integrated, it gives the sampling theorem:

$$f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{\infty} f(-n) e^{ink} \right) e^{ikx} dk$$

$$= \sum_{n=-\infty}^{\infty} f(-n) \left[\frac{e^{ik(x+n)}}{2\pi i(x+n)} \right]_{-\pi}^{\pi}$$

$$= \sum_{n=-\infty}^{\infty} f(-n) \frac{\sin \pi(x+n)}{\pi(x+n)} = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi(x-n)}{\pi(x-n)}.$$

Reversing the sign of n at the last step has no effect on a sum from $-\infty$ to ∞ . And if W is different from π , the same argument applies to a 2W-periodic function—or we can rescale the x variable by π/W and the k variable by W/π , to complete the proof. Realistically we would sample 5 or 10 times in each period, and not just twice, to avoid being drowned by noise.

Band-limited functions are exactly what "band-pass filters" are designed to achieve. They multiply the transform \hat{f} of the input signal by a function that is nearly $\hat{a}=1$ for the frequencies to be kept and $\hat{a}=0$ for the frequencies to be destroyed. Of course the filter does that by convolving the function. The convolution of f with $a=(\sin Wx)/\pi x$ multiplies \hat{f} by \hat{a} and leaves it limited to the band -W < k < W.

EXERCISES

4.3.1 Find the transform \hat{g} of the one-sided ascending pulse

$$g(x) = e^{ax}$$
 for $x < 0$, $g(x) = 0$ for $x > 0$.

- **4.3.2** Find the Fourier transforms (with f = 0 outside the ranges given) of
 - (a) f(x) = 1 for 0 < x < L
 - (b) f(x) = 1 for x < 0
 - (c) $f(x) = \int_0^1 e^{ikx} dk$
 - (d) the finite wave train $f(x) = \sin x$ for $0 < x < 10\pi$
- 4.3.3 Find the inverse transforms of
 - (a) $\hat{f}(k) = \delta(k)$ (b) $\hat{f}(k) = e^{-|k|}$ (separate k < 0 from k > 0).
- 4.3.4 Apply Plancherel's formula $2\pi \int |f|^2 dx = \int |\hat{f}|^2 dk$ to
 - (1) the square pulse f = 1 for -1 < x < 1, to find $\int_{-\infty}^{\infty} \frac{\sin^2 t}{t^2} dt$
 - (2) the even decaying pulse, to find $\int_{-\infty}^{\infty} \frac{dt}{(a^2 + t^2)^2}$.

Note The next three exercises involve $f = e^{-x^2/2}$ and its transform $\hat{f} = \sqrt{2\pi} e^{-k^2/2}$.

- **4.3.5** Verify Plancherel's energy equation for $f = \delta$ and $f = e^{-x^2/2}$. Infinite energy is allowed.
- **4.3.6** What are the half-widths W_x and W_k of the bell-shaped function $f = e^{-x^2/2}$ and its transform? Show that equality holds in the uncertainty principle.
- 4.3.7 What is the transform of $xe^{-x^2/2}$? What about $x^2e^{-x^2/2}$, using 4L?
- **4.3.8** Show that the odd pulse (Example 5) is -1/a times the derivative of the even pulse (Example 4). Therefore the transform of the odd pulse should be what factor times the transform of the even pulse?
- **4.3.9** The decaying pulse e^{-ax} has derivative $-ae^{-ax}$ (and 0 for x < 0), so that differentiation seems to multiply its Fourier transform by -a instead of ik. How can this be?
- 4.3.10 Solve the differential equation

$$\frac{du}{dx} + au = \delta(x)$$

by taking Fourier transforms to find $\hat{u}(k)$. What is the solution u (the Green's function for this equation)?

4.3.11 Take Fourier transforms of the unusual equation

(integral of
$$u$$
) – (derivative of u) = δ

to find \hat{u} (using 4L). Do you recognize u?

