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integrated, 1t gives the sampling theorem:
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Reversing the sign of n at the last step has no effect on a sum from — o0 to co. And if
W 1s different from &, the same argument applies to a 2W-periodic function—or we
can rescale the x variable by #/ W and the k variable by W /n, to complete the proof.
Realistically we would sample 5 or 10 times 1n each period, and not just twice, to
avold being drowned by noise.

Band-limited functions are exactly what “band-pass filters” are designed to
achieve. They multiply the transform f of the input signal by a function that is
nearly a=1 for the frequencies to be kept and a =0 for the frequencies to be
destroyed. Of course the filter does that by convolving the function. The
convolution of f with a = (sin Wx)/ax multiplies f by d and leaves it limited to the
band —W<k<W.

EXERCISES

4.3.1 Find the transform g of the one-sided ascending pulse

g(x)=e"* forx<0, g(x)=0 forx>0.

4.3.2 Find the Fourier transforms (with f= 0 outside the ranges given) of

(a) f(x)=1for0<x<L
(b) f(x)=1"tor x<O

© f(x)=[¢ &* dk
(d) the finite wave train f(x)=sin x for 0 < x < 10n

4.3.3 Find the inverse transforms of

@) f(k)=d(k) (b) f(k)=e "™ (separate k <0 from k > 0).
4.3.4 Apply Plancherel’s formula 2z | | f|?dx = | | f1%dk to

Q0 : 2t
(1) the square pulse f=1 for —1 <x <1, to find j s dt

2
ot

. “’ dt
(2) the even decaying pulse, to find J Nraron
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—x2/2 —k2/2

Note The next three exercises involve f=e and its transform f=./2n e

4.3.5 Verify Plancherel’s energy equation for f= 6 and f= e *"/2. Infinite energy is allowed.

4.3.6 What are the half-widths W, and W, of the bell-shaped function f=e */? and its
transform? Show that equality holds in the uncertainty principle.

4.3.7 What is the transform of xe ™ **/2? What about x2e ™ **/2, using 4L?

4.3.8 Show that the odd pulse (Example 5) 1s —1/a times the derivative of the even pulse
(Example 4). Therefore the transform of the odd pulse should be what factor times the

transform of the even pulse?

4.3.9 The decaying pulse e ?* has derivative —ae™ ** (and O for x <0), so that differenti-
ation seems to multiply its Fourier transform by —a instead of ik. How can this be?

4.3.10 Solve the differential equation

-c—-i—-u— + au = 0(x)
dx

by taking Fourier transforms to find #(k). What 1s the solution u (the Green’s function for
this equation)?

4.3.11 Take Fourier transforms of the unusual equation
(integral of u) — (derivative of u) =0

to find 4 (using 4L). Do you recognize u?

4.3.12 The convolution C =f g of the decaying pulse and ascending pulse (Ex. 1)1s .

1 |
a+ika—ik a%+ k?’

C(x)= f f(x — y)g(y)dy with transform C =fg =

Find C by recognizing this transform and also by explicitly computing the integral.

4.3.13 The square pulse with f=1 for —3 <X < 1 has transform f=(2/k)sin k/2. Graph
the “hat function” h = f * f whose transformis f*.(The cubic B-splineish*h = f* f* f x f and

its transform is %)

4.3.14 Show that the Fourier transform of gh is the convolution g#h/2n by repeating the
proof of the convolution rule—but with e™** to produce the inverse transform.

4.3.15 The derivative of the delta function is the doublet ¢'. It 1s a “distribution”
concentrated at x = 0 and from integration by parts 1t picks out not f(0) but —f’'(0):

ff (x) 0'(x)dx = — If (x) o(x)dx = —1"(0).

(@) Why should the Fourier transform of ¢’ be ik?
(b) What does the inverse formula (5) give for | ke™**dk?

(c) Exchanging k and x, what 1s the Fourier transform of f(x)= x?
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4.3.16 If f(x)1s an even function then the integrals for x >0 and x <0 combine into

”~

f(k)= OO f(x)e_“""cbc=2JOO f(x) cos kx dx

— QO

f(x)= 517;- jw f(k)e**dk = l on f(k) cos kx dx

T Jo

Find f in this way for the even decaying pulse e "%"*|. What are the corresponding formulas
for sine transforms when f 1s odd?

