The factor $2\pi i$ that multiplies residues will cancel the factor $2\pi i$ in the inversion formula, and we recover the pulse $f = e^{-at}$.

EXAMPLE 2
$$F(s) = \frac{1}{(a+s)^2}$$
 and $f(t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \frac{e^{st}}{(a+s)^2} ds$

The path is closed by the same semicircle and the only novelty is the double pole. In principle the residue is the coefficient of 1/(a+s), which might seem to be zero for $e^{st}/(a+s)^2$. But remember that everything—including the exponential—must be expanded in powers of a + s:

$$\frac{e^{st}}{(a+s)^2} = \frac{e^{-at}e^{(a+s)t}}{(a+s)^2} = \frac{e^{-at}}{(a+s)^2} \left[1 + t(a+s) + \frac{t^2(a+s)^2}{2!} + \cdots \right].$$

The coefficient of 1/(a+s) is the residue te^{-at} , and this is f(t). It also comes from the double pole formula (17), as the derivative of e^{zt} at z = -a.

The special case a=0 is important. In the first example F=1/s corresponds to f=1. In the second example $F=1/s^2$ corresponds to f=t. In general $F=1/s^{n+1}$ is the Laplace transform of $f = t^n/n!$ Those have poles at s = 0, on the path of integration. However a shift to the vertical line from $a - i\infty$ to $a + i\infty$, with the real number a chosen large enough, leaves all poles to the left. The semicircle will contain the poles, and the residues add to f(t). That completes the inversion of F.

In Chapter 6 the Laplace transform solves initial-value problems in the same way that the Fourier transform solves boundary-value problems. All functions are decomposed into their frequency components; then the differential equation falls apart. You have to accept e^{-st} as if it were a harmonic (it is, but the frequency is imaginary) and superposition gives the answer. The final solution is a transient from Laplace plus a steady state from Fourier.

EXERCISES

If the line integral along C from P to Q depends only on P and Q, why does the case Q = P (a closed loop) give

$$\int_C = \int_{-C} \text{ and } \int_C = -\int_{-C} \text{ so } \int_C = 0?$$

- Compute the following integrals:
- (a) $\int dz/z$ from 1 to i, the short way and long way on the circle $z = e^{i\theta}$ (b) $\int x \, dz$ around the unit circle, where $x = \cos \theta$ and $z = e^{i\theta}$ —or alternatively where $x = \frac{1}{2}(z + z^{-1})$

- (c) $\int dz/z$ around the circle |z-2i|=1
- (d) $\int_{0}^{\infty} y^{2} dx + 2xy dy$ from P = (0, 0) to Q = (1, 1), noticing the exact differential (of what function U?)
- (e) $\int dz/z$ for a path that winds three times around z = 0. (A simple closed curve winds only once.)
- **4.5.3** (a) Compute $\int dz/z^2$ around the circle $z = re^{i\theta}$, by substituting for z and dz and integrating directly.
 - (b) Despite the pole at z = 0 this integral is zero. What is the residue of $1/z^2$ at the pole?
 - (c) Why is $\int dz/z^2$ also zero around circles that are not centered at the origin?
- **4.5.4** Draw two circular disks in the complex plane, one not containing the origin and the other one centered at z = 0. In the first disk, mark the points where the absolute values $|z^2|$ and $|1/z^2|$ attain a maximum. In the second, mark the points where $|z^2|$ and the real part $x^2 y^2$ and the imaginary part 2xy attain a maximum. Where does $|1/z^2|$ attain a maximum in the second disk?
- **4.5.5** If $f(z) = z^2$ on the circle $z = a + re^{i\theta}$ around the point a, substitute directly into Cauchy's integral formula (10) and show that it correctly gives $f(a) = a^2$.
- **4.5.6** Show that Cauchy's integral formula (10) for f(a) reduces to the average value (11) at the center of a circle. What is the average value of e^z around the unit circle?
- 4.5.7 Find the location of the poles, and the residues, for

(a)
$$\frac{1}{z^2-4}$$
 (b) $\frac{z+3}{z-3}$ (c) $\frac{1}{(z^2-1)^2}$

(d)
$$\frac{e^z}{z^3}$$
 (e) $\frac{1}{1 - e^z}$ (f) $\frac{1}{\sin z}$

4.5.8 Evaluate the following integrals around the unit circle:

(a)
$$\int \frac{dz}{z^2 - 2z}$$
 (b) $\int \frac{e^z dz}{z^2}$ (c) $\int \frac{dz}{\sin z}$

