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integer n. Then the equation for B was (34):

2
rB” + B + (xr—i) B=0. (40)

r

For 4 =1 this has a solution J,(r) which 1s finite at r = 0. That 1s the Bessel function
of order n. (All other solutions blow up at r = O; they involve Bessel functions of the

second kind.) For every positive 4 the solution 1s just rescaled to J,,(ﬂ r). Atr=1
the boundary condition requires J,,(ﬂ) = (0; that picks out the eigenvalues. The

products A(0)B(r) = cos nf J,,(\/Ik r) and sin nf J,,(\/l—k r) are the eigenfunctions.
They give the shape of the drum 1n its pure oscillations, and Fig. 4.6 indicates

roughly what they look like.

The simplest guide 1s the nodal lines along which the drum does not move. They
are like the zeros of the sine function, where a violin string is still. For the drum we
are 1in two dimensions and the eigenfunctions are 4A(6)B(r). There 1s a nodal line
from the center whenever 4 =0 and a nodal circle whenever B = 0. For diflerent
values of n (the frequency 1n cos nf) and k (the oscillation number 1n the r direction),
the figure shows where the drumhead 1s motionless. The oscillations themselves are
functions of time—they are solutions A(0)B(r)e'v** of the wave equation in a circle.
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Fig. 4.6. Nodal lines of drum = zero lines of A(8)B(r).

Finally we mention a problem that is unsolved as of Christmas 1984. Can you
hear the shape of a drum’? 1If you know the eigenvalues A, does that determine the
boundary of the drumhead? I think the eigenvalues above, for a circle, do not occur
for any other shape. But whether two different drums could sound the same, no one

knows.

EXERCISES

4.1.1 Find the Fourier series on —n < x <= for
(a) f(x)=sin’x, an odd function
(b) f(x)=]|sin x|, an even function
(c) f(x)= x?, integrating either x* cos kx or the sine series for f= x
(d) f(x)=¢e*, using the complex form of the series.
What are the even and odd parts of f(x)=e¢e* and f(x)=e*?
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4.1.2 A square wave has f(x) = — 1 on the left side —n < x <0 and f(x) = + 1 on the right

side 0 < x < m.
(1) Why are all the cosine coeflicients a, = 0?
(2) Find the sine series X b, sin kx from equation (6).

4.1.3 Find this sine series for the square wave f in another way, by showing that
(a) df/dx =20(x)— 20(x + m) extended periodically

(b) 20(x)—20(x + @) = i (cos x +cos 3x + ---) from (10)

T
Integrate each term to find the square wave f.

414 At x=m/2 the square wave equals 1. From the Fourier series at this point find the
alternating sum that equals =:

4.1.5 From Parseval’s formula the square wave sine coeflicients satisfy

T

n(bi + b3 + ---)=jn If(x)lzdx=J‘ 1 dx =2m.

Derive another remarkable sum n° =8(1 +5 + 35+ --*).

4.1.6 Around the unit circle suppose u 1s a square wave

+1 on the upper semicircle O0<O<m
Ug = ..
0 —1 on the lower semicircle —n<60<0

From the Fourier series for the square wave write down the Fourier series for u (the solution
(21) to Laplace’s equation). What 1s the value of u at the origin?

4.1.7 If a square pulse 1s centered at x =0 to give
T T
f(x)=1 for |x|<5,f(x)=0 for 5<|x|<n,

draw its graph and find its Fourier coeflicients a, and b,.

4.1.8 Suppose f has period T instead of 2x, so that f(x)=f(x + T). Its graph from —T/2 to
T/2 1s repeated on each successive interval and its real and complex Fourier series are

27X . 2mx O y
f(x)=ay, + a, cos +bysin— + - = ) ¢l
o T T J

Multiplying by the right functions and integrating from —7T/2 to T/2, find q,, b,, and c,.

4.1.9 Establish by integration of x or otherwise the odd Fourier series

X(r — |x]) =

8 /sinx sin3x sin Sx
| 27 125

+ + +“-),0<x<7r.
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4.1.10 What constant function is closest in the least square sense to f= cos®*x? What
multiple of cos x is closest to f= cos>x?

