510 6 Initial-Value Problems

by thin filaments—the set M 1s connected. The branches follow a delicate
combinatorial pattern. For values of ¢ near the boundary of M, and especially
down 1n “sea-horse valley” where a disk is attached, the Julia sets become wild and
pleasurable. For ¢ outside the Mandelbrot set, they break up into disconnected

Cantor sets, or “Fatou dust”.
We close with instructions for plotting a Julia set on a Macintosh (in 30
minutes?). Compute x, = x5 — y5 — 1 and y, =2x,y,, then x, and y,, stopping at

X, and y,,. Color the original x,, y, white if | x,,| > 2 or |y,,| > 2. Do this for 1294

points, with x, and y, equal to —$%, — %3, ..., %5. For a new Julia set move ¢ from

— 1. For the Mandelbrot set use a bigger machine.

EXERCISES
6.2.1 Solve the system u} = —u,,u, = —u, and draw the paths of the point u,(t),u,(t)
starting from various 1nitial values. This 1s the stable star produced by the matrix A = — 1

with equal negative eigenvalues.

6.2.2 What types of critical points can u' = Au have if
(1) A 1s symmetric positive definite
(2) A 1s symmetric negative definite
(3) A 1s skew-symmetric
(4) A 1s negative definite plus skew-symmetric (choose example).

6.2.3 Reduce 6" +20'+0=0 to a system u' = Au with u, =0 and u, =6'. A has equal
negative eigenvalues but only one eigenvector, indicating a stable improper node. With
0 = te™ ' sketch the path of (u,,u,) = (6,0') approaching the origin.

6.24 (a) Solve u} = —u,, u, =4u, starting from (1,0) to confirm that stability is neutral
and the origin 1s a center.
(b) Find the orbit by eliminating time, leaving du,/du, = — 4u,/u,, and show that the

circles 1n Fig. 6.9b become ellipses.

6.2.5 For the skew-symmetric “cross product equation”

(@) write out u},u,,u5 and confirm that wju, + vhu, + u5u, =0
(b) show that the energy E = 1(u? + u3 + u3) is constant
(c) find the eigenvalues of A.
Since u’' = u X w the solution rotates around the fixed vector w =(a,b,c).

6.26 If a=2u,, b=3u,, c =4u, the equation above becomes nonlinear:

/ / /
Uy =UsUy, Uy = — 2U Uy, Uy = U lU,.
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(a) Show that « 1s still perpendicular to u and E = constant
(b) Find the linearized matrix A4 at the stationary points u* = (1,0,0), (0,1,0), and (0,0,1)
and decide 1if those points are stable, unstable, or neutral.

The equation describes the rotation of this book in the air. If you make it spin you will see
which of its three axes i1s unstable; please catch the book.

6.2.7 Convert a 2 by 2 system u' = Au into a single equation for u, by differentiating
uy; =au, + bu, and substituting v, = cu, + du, = cu, + d(u;, — au,)/b. How are the coefh-
cients 1n the single equation connected to A4?

6.2.8 Sketch the curves E = constant in the phase planes for 0" + 6 =0and u” + u + u> =0,
after multiplying by ¢’ and v’ and integrating to find E.

6.2.9 If the linearized problem has a center then nonlinear stability 1s undecided, as in

/

Uy =u, + u1(”% + “%) Uy =u; — ”1(”% + ”%)

(a) |

Uy = — Uy +”2(”%+“%) U, = —“1""“2(”%"'“%)

The right sides F are zero at u* =(0,0). Compute A at u* and show i1t has a center. Then
multiply the equations for u; by u, and the equations for v, by u,, and add to find
differential equations for E = u{ + u35. Show that (a) is unstable and (b) is stable; neither is
neutrally stable.

6.2.10 If ¢* >4 then Fig. 6.12 is wrong; the damped pendulum no longer spirals in to
equilibrium. Identify the types of critical points and sketch the correct picture in the phase
plane.

6.2.11 Solve the following equations and draw solution curves in the phase plane:

@ 0°+0=0 (c) 0/0=—0/0
b) 0/ =0=0 (d) 0 +()*=0

6.2.12 With internal competition the predator-prey system might be
u’l =u1_u%“‘_bu1u2, u’2=u2—u%+culuz

Find all equilibrium points and their stability (for ¢ <1 and ¢ > 1). Which points make
sense biologically?

6.2.13 According to Braun, reptiles, mammals, and plants on the island of Komodo have
populations governed by

/

u, = —au. — buu, + cuu,

r

/

u = —du,+ euu,

uw, =fu, — gu’ — huu,.
Who is eating whom? Find all equilibrium solutions u*.

6.2.14 Ifu' = Au and A is skew-symmetric show that the energy E = u”u is a constant. (The
derivative of this inner product is E' =u'v’ + (') u.)
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6.2.15 If v’ = Au and MA + A" M is negative definite show that E = u’ Mu is decreasing.
This 1s the Liapounov approach—to find a symmetric positive definite M that yields
decreasing energy and proves stability for nearby nonlinear equations.

6.2.16 (a) Find the type of critical point at u* = (0,0) for
Wy =uy +u, —u(uf +u3), u,=—uy+u,—u,(ui+u3).

(b) Multiply the equations by u; and u, respectively and add to find an equation for
E = uf + u3.

(c) Show that E’ =0 for the special value E = 1, and sketch orbits spiralling out and 1n to
this limit cycle uf + u3 = 1.

6.2.17 From their trace and determinant, at what times ¢t do the following matrices change
type (bifurcation)?

4. - 1 -1 A — 0 4—1¢ £ — t —1
e -1 1L =2 N R
6.2.18 Compute the solution to van der Pol’s equation by finite differences and sketch the

limit cycle for ¢ = 3.

6.2.19 (Epidemic theory). Suppose u(t) people are healthy at time ¢ and v(t) are infected. If
the latter become dead or otherwise immune at rate b and infection occurs at rate a, then
u' =—auv, v = auv— bv.

(@) Show that v" >0 if u> b/a, so the epidemic spreads.

(b) Show that v" <0 1if u < b/a, so the epidemic slows down. (It never starts if uy, < b/a.)
(c) Show that E=u+ v—(b/a)log u 1s constant during the epidemic.

(d) Whatis v_,, (wWwhen u=b/a) in terms of u,?

6.2.20 For freely falling bodies with u =3 gt* 4+ u,t + u,, sketch the curves (u(t),u'(t)) in the
phase plane starting from three different initial values.

6.2.21 Invent a real function F such that F(F(x)) = — x.

6.2.22 Daifferentiate G(u) = F(F(u)) by the chain rule, and show that the slope G’ has the
same value F'(U,)F'(U,) at both points u=U, and u=U, of a 2-cycle—for which

F(U1)= U2 and F(Uz) — Ul'

6.2.23 On a computer with sound, assign different notes to subintervals of (0,1) so that you
can hear the 2-cycles and 4-cycles of u,, ; = au, — au?.

6.2.24 Add periodic forcing to Duffing’s equation, u” + '/10 + u> = 12 cos t, and display
the solutions at many multiples of t = 27 1n the u — v’ phase plane.

6.2.25 Change the coeflicient from 1.4 to 1.3 1in Hénon’s 2 by 2 system, and iterate 500 times.
The limit 1s believed to have period 7.

6.2.26 The Cantor setis left when the middle thirds like (3, %), (5, %), (3,9), ... are removed from

(0, 1). All numbers like 0.0200202 ... are still there—if they have no 1’s when written in base 3.

Where do the removed intervals (3, 3) and (3, 3) have a 1?



