succession, we close this lecture by exhibiting another, different kind of