4.3.12 The convolution C = f * g of the decaying pulse and ascending pulse (Ex. 1) is

$$C(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy \text{ with transform } \hat{C} = \hat{f}\hat{g} = \frac{1}{a + ik} \frac{1}{a - ik} = \frac{1}{a^2 + k^2}.$$

Find C by recognizing this transform and also by explicitly computing the integral.

- **4.3.13** The square pulse with f = 1 for $-\frac{1}{2} < x < \frac{1}{2}$ has transform $\hat{f} = (2/k) \sin k/2$. Graph the "hat function" h = f * f whose transform is \hat{f}^2 . (The cubic *B*-spline is h * h = f * f * f * f and its transform is \hat{f}^4 .)
- 4.3.14 Show that the Fourier transform of gh is the convolution $\hat{g}*\hat{h}/2\pi$ by repeating the proof of the convolution rule—but with e^{+ikx} to produce the inverse transform.
- **4.3.15** The derivative of the delta function is the doublet δ' . It is a "distribution" concentrated at x = 0 and from integration by parts it picks out not f(0) but -f'(0):

$$\int f(x) \, \delta'(x) dx = -\int f'(x) \, \delta(x) dx = -f'(0).$$

- (a) Why should the Fourier transform of δ' be ik?
- (b) What does the inverse formula (5) give for $\int ke^{ikx}dk$?
- (c) Exchanging k and x, what is the Fourier transform of f(x) = x?

4.3.16 If f(x) is an even function then the integrals for x > 0 and x < 0 combine into

$$\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx = 2\int_{0}^{\infty} f(x)\cos kx \, dx$$
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx}dk = \frac{1}{\pi} \int_{0}^{\infty} \hat{f}(k)\cos kx \, dx$$

Find \hat{f} in this way for the even decaying pulse $e^{-a|x|}$. What are the corresponding formulas for sine transforms when f is odd?

4.3.17 If f is a line of delta functions explain why \hat{f} is too:

the transform of
$$f = \sum_{n=-\infty}^{\infty} \delta(x - 2\pi n)$$
 is $\hat{f} = \sum_{n=-\infty}^{\infty} \delta(k - n)$.

The footnote after equation (13) may be useful.

- **4.3.18** (a) Why is $F(x) = \sum_{n=-\infty}^{\infty} f(x + 2\pi n)$ a 2π -periodic function?
 - (b) Show that its Fourier coefficient $c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} F e^{-ikx} dx$ equals $\hat{f}(k)/2\pi$.
 - (c) From $F(x) = \sum c_k e^{ikx}$ at x = 0 find Poisson's summation formula:

$$\sum_{n=-\infty}^{\infty} f(2\pi n) = \sum_{k=-\infty}^{\infty} \hat{f}(k)/2\pi$$

- **4.3.19** If u(x) = 1 then it is an eigenfunction for convolution: k * 1 is a multiple of 1. Prove this directly and show that k(0) is the multiple. The same argument for $u = e^{i\omega x}$ gave the eigenvalue $\hat{k}(\omega)$ in equation (20).
- **4.3.20** Another proof of positive definiteness when $\hat{k}(\omega) > 0$ is to show that the quadratic form $u^T K u$ is positive for every u. If K is a convolution then

$$u^{T}Ku = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k(x-y)u(y)u(x)dydx = \frac{1}{2\pi} \int_{\infty}^{\infty} \hat{k}(\omega)|\hat{u}(\omega)|^{2}d\omega > 0.$$

Use the convolution rule on the y-integral and Plancherel's formula (9') on the x-integral to establish this identity.