4.1.11 Sketch the graph and find the Fourier series of the even function f=1—|x|/n
(extended periodically) in either of two ways: integrate the square wave or compute (with

ay = 3)
| 2 |7
ak=—f f(x)coskxdx=—j (l—f)coskxdx.
To)_ T Jo T

4.1.12 Sketch the 2n-periodic half wave with f(x)=sin x for 0 <x <=m and f(x)=0 for
—n < x <0. Find 1ts Fourier series.

4.1.13 Integrate the left side of (16) to find Bessel’s inequality for the squares of the Fourier
coefficients g, and b,.

4.1.14 (a) Find the lengths of the vectors u=(1,4,1 &%, ...)and v=(1, 3, 3, ...) in Hilbert
space and test the Schwarz inequality |uv]* < (u"u)(v"v).

(b) For the functions f=1+ 3™ +1e** + --- and g = 1 4+ 3™ + §e*™* + --- use part (a)
to find the numerical value of each term 1n

|Jtt f(x)g(x)dx|* < Jtt | f(x)|* dx JT | g(x)]* dx.

n

Substitute for f and g and use orthogonality (or Parseval).

4.1.15 In the solution to Laplace’s equation with u, =60 on the boundary, (26) 1s the
imaginary part of 2(z — z2/2 + z>/3 ---) =2 log (1 + z). Confirm that on the unit circle z = €%,
the imaginary part of 2 log (1 + z) agrees with 6.

4.1.16 If the boundary condition for Laplace’s equationis u,=1for 0 <0 <n and u, =0
for —n < 0 <0, find the Fourier series solution u(r, 6) inside the unit circle. What 1s u at the
origin’?

4.1.17 With boundary values uy(0) =1+ 3¢ + €%’ + ---, what is the Fourier series
solution to Laplace’s equation 1n the circle? Sum the series.

4.1.18 (a) Verify that the fraction in Poisson’s formula satisfies Laplace’s equation for
each o.

(b) What is the response u(r, 6) to an impulse at the point (0, 1) on the circle at the angle
©=m/2?

(c) If uys(p)=1 in the quarter-circle 0 < ¢ <n/2 and u, =0 elsewhere, show that at
points on the horizontal axis (and especially at the origin)

1 1 1 —r?
u(r, O)=§+-2—n-tan_1( _2’; ) by using

1 2 L2 o3
J‘ do - (\/b ¢? sin q))

E)+ccosqo=\/b2_c2 c+ bcos @

4.1.19 A plucked string goes linearly from f(0)=0 to f(p)=1 and back to f(n) =0. The
linear part f= x/p reaches to x = p, followed by f=(n — x)/(n — p) to x = . Sketch f as an
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odd function and find a plucking point p for which the second harmonic sin 2x will not be

4.1.20 Show that P, =x*—3 is orthogonal to P,=1 and P, =x over the interval
—1 < x < 1. Can you find the next Legendre polynomial by choosing ¢ to make x> — cx

orthogonal to P,, P,, and P,?

4.1.21 Using formula (30) with f=|x|, find the first 3 coefficients in the Legendre expansion
| x| =coPy +c{ Py +c,P, + ---. Sketch |x| and ¢, P, + ¢, P; + ¢, P, on the same graph for
—1 <x < 1. To what functions is the difference of those graphs orthogonal?

4.1.22 If all orthogonal functions 7, are multiplied by 10 what happens to their coefficients
¢, 1n (30)?

4.1.23 A function f(x, y) of two variables in the square —n < x, y < n can have the double
Fourier series

f(x,y)=) > cye’ e’ (complex form with —oo < j, k < 00)

f(x,y)=ago+a;ocos x+ag, COSy+a,; COS xcosy+ ... (even)

f(x,y)=byysinxsiny+b,, sin2xsin y+ b,, sin x sin 2y + ... (odd)

By multiplying by the right functions and integrating over the square, give formulas for c;
and b;,. (If f 1s neither even or odd its real series will also include all products cos kx sin Ix
and sin kx cos Ix.)

