all columns. The response to a distributed source h is the sum or integral of responses to point sources δ .

If K is symmetric then so is its inverse G. The response at x_0 , y_0 to an impulse at x, y is the same as the response at x, y to an impulse at x_0 , y_0 :

$$G(x, y; x_0, y_0) = G(x_0, y_0; x, y)$$
 corresponds to $G_{ij} = G_{ji}$.

This is true of (20); exchanging z and z_0 has no effect on $\log |w|$. It will be true throughout our whole framework $K = A^T C A$. We emphasize that equations other than $u_{xx} + u_{yy} = h$ have Green's functions. G was found by conformal mapping in this special case; for $d^2 u/dx^2 = h$ it is in the exercises, and in three dimensions it changes from $(\log r)/2\pi$ to $1/4\pi r$.

EXAMPLE The electric field intensity comes from the potential by

$$E = -\operatorname{grad} u = -\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{bmatrix}.$$

$$\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial z} \end{bmatrix}.$$

The minus sign is normal in electrostatics but otherwise this agrees with $v = \operatorname{grad} u$ for fluids. In a region free of charge the divergence of E is zero and u satisfies Laplace's equation. If the charge density is ρ then div $E = \rho$ (Maxwell's equation). A point charge corresponds to a delta function on the right side of the equation, and the potential is $u = 1/4\pi r$. A line of charges along the z-axis has potential $u = (\log r)/2\pi$.

The theory of electrostatics copies the theory of ideal fluids with one significant exception. On a solid surface in the fluid the boundary condition was $\partial u/\partial n = 0$; there is no flow into the obstacle. On a conducting surface in the field the boundary condition is u = constant; there is no potential difference (or charge would flow along the surface to remove it). It is the tangential component of E that vanishes, where before it was the normal component of E. The equipotentials in the fluid correspond to lines of force in the electric field. The stream function E corresponds to the negative of the electric potential. They are both constant along the boundary. Complex variables will hardly notice the difference, since this reversal of E requires only multiplication by E.

EXERCISES

- 4.4.1 For the complex numbers z = 1 + i and w = 3 4i,
 - (a) find their sum and product
 - (b) find their positions in the complex plane
 - (c) find the positions of their conjugates $\bar{z} = 1 i$ and $\bar{w} = 3 + 4i$
 - (d) find their absolute values |z| and |w|
 - (e) write z and \overline{z} in polar form (z is $|z|e^{i\theta}$) by finding θ .

- 4.4.2 Find the real and imaginary parts of
 - (a) $z = e^{-2i\theta}$
 - (b) $z = \frac{1}{1+i}$ (multiply by $\frac{1-i}{1-i}$)
 - (c) $\log z = \log(re^{i\theta})$
 - (d) $i \log i \log \log i$
- What can you say about
 - the sum of a complex number z and its conjugate \overline{z} ?
 - the conjugate of a number $z = e^{i\theta}$ on the unit circle?
 - the product of two numbers on the unit circle?
 - the sum of two numbers on the unit circle?
 - the suspicious formula $e^{2\pi ia} = (e^{2\pi i})^a = 1^a = 1$?
- Find the absolute value (or modulus) |z| if
 - (a) $z=e^{i}$

 - $(c) \quad z = \frac{3+i}{3-i}$
 - (d) $z = (3 + 4i)^2$ (e) $z = e^{3+4i}$
- Find the real and imaginary parts of the analytic functions
 - (a) f = 1 + i(x + iy)(b) $f = e^{(x+iy)^2}$

 - (c) $\cos(x+iy) = \frac{1}{2}(e^{i(x+iy)} + e^{-i(x+iy)}).$

Verify that u and s satisfy the Cauchy-Riemann equations.

- The derivative df/dz of an analytic function is also analytic; it still depends on the combination z = x + iy. Find df/dz if $f = 1 + z + z^2 + \cdots$ or $f = z^{1/2}$ (away from z = 0).
- 4.4.7 Are the following functions analytic?
 - (a) $f = |z|^2 = x^2 + y^2$
 - (b) f = Re z = x
 - (c) $f = \sin z = \sin x \cosh y + i \cos x \sinh y$.

Can a function satisfy Laplace's equation without being analytic?

- **4.4.8** If u(x, y) = x + 4y, find its conjugate function s(x, y) from the Cauchy-Riemann equations. If s = (1 + x)y, find u. If $u = x^2$, why does no s satisfy those equations?
- **4.4.9** Decompose f = 1/z into u + is by making the denominator real:

$$f = \frac{1}{x + iy} = \frac{1}{x + iy} \frac{x - iy}{x - iy} = \frac{x - iy}{x^2 + y^2}.$$

Verify that u and s satisfy the Cauchy-Riemann equations. Are the curves u = constant and s = constant hyperbolas or ellipses (or neither)?

