
Lecture 32: Homogenization for a perforated domain

I. THE HOMOGENIZED HEAT EQUATION

Consider a domain consisting of periodic cells Ω of characteristic size `, each containing
a reflecting perforation D. The diffusion equation for the concentration ϕ(t, r) is then

∂tϕ(t, r) = ∆rϕ(t, r), r ∈ Ω \D; (1a)

n̂ · ∇rϕ(t, r) = 0, r ∈ ∂D. (1b)

Assume the initial condition for ϕ varies on a scale L that is large with respect to `. De-
fine ε = `/L� 1. We write ϕ(0, r) = ϕ0(ε r).

Now introduce the large scale and slow time, whose magnitudes are related to the fast
variables by

R ∼ ε r, T ∼ ε2t , (2)

and assume that the concentration depends on these scales,

ϕ(t, r) = ϕε(T, r,R). (3)

Using ∂t → ε2 ∂T , ∇r → ∇r + ε∇R, Eq. (1a) becomes

−∆rϕ
ε + ε2 ∂Tϕ

ε = 2ε∇r · ∇Rϕε + ε2∆Rϕ
ε, r ∈ Ω \D; (4a)

n̂ · ∇rϕε + εn̂ · ∇Rϕε = 0, r ∈ ∂D. (4b)

We expand the concentration in a power series in ε,

ϕε(T, r,R) = ϕ(0)(T, r,R) + ε ϕ(1)(T, r,R) + . . . (5)

and at order ε0 obtain from Eq. (4),

∆rϕ
(0) = 0, n̂ · ∇rϕ(0) = 0. (6)

We take ϕε is periodic in r. The only solution to Eq. (6) is a constant in r, that is

ϕ(0)(T, r,R) = Φ(T,R). (7)

At order ε1, Eq. (4) with the expansion (5) gives

∆rϕ
(1) = 0, n̂ · ∇rϕ(1) = −n̂ · ∇RΦ. (8)

We can solve this by letting

ϕ(1)(T, r,R) = χ(r) · ∇RΦ(T,R) (9)

where the periodic vector field χ(r) solves the cell problem [2, p. 15],

∆rχ = 0, r ∈ Ω \D; (10a)

n̂ · ∇rχ = −n̂, r ∈ ∂D. (10b)



Note that Eq. (10) does not have a unique solution for χ, since an arbitrary constant can
be added. This constant doesn’t affect the final result (see discussion after Eq. (16)), so we
can force the solution to be unique by requiring 〈χ〉 = 0.

Assuming the cell problem (10) has been solved, we can proceed to order ε2 in Eq. (4),

−∆rϕ
(2) + ∂TΦ = 2∇r · ∇Rϕ(1) + ∆RΦ ; (11a)

n̂ · ∇rϕ(2) = −n̂ · ∇Rϕ(1). (11b)

Define integration over the cell as

〈f〉 :=

∫
Ω \D

f dVr. (12)

Integrating Eq. (11a) over Ω \D, we find the first term becomes

〈
∆rϕ

(2)
〉

=

∫
Ω \D

∆rϕ
(2) dVr =

∫
∂D

∇rϕ(2) · n̂ dAr = −
∫
∂D

∇Rϕ(1) · n̂ dAr , (13)

where we used the boundary condition (11b), and the fact that boundary terms vanish at
the surface of the periodic cell Ω. So far the choice of normal was immaterial, but in using
the divergence theorem we must ensure that n̂ points towards the interior of D, since it
must point towards the exterior of Ω \D.

The first term on the right of Eq. (11a) is

〈
2∇r · ∇Rϕ(1)

〉
= 2

∫
Ω \D
∇r · ∇Rϕ(1) dVr = 2

∫
∂D

∇Rϕ(1) · n̂ dAr . (14)

Both (13) and (14) are of the same form, and can be combined and rewritten using Eq. (9)
as ∫

∂D

∇Rϕ(1) · n̂ dAr = ∇R ·
∫
∂D

χ · ∇RΦ n̂ dAr

= ∇R ·
{∫

∂D

χ n̂ dAr · ∇RΦ

}
.

We also have 〈∂TΦ〉 = |Ω \D| ∂TΦ and 〈∆RΦ〉 = |Ω \D|∆RΦ, since neither quantity depends
on r, where |Ω \D| is the available cell volume. We thus finally obtain the homogenized
diffusion equation

∂TΦ = ∇R · (Deff · ∇RΦ) (15)

where the effective diffusivity tensor is

Deff := I +
1

|Ω \D|

∫
∂D

χ n̂ dAr. (16)

Note that adding a constant to χ doesn’t change the integral, since
∫
∂D
n̂ dAr = 0; the

lack of uniqueness of solutions to Eq. (10) is thus inconsequential. We prove some useful
identities for Deff in Appendix A.



