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and light travels by the fastest route; action becomes time. If Planck’s constant
could go to zero, the deterministic principles of least action and least time would
appear and the path would be not only probable but certain.

EXERCISES

3.6.1 What are the weak form and the strong form of the linear beam equation—the Euler
equation for P = | [3 c(u”)? — fuldx?

3.6.2 Minimizing P = j(u’)zdx with u(0) =a and u(1) = b also leads to the straight line
through these two points. Write down the weak form and the strong form.

3.6.3 Find the Euler equations (strong form) for
(a) J[(u’)2 + e ]dx (b) Juu’ dx (C) sz(u’)zdx

3.6.4 If F(u,u') 1s independent of x, as in almost all our examples, show from the Euler
equation and the chain rule that H =u'0F/ou’ —F 1s constant. This i1s dual to the fact that
0F /ou’ 1s constant when F 1s independent of u.

3.6.5 If the speed 1s x the travel time 1s

1
1
T=| —/1+@)dx with u0)=0 and u(l)=1.
o X

(a) From the Euler equation what quantity 1s constant (Snell’s law)?
(b) Can you integrate once more to find the optimal path u(x)?

3.6.6 With the constraints u(0) = u(1) =0 and | u dx = A4, show that the minimum value of
P = | (v')*dx is 124*. Introduce a multiplier m, solve the Euler equation for u, and verify that
A = —m/24. Then the derivative dP/dA = 244 1s —m as the theory predicts.

3.6.7 For the shortest path constrained by | u dx = 4, what is unusual about the solution in
Fig. 3.14 as A becomes large?

3.6.8 Suppose the constraint is | u dx > A, with inequality allowed. Why does the solution
remain a straight line as 4 becomes small? Where does the multiplier m remain?

Note: This 1s typical of inequality constraints: either the Euler equation is satisfied or the
multiplier 1s zero.

3.6.9 Suppose the constrained problem is reversed, and we maximize the area P = | u dx

subject to fixed length | = | \/1 + (u')* dx, with u(0)=a and u(1) =b.
(a) Form the Lagrangian and solve its Euler equation for u
(b) How is the multiplier M related to m in the text?
(c) When do the constraints eliminate all functions u?

3.6.10 Find by ordinary calculus the shortest broken-line path between (0,1) and (1,1) that
goes first to the horizontal axis y = 0. Show that the best path treats this axis like a mirror:

angle of incidence = angle of reflection.
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3.6.11 The principle of maximum entropy selects the probability distribution that

maximizes H = ——j u log u dx. Introduce Lagrange multipliers for the constraints j udx =1
and | xu dx = 1/a, and find by differentiation an equation for u. On the interval 0 < x < oo

show that the most likely distribution 1s u = ae™ ¢*.

3.6.12 If the second moment | x?u dx is also known show that Gauss wins again: the

maximizing u is the exponential of a quadratic. If only | u dx =1 is known, the most likely
distribution is u = constant. The least information comes when only one outcome is possible,

say u(6) =1, since u log u 1s then identically zero.

3.6.13 A path that climbs around a cylinder has x =cos 6, y =sin 0, z = u(0):

its length 1s L = JA\/dx2 +dy* +dz* = le + (u')* dO

Show that v’ = constant satisfies Euler’s equation. What kind of path 1s (x,y,z) =(cos 0, sin 0, c0)?

3.6.14 Starting with the nonlinear equation —u” + sin u =0, multiply by v and integrate
the first term by parts to find the weak form. What integral P is minimized by u?

3.6.15 Find the Euler equations (strong form) for

p 1 0%u 2+2 0%u \? 0%u \* y
@) Plu)=7 Ox? oxay ) " \ayz) |V

(b) P(u)= jj(yu + u, ) dx dy (c) E(u)= jqu + (u')? dx

(d) P(u)zéjj(u +u;)dx dy with Jjuzdx dy = 1.

