
Lecture 28: Multiscale analysis

I. MULTISCALE EXPANSION AND HOMOGENIZATION

We start with the advection–diffusion equation for the concentration ϕ(t, r) of some
quantity,

∂tϕ(t, r) + u(r) · ∇rϕ(t, r) = D∆rϕ(t, r) (1)

with ∇r · u = 0. For simplicity we take u to be a function of space only. Assume a typical
lengthscale of u is `, and that the initial condition for ϕ varies on a scale L that is large
with respect to `. Define ε = `/L� 1. We write ϕ(0, r) = ϕ0(ε r).

Now introduce the large scale and slow time, whose magnitudes are related to the fast
variables by

R ∼ ε r, T ∼ ε2t , (2)

and assume that the concentration depends on these scales,

ϕ(t, r) = ϕε(T, r,R). (3)

Using ∂t → ε2 ∂T , ∇r → ∇r + ε∇R, Eq. (1) becomes

Lϕε + ε2 ∂Tϕ
ε + εu(r) · ∇Rϕ

ε = 2εD∇r · ∇Rϕ
ε + ε2D∆Rϕ

ε (4)

where the velocity field is assumed to only depend on the short lengthscale r, and we have
defined the linear operator

L := −D∆r + u · ∇r . (5)

We expand the concentration in a power series in ε,

ϕε(T, r,R) = ϕ(0)(T, r,R) + ε ϕ(1)(T, r,R) + . . . (6)

and at order ε0 obtain from Eq. (4),

Lϕ(0) = 0. (7)

So far we have not discussed boundary conditions: we will assume that ϕε is periodic in r.
The advection–diffusion operator is a second-order parabolic operator, and it obeys a weak
maximum principle (see Evans,1 p. 389). The solution to (7) must thus achieve its maximum
and minimum on a boundary. Since the boundary conditions are periodic, there is no
boundary, and so the only solution to (7) is a constant in r, that is ϕ(0)(T, r,R) = Φ(T,R).

At order ε1, Eq. (4) with the expansion (6) gives

Lϕ(1) + u · ∇RΦ = 0. (8)

If there are to be solutions to the linear system, the Fredholm alternative must be satisfied.
With respect to the standard inner product,

〈f, g〉 :=
1

V

∫
Ω

f g d3r, V :=

∫
Ω

d3r, (9)



the adjoint operator to (5) is
L∗ := −D∆r − u · ∇r , (10)

assuming appropriate boundary conditions (periodic in r in our case). As for (7), the
nontrivial solutions to L∗v = 0 are v = constant (take v = 1). The Fredholm alternative for
Eq. (8) is then obtained from

〈
1,Lϕ(1)

〉
= 0, which gives

〈1,u〉 · ∇RΦ = 0 (11)

which is satisfied for 〈1,u〉 = 0, i.e., the velocity field has zero spatial average.
From Eqs. (8) and (11) we must solve

Lϕ(1) + u · ∇RΦ = 0 . (12)

The solution to this is ϕ(1) = χ(r) · ∇RΦ, where

Lχ+ u = 0 , (13)

the so-called cell problem. Note that we must have 〈1,Lχ〉 = 0 for the cell problem to have
a solution, and that χ is not unique since we can add a constant to it. Without loss of
generality, choose 〈1,χ〉 = 0.

Assuming the cell problem (13) has been solved, we can proceed to order ε2 in Eq. (4),

Lϕ(2) + ∂TΦ + u · ∇Rϕ
(1) = 2D∇r · ∇Rϕ

(1) +D∆RΦ . (14)

Applying the Fredholm alternative to (14) and using
〈
1,Lϕ(2)

〉
= 0, we find

∂TΦ +∇R · (〈1,uχ〉 · ∇RΦ) = 2D∇R · (〈1,∇rχ〉 · ∇RΦ) +D∆RΦ . (15)

The average 〈1,∇rχ〉 vanishes, and we thus finally obtain the homogenized diffusion equa-
tion

∂TΦ = ∇R · (Deff · ∇RΦ) (16)

where the effective diffusivity tensor is

Deff := D I− 〈u,χ〉 . (17)

II. AN EXAMPLE

Consider the streamfunction for the cellular flow

ψ(x, y) =
√

2 (U`/2π) sin(2πx/`) sin(2πy/`), (18)

with velocity

u(x, y) = ∂yψ =
√

2U sin(2πx/`) cos(2πy/`),

v(x, y) = −∂xψ = −
√

2U cos(2πx/`) sin(2πy/`).
(19)

To compute the effective diffusivity, we need to solve the cell problem (13). Consider the
ratio

|u · ∇χ|
|D∆χ|

∼ U`

D
=: Pe, (20)



FIG. 1. Concentration field at t = 20 for U = 1, ` = 2π, D = 1.

where Pe is the Péclet number. If the Péclet number is small, we can neglect the advection
term in the cell problem, and get the simplified equation D∆χ = u, or

D∆χx =
√

2U sin(2πx/`) cos(2πy/`), D∆χy = −
√

2U cos(2πx/`) sin(2πy/`), (21)

with solution

χ = − `2

9π2D
u. (22)

We can then easily compute the effective diffusivity tensor by using 〈u,u〉 = 1
2
U2I in (17):

Deff := D

(
1 +

1

16π2
Pe2

)
I. (23)

Figure 1 shows the concentration field for a numerical simulation at small Pe. In Figure 2
we compare the evolution of the variance to that implied by (23). Note that there is a short
transient, since the initial condition has a small scale and so must spread out before scale
separation is achieved.
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FIG. 2. Evolution of variance for U = 1, ` = 2π, D = 1. The dots are numerical simulations, the

green dashed line is 2Dt, and the red line is 2Defft, where Deff is defined in (23).

FIG. 3. Concentration field at t = 40 for U = 1, ` = 2π, D = 0.1.



FIG. 4. Concentration field at t = 40 for U = 1, ` = 2π, D = 0.01.
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FIG. 5. Concentration field at t = 40 for U = 1, ` = 2π, D = 0.001.


