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That removes irrelevant edges. A large ¢ leaves only the big picture; a small o
allows a closer look. Pattern recognition 1s an inverse problem—to recover the
coloring book from the finished picture—Ilike recovering the coeflicients of a
differential equation from its solutions.

EXERCISES

3.3.1 (a) Show that u = x> — 3xy* satisfies Laplace’s equation.
(b) Do the same for s=4x>y—4xy>, and explain where this comes in the list of

polynomial solutions.
(c) Substitute x =cos 6 and y =sin 0 in s and simplify to an expression involving 46.

3.3.2 Verify that u = ¢* cos y and s = e* sin y both satisfy Laplace’s equation, and sketch the
equipotentials u = constant and the streamlines s = constant.

3.3.3 Discrete divergence theorem: Why 1s the flow across the “cut” in the figure equal to the
sum of the flows from the individual nodes A4,B,C,D? Note: This is true even if flows like
d, —d from nodes like 4 are nonzero. If the current law holds and each node has zero net flow,

then the exercise says that the flow across every cut 1s zero.

3.3.4 Discrete Stokes theorem: Why i1s the voltage drop around the large triangle equal to
the sum of the drops around the small triangles? Note: This 1s true even if voltage drops like
d, +d, +d¢ around triangles like ABC are nonzero. If the voltage law holds and the drop
around each small triangle 1s zero, then the exercise says that d, +d, +d, +d, +d + dg
= (.

3.3.5 On a graph the analogue of the gradient is the edge-node incidence matrix A,. The
analogue of the curl is the loop-edge matrix R with a row for each independent loop and a
column for each edge. Draw a graph with four nodes and six directed edges, write down A,
and R, and confirm that RA, =0 in analogy with curl grad = 0.

3.3.6 Why does the flow rate w=(0ds/dy, —0s/0x) satisfy divw =0 for any “stream
function” s(x,y)?
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3.3.7 If the density is ¢ =1 then
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Show from these Cauchy-Riemann equations du/0dx = ds/0dy and du/dy = — 0ds/0x that both
u and s satisfy Laplace’s equation.

3.3.8 The curves u(x,y) = constant are orthogonal to the family s(x,y) = constant if grad u

1s perpendicular to grad s. These gradient vectors are at right angles to the curves, which can

be equipotentials and streamlines. Construct a suitable s(x,y) from the geometry and verify
ou 0s Ou 0s 0 if

0x 0x T 0y 0y

(grad u) (grad s) =

(@) u(x,y)=y: equipotentials are parallel horizontal lines
(b) u(x,y) = x — y: equipotentials are parallel 45° lines
(c)- u(x,y)=Ilog(x*+ y*)!/2: equipotentials are concentric circles.

3.3.9 A differential equation like dy/dx =f(x,y) gives a family of curves depending on the
initial value y(0), and dy/dx = —1/f(x,y) gives the orthogonal curves. (The product of the
slopes 1s —1, the usual condition for a right angle; the gradients are in the orthogonal
directions (1,/) and (1,—1/f).) Solve y' = —1/f for the second family if the first family 1s

(a) y=e*+ constant, from dy/dx=e*=f

(b) y=3x%+ constant, from dy/dx =x=f

(c) xy=constant, from dy/dx= —y/x =/.

3.3.10 In Stokes’ law (8), let v, = —y and v, =0 to show that the area of § equals the line
integral — | y dx. Find the area of an ellipse (x=a cos t, y="> sin ¢, x%/a* + y*/b* =1,
0 <t<2m).

3.3.11 By computing curl v, show that v = (y*,x?) is not the gradient of any function u but
that v = (y*,2xy) is such a gradient—ang find u.

3.3.12 By computing div w, show that w = (x?, y*) does not have the form (ds/0y, — ds/0x) for
any function s. Show that w = (y%, x*) does have that form, and find the “stream function” s.

3.3.13 If u = x*in the square S = { —1 < x,y < 1}, verify the divergence theorem (11) when
w = grad u:

deivgradudxdy=f n-grad u ds.
C

S

If a different u satisfies Laplace’s equation in S, what is the net flow through C?

3.3.14 What potential has the gradient v=(u,u,)=(2xy,x> —y*)? Sketch the equipot-

entials and streamlines for flow into a 30° wedge (Fig. 3.7 was 45°), and show thatv-n =0 on

3

the upper boundary y = x/\/g. The streamlines have s = xy? — 1 x> = constant.



198 3 Equilibrium in the Continuous Case

3.3.15 Solve Poisson’s equation u,, +u,, =4 by trial and error if u=0 on the circle
2 2
x“+y-=1.

3.3.16 Find a quadratic solution to Laplace’s equation if u =0 on the axes x=0and y=0
and u = 3 on the curve xy = 1.

3.3.17 Laplace’s equation 1n polar coordinates i1s

62u+10u+ 1 02u_0
or:  ror r?o0*

Show that u=r cos 0 +r~ ! cos 0 is a solution, and express it in terms of x and y. Find
v = (u,,u,) and verify that v -n =0 on the circle x* + y* = 1. This is the velocity of flow past
a circle.

3.3.18 Show that u = log r satisfies Laplace’s equation except at r = 0.

du dv  Ou Ov

+
0x 0x dydy
the u 1n (17) to v and changing w to grad u, to write

5_12:[[:)[?] dxdy+f v[?7?7] ds.
ou C

If this 1s zero for all v, find the differential equation and the natural boundary condition
satisfied by u.

3.3.19 Suppose oP/ou = ”[ — fv] dx dy. Use Green’s formula, changing