4.1.24 Find the double Fourier coefficients c; if f in the square is

(a) a two-dimensional impulse d(x, y): for any g, {{ gd dxdy = g(0, 0)
(b) a line of one-dimensional impulses d(x): || gd(x) dxdy = | g(0, y) dy
() cos?x cos?y

4.1.25 From the sine series for x in equation (12) and a similar series for y find the
coethcient b, in the double sine series for f= xy.

4.1.26 If f has the double sine series £X b,, sin kx sin Iy, show that Poisson’s equation
—u,, — u,, = [ 1s solved by the double sine series u = X b,, sin kx sin ly/(k* + [%). This is the
solution with u =0 on the boundary of the square —n <x, y <.

4.1.27 Find from JE/0C, = 0 the coefhicients C, that minimize the error
E=|[f—-C,T,—C,T, ---1* wdkx,

assuming that T;, T,, ... are orthogonal with weight w over the interval of integration.
Compare with the coefhcients ¢, in equation (30).

4.1.28 Rodrigues’ formula for the Legendre polynomials is P, =(2"n!)" ! d"(x* — 1)"/dx".
Show that this gives P, = x and P, = (3x* — 1)/2, and prove orthogonality by integrating
|1, P,P; dx by parts. Why does the formula always produce a polynomial of degree n?

4.1.29 The polynomials 1, x, y, x* — y?%, 2xy, ... solved Laplace’s equation in two dimen-
sions. Find five independent combinations of x?, y?, z*, xy, xz, yz that satisfy u,, + u,, + u,,
= 0. With spherical polynomials of all degrees we can match u =u, on the surface of a

sphere.
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4.1.30 Show that two eigenfunctions u, and u, of a Sturm-Liouville problem (pu') + qu
+ Awu = 0 are orthogonal with weight w. Multiply the equation for u, (with A= 4,) by u,;
multiply the equation for u, (with A, # 4;) by u,; subtract and integrate over the interval.
With zero boundary conditions integrate u,(pu;) and u,(pu,) by parts to show that
| uuy wdx =0.

4.1.31 Fit the Bessel equation (40) into the framework of a Sturm-Liouville equation
(pu') + qu + Aiwu =0. What are p, g, and w? What are they for the Legendre equation
(1 —x*)P" —=2xP' + AP =0?

4.1.32 Show that the first Legendre polynomials P,=1, P, =cos ¢, P, =cos*¢p — 5 are
eigenfunctions of Laplace’s equation (wu,,), + w~ 'ugy = — Awu with w = sin ¢ on the surface
of a sphere. Find the eigenvalues A of these spherical harmonics. The Legendre polynomials
P (cos @) are the eigenfunctions that are independent of the longitude 6.

4.1.33 Compare the n! beneath r" in the cosine series with 224 --. n? in the Bessel series (36).
Write the latter as 2"[(n/2)!]* and use Stirling’s formula n! ~ \/27rn n"e " to show that the

ratio of these coefhicients approaches \/ ntn/2. They have the same alternating signs and the
two series are very similar.

4.1.34 Substitute B =X c¢,,r™ into Bessel’s equation (40) and show from the analogue of (35)
that Ac,,_, must equal (n* —m?)c,,. This recursion starts from ¢, = 1 and successively finds
C,+,=An*—(n—2)%), c,.4, ... as the coefficients in a “Bessel function of order n:”

Ar? A%rd N ]
n“—(n+2° (n*—(n+2)7>%n*—(n+4)%

B,,(r)=r"[1+ +

ol & (DA
M kNk+n)

4.1.35 Where are the drum’s nodal lines 1n Fig. 4.6 if n=1, k=2o0orn=2, k=37

4.1.36 Explain why the third Bessel eigenfunction B = Jy(./ 45 r) is zero at r =(4,/43)"?,
r=(A,/A3)"%, and r = 1.