4.4.10 The Cauchy-Riemann equations in polar coordinates, where $z = re^{i\theta}$, must still come from the chain rule:

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial r} = \frac{\partial f}{\partial z} e^{i\theta} \quad \text{and} \quad \frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta} = \frac{\partial f}{\partial z} ire^{i\theta}.$$

- (a) Multiply the first by ir to find the relation between $\partial f/\partial r$ and $\partial f/\partial \theta$
- (b) Substituting $f = u(r, \theta) + is(r, \theta)$ into that relation, find the Cauchy-Riemann equations connecting u and s
- (c) Show that these equations are satisfied by the powers $f = z^n = r^n e^{in\theta}$, for which $u = r^n \cos n\theta$ and $s = r^n \sin n\theta$, and also by $u = \log r$ and $s = \theta$ (from $f = \log z$)
- (d) Combine the Cauchy-Riemann equations in (b) into the polar coordinate form of Laplace's equation:

$$\frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} = 0.$$

4.4.11 The function 1/(1-z) has a singularity at z=1, but around any other point a it admits the power series

$$\frac{1}{1-z} = \frac{1}{(1-a)-(z-a)} = \frac{1}{1-a} \left(1 + \frac{z-a}{1-a} + \left(\frac{z-a}{1-a} \right)^2 + \cdots \right).$$

This geometric series converges when the repeated factor r = (z - a)/(1 - a) has magnitude below 1. Sketch the regions in the complex plane given by |r| < 1 for the three cases a = 0, a = 2, a = i.

4.4.12 The following series are convergent for any |z| < 1:

$$-\log(1-z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \dots \quad \text{and} \quad \frac{1}{(1-z)^2} = 1 + 2z + 3z^2 + \dots$$

Identify the term by term derivative of the first, and the term by term integral of the second. Where is the singularity that prevents convergence in a larger region like |z| < 2?

- 4.4.13 For the exponential mapping $w = e^z = e^{x + iy}$, show that
- (1) each horizontal line y = b is changed into a ray from the origin (at what angle with the horizontal?)
 - (2) each vertical line x = c is changed into a circle around the origin (of what radius?)
- **4.4.14** If z = 1 + iy show that w = 1/z is on the circle $|w \frac{1}{2}| = \frac{1}{2}$, in agreement with Fig. 4.14.
- 4.4.15 The equation of a circle $|z z_0|^2 = R^2$ can be rewritten as

$$pz\overline{z} + qz + \overline{qz} + r = 0$$
 (p, r real).

Substitute w = 1/z and show that this gives a similar equation for a circle in the w-plane. Thus inversion maps circles to circles.

4.4.16 Show that the linear transformation w = (az + b)/(cz + d) is the result of the three simple transformations

$$z \to z_1 = cz + d$$
, $z_1 \to z_2 = 1/z_1$, $z_2 \to w = \frac{a}{c} + \frac{bc - ad}{c} z_2$.

Since all three take circles into circles (not necessarily centered at the origin) so does any linear transformation.

- **4.4.17** For the map $w = \frac{1}{2}(z + z^{-1})$ in Fig. 4.15, what happens to points z = x > 1 on the real axis? What happens to points 0 < x < 1? What happens to the imaginary axis z = iy?
- 4.4.18 (a) For the same mapping let $z = re^{i\theta}$ and show that w = X + iY has

$$X = \frac{1}{2}(r + r^{-1})\cos\theta$$
 and $Y = \frac{1}{2}(r - r^{-1})\sin\theta$.

- (b) Using $\cos^2\theta + \sin^2\theta = 1$ find the equation of the ellipse in the X Y plane that comes from the circle r = 2 (and also from $r = \frac{1}{2}$) in the x y plane.
- (c) Using $(r+r^{-1})^2-(r-r^{-1})^2=4$ find the equation of the hyperbola in the X-Y plane that comes from the ray $\theta=\pi/4$. Sketch it into Fig. 4.15; the hyperbola should be perpendicular to the ellipse since the ray was perpendicular to the circle in the x-y plane.
- **4.4.19** Derive grad $u \cdot \operatorname{grad} s = 0$ from the Cauchy-Riemann equations. Since the equipotential curves are perpendicular to grad u and the streamlines are perpendicular to grad s, the equation $\operatorname{grad} u \cdot \operatorname{grad} s = 0$ confirms that these curves are perpendicular.
- **4.4.20** Given f = u + is, suppose we take s(x, y) as the potential instead of u(x, y). For the flow with this potential, what is the stream function? What function F(z) will produce this flow?
- 4.4.21 (a) With a delta function at x = 0 solve

$$\frac{d^2u}{dx^2} = \delta(x) \quad \text{for } -1 \le x \le 1, \text{ with } u(1) = u(-1) = 0.$$

Away from x = 0 the equation is $d^2u/dx^2 = 0$. Thus u is ax + b on one side and cx + d on the other; it is continuous at x = 0 but u' jumps by 1. Find a, b, c, d to obtain this one-dimensional Green's function (not $\log r$ as in 2D).

- (b) With the delta function moved to $x = x_0$ solve the same problem. The solution is now the Green's function $G(x, x_0)$ for a source at $x = x_0$.
- (c) Compute $u(x) = \int_{-1}^{1} G(x, x_0) dx_0$ and verify that it is the correct solution to $d^2u/dx^2 = 1$ with u(1) = u(-1) = 0.
 - (d) What would be the solution to $d^2u/dx^2 = h(x)$?
- **4.4.22** For the mapping $w = \sin z$ show how real points in the w-plane correspond to boundary points of a "blocked channel" above the interval from $z = -\pi/2$ to $z = \pi/2$. Sketch the streamlines in the z-plane that correspond to horizontal lines in the w-plane.
- **4.4.23** Solve Laplace's equation in the 45° wedge if the boundary condition is u = 0 on both sides y = 0 and y = x.
 - (a) Where does $F(z) = z^4$ map the wedge?
 - (b) Find a solution with zero boundary conditions other than $u \equiv 0$.