- **4.3.21** Apply Fourier transforms to $\int_{-\infty}^{\infty} e^{-|x-y|} u(y) dy 2u(x) = f(x)$ to show that the solution is $u = -\frac{1}{2}f + \frac{1}{2}g$, where g comes from integrating f twice. (Its transform is $\hat{g} = \hat{f}/(i\omega)^2$.) If $f = e^{-|x|}$ find u and verify that it solves the integral equation.
- **4.3.22** (a) If $f(x) = e^{i\omega x}$ confirm that the solution u(x) given by (25) is $i\omega e^{i\omega x}/(1+i\omega)$ and that it solves the integral equation of Example 2.
- (b) In the first integral in (25) identify the functions whose transforms are $1/(1+i\omega)$ and $i\omega \hat{f}(\omega)$. Then the second form of (25) comes from the convolution rule.
- 4.3.23 (a) Take Fourier transforms to find $\hat{u}(\omega)$ if

$$4\int_{y=-\infty}^{\infty}e^{-|x-y|}u(y)dy+u(x)=f(x), -\infty < x < \infty.$$

(b) Express
$$\left[\frac{8}{1+\omega^2}+1\right]^{-1}$$
 as $1-\frac{8}{\omega^2+9}$ and find its inverse transform g.

- (c) Write u as a convolution f*g by the convolution rule.
- 4.3.24 Add two more types of convolution to the table of eigenfunctions, frequencies, and eigenvalues:
 - (i) finite continuous: $\int_0^{2\pi} a(x-y)u(y)dy$ where a and u are 2π -periodic
 - (ii) one-sided discrete: $\sum_{j=-\infty}^{i} a_{i-j}u_{j}.$
- **4.3.25** Why does the sampling formula $\sum f(n) \sin \pi (x-n)/\pi (x-n)$ give the correct value f(0) at x=0?
- **4.3.26** Suppose the Fourier transform of f is $\hat{f}(k) = 1$ for $-\pi < k < \pi$, $\hat{f}(k) = 0$ elsewhere. Check that the sampling theorem is correct.
- **4.3.27** Take Fourier transforms in the equation $d^4G/dx^4 2a^2d^2G/dx^2 + a^4G = \delta$ to find the transform \hat{G} of the fundamental solution. How would it be possible to find G?
- **4.3.28** What is $\delta * \delta$?
- **4.3.29** Suppose g is the mirror image of f, g(x) = f(-x). Show from (4) that $\hat{g}(k) = \hat{f}(-k)$. If f is an even function (equal to its own mirror image, so that f = g) then so is \hat{f} .
- **4.3.30** Suppose g is a stretched version of f, g(x) = f(ax). Show that $\hat{g}(k) = a^{-1}\hat{f}(k/a)$ and illustrate with the even pulse $f = e^{-|x|}$.
- **4.3.31** If $f = e^{-x^2/2}$ has transform $\hat{f} = \sqrt{2\pi} e^{-k^2/2}$, use the previous exercise to find the transform of $g = e^{-a^2x^2/2}$. Then show that $e^{-x^2/2} * e^{-x^2/2} = \sqrt{\pi} e^{-x^2/4}$, transforming the left side by the convolution rule (18) and the right side by the choice $a^2 = \frac{1}{2}$.

Note on the transform $\hat{f} = \sqrt{2\pi} \ e^{-k^2/2}$: This is calculated in Exercise 6.4.4 and it comes also from the identity

$$\hat{f}(k) = \int_{-\infty}^{\infty} e^{-x^2/2} e^{-ikx} dx = e^{-k^2/2} \int_{-\infty}^{\infty} e^{-(x+ik)^2/2} dx.$$

The last integral is $\sqrt{2\pi}$ when k = 0, and the change from x + ik to x is justified by Cauchy's theorem in Section 4.5.

- **4.3.32** What is \hat{f} if $f(x) = e^{5x}$ for $x \le 0$, $f(x) = e^{-3x}$ for $x \ge 0$?
- **4.3.33** Propose a definition of the two-dimensional Fourier transform. Given f(x, y) what is $\hat{f}(k_1, k_2)$? Given $\hat{f}(k_1, k_2)$, what integral like (5) will invert the transform and recover f(x, y)?
- **4.3.34** Find the function f(x) whose Fourier transform is $\hat{f}(k) = e^{-|k|}$.