4.3.17 If f is a line of delta functions explain why f is too:
the transform of f= ) d(x —2zn) is f= Y 0k —n).

The footnote after equation (13) may be useful.

4.3.18 (a) Whyis F(x)=X2% f(x + 2mn) a 2n-periodic function?

n— — oo

] . .
(b) Show that its Fourier coefficient ¢, = . | . Fe”™*dx equals f(k)/2n.
m

(c) From F(x)=2X ¢,e™ at x =0 find Poisson’s summation formula:

Y fem)= Y iy

4.3.19 If u(x) =1 then 1t 1s an eigenfunction for convolution: k*1 is a multiple of 1. Prove
this directly and show that k(0) is the multiple. The same argument for u = ¢'“* gave the
eigenvalue k(w) 1n equation (20).

4.3.20 Another proof of positive definiteness when k(w) > 0 is to show that the quadratic
form u” Ku is positive for every u. If K is a convolution then

u'Ku = [m Jw k(x — y)u(y)u(x)dydx = —21— jw E(a))\ﬁ(_a))|2da) > (.

L

Use the convolution rule on the y-integral and Plancherel’s formula (9') on the x-integral to
establish this identity.

4.3.21 Apply Fourier transforms to |, e "Ylu(y)dy — 2u(x) =f(x) to show that the
solution 1s u= —3f + 1g, where g comes from integrating f twice. (Its transform is
g =f/(iw)*) If f=e ™! find u and verify that it solves the integral equation.

4.3.22 (a) If f(x)= e confirm that the solution u(x) given by (25) is iwe'®*/(1 + iw) and
that it solves the integral equation of Example 2.

(b) In the first integral in (25) identify the functions whose transforms are 1/(1 + iw) and
iwf (w). Then the second form of (25) comes from the convolution rule.

4.3.23 (a) Take Fourier transforms to find d(w) if

4 Jw e " Mu(y)dy + u(x) =f(x), —o0 < x < o0.
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8 -1 8 L
(b) Express [1 P + 1] as 1 — R and find its inverse transform g.

(c) Write u as a convolution f xg by the convolution rule.

4.3.24 Add two more types of convolution to the table of eigenfunctions, frequencies, and
eigenvalues:

(i) finite continuous: |§” a(x — y)u(y)dy where a and u are 2n-periodic
(i) one-sided discrete: ) a;_u;.
J=—

4.3.25 Why does the sampling formula X f(n) sin n(x — n)/n(x — n) give the correct value
f(0) at x=07?

4.3.26 Suppose the Fourier transform of f is f(k)=1 for —n <k < =, f(k) = 0 elsewhere.
Check that the sampling theorem 1s correct.

4.3.27 Take Fourier transforms in the equation d*G/dx* — 2a*d*G/dx* + a*G = 6 to find
the transform G of the fundamental solution. How would it be possible to find G?

4.3.28 What 1s 0%0?

4.3.29 Suppose g is the mirror image of f, g(x) = f(—x). Show from (4) that g(k) = f(—k).
If f 1s an even function (equal to 1its own mirror 1image, so that f = g) then so 1s f.

4.3.30 Suppose g is a stretched version of f, g(x) = f(ax). Show that g(k)=a~ ' f(k/a) and
illustrate with the even pulse f =¢e ¥,

4331 If f=e /% has transform f =./2n e ¥/2, use the previous exercise to find the
P

transform of g = e ~****/2, Then show that e~ **/2 x ¢ **2 = _/n ¢~*"/*, transforming the left
side by the convolution rule (18) and the right side by the choice a* = 3.

Note on the transform f = . /2n e **/%: This is calculated in Exercise 6.4.4 and it comes also
from the i1dentity

f(k) =j’"_000 e—x2/2€—ik.xdx _ e—k2/2 j'ofoo e—(.x+ik)2/2 dx.

The last integral 1s . /27 when k = 0, and the change from x + ik to x is justified by Cauchy’s
theorem 1n Section 4.5.

4.3.32 What is f if f(x)=e>* for x <0, f(x)=e~ 3* for x > 0?

4.3.33 Propose a definition of the two-dimensional Fourier transform. Given f(x, y) what is
f(ky, k,)? Given f(k, k,), what integral like (5) will invert the transform and recover f(x, y)?

4.3.34 Find the function f(x) whose Fourier transform is f(k) = e ¥,



