There is also a minimum principle. The spline has the smallest bending energy

$$P(u) = \int_0^n \left(\frac{d^2u}{dx^2}\right)^2 dx \tag{31}$$

among all functions with the correct heights $u_0, ..., u_n$ at the points x = 0, ..., n (where the rings are). That gives the Euler equation $d^4u/dx^4 = 0$ away from the rings. In every interval u is a cubic, and the spline bends as little as possible. It is an excellent way to pass a curve through the prescribed points.

EXERCISES

- **3.2.1** For $P(u) = \frac{1}{2} \int_0^1 \left(\frac{d^2u}{dx^2}\right)^2 dx$, find the first variation $\delta P/\delta u$ from the linear term in P(u+v).
- 3.2.2 What function u(x) with u(0) = 0 and u(1) = 0 minimizes

$$P(u) = \int_0^1 \left[\frac{1}{2} \left(\frac{du}{dx} \right)^2 + x \ u(x) \right] dx?$$

3.2.3 What function w(x) with dw/dx = x (and unknown integration constant) minimizes

$$Q(w) = \int_0^1 \frac{w^2}{2} \, dx?$$

With no boundary condition on w this is dual to Ex. 3.2.2.

- **3.2.4** What functions u and w minimize P and Q with dw/dx = x and u(0) = w(1) = 0? Verify the strong duality -P = Q.
- 3.2.5 With two conditions w(0) = w(1) = 0 show that no function satisfies dw/dx = x. With no conditions on u show that P has no minimum (except $-\infty$). This is the unstable case, unsupported and allowing rigid motions u = constant.
- **3.2.6** From the differential equation -d/dx(c du/dx) = f, derive the weak form (4) by multiplying by test functions v and integrating.
- 3.2.7 Show that $P(u) + Q(w) \ge 0$ for any admissible u and w:

$$\int_0^1 \left[\frac{c}{2} \left(\frac{du}{dx} \right)^2 - fu + \frac{1}{2c} w^2 \right] dx \ge 0 \quad \text{when} \quad f = -\frac{dw}{dx} \quad \text{and} \quad u(0) = w(1) = 0.$$

- 3.2.8 Show that P(u) + Q(w) = 0 for the optimal u and w, which satisfy w = cu'.
- **3.2.9** If u(0) = 0 is changed to u(0) = a, this essential condition for P(u) must again be a

natural condition for Q(w). That requires a change in Q:

$$Q(w) = \int_0^1 \frac{1}{2c} w^2 dx + aw(0)$$
 subject to $-\frac{dw}{dx} = f$ and $w(1) = 0$.

Introduce the multiplier u for the constraint and show that the vanishing of the first variation $\delta L/\delta w$ does lead to u(0) = a. (The new term aw(0) is the work done at the boundary; when w is perturbed to w + V, the difference V(0) appears in $\delta L/\delta w$.)

- 3.2.10 If the ends of a beam are fixed (zero boundary conditions) and the force is f = 1 with c = 1, solve $d^4u/dx^4 = 1$ and then find M. Why does it have to be done in that order?
- **3.2.11** With simply supported ends, the boundary conditions make it possible to solve M'' = f directly for M without going first to u. This is a statically determinate beam. Find M and u if f = 1 and c = x.
- 3.2.12 What is the shape of a uniform beam under zero force, f = 0 and c = 1, if u(0) = u(1) = 0 at the ends but du/dx(0) = 1 and du/dx(1) = -1? Sketch this shape.
- 3.2.13 The step function s(x) is zero for $x \le 0$ and jumps to one for x > 0; its derivative is the delta function with $\delta(x) = 0$ for every $x \ne 0$ but $\int \delta(x) dx = 1$. To make this reasonable, consider the step s as a limit of functions s_n which have slope n between x = 0 and x = 1/n; elsewhere $s'_n = 0$. Compute $\int s'_n dx$ and $\int (s'_n)^2 dx$, and as $n \to \infty$ verify formally that $\int \delta = 1$ and $\int \delta^2 = \infty$.
- 3.2.14 What is the maximum height of the Hermite cubic $(x-1)^2x$ in Figure 3.5?
- 3.2.15 Prove that the coefficient matrix for spline interpolation in equation (29) is positive definite. One method of proof is to rewrite the quadratic

$$x^{T}Ax = 2x_{0}^{2} + 2x_{0}x_{1} + 4x_{1}^{2} + 2x_{1}x_{2} + 4x_{2}^{2} + \cdots$$

as a sum of many squares.

- 3.2.16 Which cubic spline has the values u = 0.4.8.12 at the nodes $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$? Show that the governing equation (29) is satisfied.
- 3.2.17 For the B-spline in Fig. 3.6, find the cubic in the second interval from its height and slope at x = 1 and x = 2.
- 3.2.18 (a) Find the cubic that replaces (24) if the right end of the interval is moved from x = 1 to x = h.
- (b) Find the new form of (27) for this case, giving $d^2u/dx^2 = 0$ at x = 0. Note: The new form of (28) at $x_1 = h$, if the second interval goes to $x_2 = h + H$, is a typical spline condition for unequally spaced points:

$$\frac{2s_1 + s_2}{H} + \frac{2s_1 + s_0}{h} = \frac{3}{H^2} (u_2 - u_1) + \frac{3}{h^2} (u_1 - u_0).$$

3.2.19 There are 16 coefficients in the four cubics between the points x_0, x_1, x_2, x_3, x_4 . Describe in words the 16 conditions on a cubic spline; five of them are the prescribed heights u_0, u_1, u_2, u_3, u_4 .