II. A SMALL PERFORATION

To make the cell problem tractable, consider a d-dimensional periodic cell Ω with a small
perforation Dδ of size δ in the center of the cell, enclosing the origin. Near the perforation,
define a fine scale η = r/δ; with χδinner(η) = χδ(δη), the cell problem (10) is

∆ηχ
δ
inner = 0, η ∈ R3\D1; (17a)

n̂η · ∇ηχδinner = −δn̂η, η ∈ ∂D1. (17b)

The inhomogeneous boundary condition (17b) implies that χδinner(η) is of order δ at leading
order. We can thus expand

χδinner(η) = δχ
(1)
inner(η) + δ2χ

(2)
inner(η) + . . . . (18)

At leading order in δ for the inner problem we thus solve

∆ηχ
(1)
inner = 0, η ∈ R3\D1; (19a)

n̂η · ∇ηχ(1)
inner = −n̂η, η ∈ ∂D1 (19b)

with χ
(1)
inner decaying at infinity. Note that there is no need to solve the outer problem to get

the leading-order effective diffusivity: it is the inhomogeneity that sets the amplitude of the
outer solution. For the higher orders we have for k > 0:

∆ηχ
(k)
inner = 0, η ∈ R3\D1; (20a)

n̂η · ∇ηχ(k)
inner = 0, η ∈ ∂D1. (20b)

These must be matched at each order to the outer Green’s function solution.

∆rχ
δ
outer = 0, (21)

χδouter(r) = δχ
(1)
outer(r) + δ2χ

(2)
outer(r) + . . . (22)

As mentioned above, in pratice we won’t need to actually find the outer solution in order to
get the leading-order effective diffusivity.

A. Spherical perforation

As a first attempt, let’s solve this for an perforation shaped like a ball of radius δ.

Exploiting the spherical symmetry, take χ
(1)
inner(η) = f(η) η̂, where η = |η| and η̂ = η/η.

Then the vector Laplacian takes the simple form [3]

∆ηχ
(1)
inner =

(
1

ηd−1

d

dη

(
ηd−1 df

dη

)
− (d− 1)

η2
f

)
η̂ = 0. (23)

This is solved by f(η) = C/ηd−1. The boundary condition Eq. (19b) then gives f ′(1) =
−(d− 1)C = −1, so C = 1/(d− 1).
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FIG. 1. Trajectory of a Brownian particle in an array of reflecting disks. The cells have size ` = 1

and the disks have radius δ = .2`.

We can immediately do the integral in Eq. (16) using only the inner solution:∫
∂D

χ n̂r dAr = δd
∫
∂D1

χ
(1)
inner(η) n̂η dAη = −Cδd

∫
∂D1

η̂η̂ dΩ (24)

where we used n̂η = −η̂ to ensure the normal is outward to Ω \D. By isotropy, the last
integral must be proportional to I, and its trace must be σd, the area of the unit sphere in d
dimensions: σ1 = 2, σ2 = 2π, σ3 = 4π, σd = 2πd/2/Γ(d/2). Hence,∫

∂D

χ n̂r dAr = −Cδd(σd/d) I = −Cδdνd I = −C|D| I, νd = πd/2/Γ(1 + d/2), (25)

where νd = σd/d is the volume of the unit ball. The effective diffusivity from Eq. (16) is
thus

Deff = I− C

|Ω|/|D| − 1
I ≈ I− |D|

|Ω|
C I, |D| = νd δ

d. (26)

The diffusivity decreases, due to reflection against the perforation. The tensor Deff remains
isotropic even when we take a rectangular cell; anisotropic diffusion only manifests itself at
the next order in δ.

Appendix A: Properties of the effective diffusivity

It isn’t obvious that the integral in Eq. (16) gives a symmetric tensor. Rewrite the integral
as ∫

∂D

χ n̂ dAr = −
∫
∂D

χ n̂ · ∇rχ dAr

= −
∫

Ω \D
∂ri(χ ∂riχ) dVr

= −
∫

Ω \D
χ∆rχ dVr −

∫
Ω \D

∂riχ ∂riχ dVr . (A1)
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FIG. 2. For the array in Fig. 1: the solid line is the mean-squared displacement averaged over

20000 Brownian particles. The dotted line gives the molecular diffusivity, and the dashed line is

the reduced effective diffusivity Eq. (26).

(Here and elsewhere we use and the fact integrals on ∂Ω vanish, by periodicity.) The
term ∆rχ vanishes, and we are left with∫

∂D

χ n̂ dAr = −
∫

Ω \D
∂riχ ∂riχ dVr . (A2)

Since the right-hand dyadic is manifestly symmetric, so is the left. Moreover, this also shows
that the integral is a negative-definite matrix, so that diffusion is always hindered by the
perforation.
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