4.5.9 By complex integration compute the real integrals

(a)
$$\int_0^{2\pi} \cos^4\theta \ d\theta$$
 (b)
$$\int_0^{2\pi} \frac{d\theta}{a + \cos \theta}, \quad a > 1$$
 (c)
$$\int_0^{2\pi} \cos^3\theta \ d\theta$$

4.5.10 Find the poles above the real axis and evaluate

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$$
 (b) $\int_{-\infty}^{\infty} \frac{dx}{4+x^2}$ (c) $\int_{-\infty}^{\infty} \frac{dx}{x^2-2x+3}$

4.5.11 Find all the poles, branch points, and essential singularities of

(a)
$$\frac{1}{z^4 - 1}$$
 (b) $\frac{1}{\sin^2 z}$ (c) $\frac{1}{e^z - 1}$ (d) $\log(1 - z)$

(e)
$$\sqrt{4-z^2}$$
 (f) $z \log z$ (g) $e^{2/z}$ (h) $\frac{e^z}{z^e}$

The point $z = \infty$ can be included by setting w = 1/z and studying w = 0. Thus $z^3 = 1/w^3$ has a

triple pole at $z = \infty$, $e^z = e^{1/w}$ has an essential singularity, and $\log z = -\log w$ has a branch point.

4.5.12 Find residues at $z = \pm i$ and use Fig. 4.22 to show that

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{e^{ikx}dx}{1+x^2} = \pi e^{-|k|}.$$

4.5.13 Invert the following Laplace transforms to find f(t) for $t \ge 0$:

(a)
$$F(s) = \frac{1}{s^2 + 1}$$
 (b) $F(s) = \frac{s}{s^2 + 1}$ (c) $F(s) = \frac{1}{(a + s)^3}$ (a triple pole)

CHAPTER 4 IN OUTLINE: ANALYTICAL METHODS

- 4.1 Fourier Series and Orthogonal Expansions— e^{ikx} as an eigenfunction of d/dx The Fourier Coefficients—formulas for a_k , b_k , and c_k Examples of Fourier Series—the coefficients for $f = \delta$ and f = x Sine Series and Cosine Series—odd and even functions from 0 to π Properties of Fourier Series—least squares approximations in Hilbert space Solution of Laplace's Equation— $\sum a_k r^k \cos k\theta$ and Poisson's formula Orthogonal Functions—the expansion $f = c_0 T_0 + c_1 T_1 + \cdots$ Bessel Functions—oscillations of a circular drum
- 4.2 Discrete Fourier Series and Convolution—the Fourier matrix FThe Discrete Transform for Arbitrary $n-F^{-1}$ is \overline{F}/n Discrete Convolutions—convolution rule and circulants $C = F\Lambda F^{-1}$ Signal Processing—convolution matrices $A_{ij} = a_{i-j}$
- **4.3 Fourier Integrals**—the transform from f to \hat{f} and its inverse A List of Essential Transforms—delta functions, pulses, step functions Energy and the Uncertainty Principle—energies $\int |f|^2 = 2\pi \int |\hat{f}|^2$ Derivatives, Integrals and Shifts—transforms of f', $\int f$, f(x-d), $e^{ixd}f$ Convolution and Green's Functions— $\hat{u} = \hat{G}\hat{h}$ and fundamental solutions Integral Equations—convolution kernels K(x-y), solution by transform The Sampling Theorem—band-limited f sampled at the Nyquist rate
- 4.4 Complex Variables and Conformal Mapping—the z-plane and w-plane Analytic Functions and Laplace's Equation—Cauchy-Riemann equations Conformal Mapping—boundary change preserving Laplace's equation Important Conformal Mappings— e^z , (az + b)/(cz + d), $\frac{1}{2}(z + z^{-1})$ Two-dimensional Fluid Flows—f = u + is: potential and stream function Green's Functions and Electric Fields—superposition of point sources
- 4.5 Complex Integration—Cauchy's theorem $\int f(z)dz = 0$ Cauchy's Integral Formula—maximum principle, $2\pi i f(a) = \int f(z)dz/(z-a)$ Singularities and Residues—real integrals by complex methods Fourier Integrals and Laplace Integrals—transforms computed from poles