3.6.16 Show that the Euler equations for

0%u 0%u
dx d d dx d
j[@x 8y x4y an j[(@x@y) alacd

are the same. (Presumably the two integrals are equal if the boundary conditions are zero.)

3.6.17 Sketch the graph of p?/2m + mgu = constant in the u— p plane. It is an ellipse,
parabola, or hyperbola? Mark the point where the ball reaches maximum height and begins
to fall.

3.6.18 Draw a second spring and mass hanging from the first. If the masses are m,,m, and
the spring constants are c,,c,, the energy 1s

1 2 1 2 1 2 1 2
H=K+P:2m1 p1+2m2 p2+5C1u1+5C2(u2—u1) .

Find the four Hamilton’s equations J0H/dp; = du;/dt,0H/0u; = —dp;/dt, and the matrix
equation Mu” + Ku = 0.

3.6.19 The Hamiltonian for a pendulum (with u = 6) is H = p*/2m + mgl(1 — cos u). Write
out Hamilton’s equations (21) and eliminate p to find the equation of a pendulum.
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3.6.20 Verify that the energy 3;e'Ce and the complementary energy ;w'C 'w are
conjugate. As in equation (16), this means that iw"C ~'w = max[e'w — 3e' Ce].

CHAPTER 3 IN OUTLINE: EQUILIBRIUM IN THE CONTINUOUS CASE

3.1 One-dimensional Problems-—analogies between discrete and continuous
A to AT: Integration by Parts—the rule is (Au)'w=u"(A"w)
Sturm-Liouville Problems—the solution to —cu” +qu=f
Singular Perturbations—boundary layer as ¢ -0

3.2 Differential Equations of Equilibrium—the Euler equation oP/ou =0
Minimum Principles—essential and natural boundary conditions
Complementary Minimum Principle for w—minimize Q = f w?/2c dx
Fourth-order Equations—the beam equation (cu”)” =f has 4 = (d/dx)’
Interpolation: Displacements and Slopes—four conditions on a cubic
Cubic Splines—continuous second derivatives at the nodes

3.3 Laplace’s Equation and Potential Flow— A" Au = —divgradu= —u,, —u,,
Boundary Conditions and Green’s Formula—(grad)’ = —div
Poisson’s Equation—div (c grad u)=f
Minimum Principles— Laplace minimizes P =7 | | (u2 + u?) dx dy

3.4 Vector Calculus in Three Dimensions—potentials and work | F - dr
Gradient, Divergence, and Curl—curl grad u =0 and div curl § =0
Electricity and Magnetism—Maxwell’s equations, static and dynamic
Vector Calculus—interior integrals equal boundary integrals
Orthogonal Coordinate Systems—cylindrical and spherical scale factors

3.5 Equilibrium of Fluids and Solids—stress-strain law
Strain and Displacement—e = 7(J + J'), examples of shear
Stress and Force—equilibrium div o +f=0
The Torsion of a Rod—warping functions and tensors
Fluid Mechanics—continuity equation and transport rule
Acceleration and Momentum Balance—pDv/Dt = div T: perfect and viscous
Euler and Bernoulli Equations—3v* + p/p = c; vorticity and stream function
The Navier-Stokes Equations—similarity and the Reynolds number
The Stokes Equations—grad p = uV*v without acceleration

3.6 Calculus of Variations—the first variation 0P/ou=0: 0F/ou = (0F/ou’)

Constrained Problems— Lagrange multiplier for | u dx = 4
Two-dimensional Problems—elliptic, parabolic, and hyperbolic

The Minimal Surface Problem—minimize | | (1 + uZ + uj)'/? dx dy
Nonlinear Equations—variational form, weak form, strong form

The Energies F and F*—Legendre transform yields complementary energy
Dynamics and Least Action— Mu” + Ku =0 and Hamilton’s equations

Relativity and Quantum Mechanics— Einstein’s energy F = —mc(c* — v?*)'/?



