164 3 Equilibrium in the Continuous Case

but you could never see the difference in Fig. 3.3. There 1s a boundary layer at each

end 1n which all the action occurs. The layer reaches approximately to x = 8\/5,
which is enough for the special solution u=1—e *¥¢ to climb from u(0) =0 to
u=1-—e"° At that point it has virtually met the interior solution U = 1. Then a
similar exponential at the other end connects U =1 back to u=0, in another
boundary layer.

The perturbation 1s singular because the unperturbed solution U = 1 completely
misses the boundary conditions. The leading term —cu” 1s disappearing as ¢ goes to
zero, but 1t remains powerful inside the layer. Elsewhere the problem i1s calm.

(@) small g (b) small c

Fig. 3.3. A regular perturbation and a singular perturbation: —cu” + qu = 1.

Note finally that a first derivative du/dx standing alone in (13) would have
destroyed the whole framework. It corresponds to adding a skew-symmetric matrix
to the existing A" CA. Such a term does appear in fluid dynamics, and it illustrates
the difference between diffusion and convection. Diffusion 1s symmetric and
convection 1s not.

EXERCISES

3.1.1 For a bar with constant ¢ but with decreasing f=1— x, find w(x) and u(x) as in
equations (8—10).

3.1.2 For a hanging bar with constant f but weakening elasticity ¢(x) =1 — x, find the
displacement u(x). The first step w = (1 — x) f is the same as in (9), but there will be stretching
even at x = 1 where there 1s no force. (The condition is w = ¢ du/dx = 0 at the free end, and

¢ =0 allows du/dx # 0.)

3.1.3 Suppose a bar is free at both ends: w(0) = w(1) = 0. This allows rigid motion. Show
that 1if u(x) satisfies the differential equation and these boundary conditions, so does u(x) + C
for any constant C.

3.1.4 With the bar still free at both ends, what is the condition on the external force f in
dw
order that — e f(x), w(0) = w(1) =0 has a solution? (Integrate both sides of the equation

from O to 1.) This corresponds in the discrete case to solving A y = f; there is no solution for
most f, because the left sides of the equations add to zero.
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3.1.5 Find the displacement for an exponential force, —u” =¢e* with u(0)=u(1)=0.

Note that A + Bx is the general solution to —u” =0; 1t can be added to any particular
solution for the given f, and A and B can be adjusted to fit the boundary conditions.

3.1.6 Suppose the force f is constant but the elastic constant ¢ jumps from ¢ = 1 for x <3 to
¢ =2 for x > 5. Solve —dw/dx = f with w(1) =0 as before, and then solve ¢ du/dx = w with
u(0) =0. Even if ¢ jumps, the combination w = ¢ du/dx remains smooth.

3.1.7 Find the next term W(x) in u=3(x —x?) + q(5x> —Lx* —5x)+ ¢*W + ---.
Choose W to match the g* terms in —u” + qu=1 and to satisfy W(0) = W(1) = 0.

3.1.8 For the negative value q = —1 show that u=d, cos x + d, sin x — 1 satisfies the
differential equation —u” —u = 1. The exponentials are ¢* and e **, and they can be

replaced by the sine and cosine.

3.1.9 If the condition at x =1 were u'(1) =0, why would no boundary layer be needed in
Figure 3.3?

3.1.10 Verify that u=d,e"’V*+d,e ¥+ 1 is an exact solution to —cu” +u=1. The
conditionu=0at x=0givesd, + d, + 1 = 0; find a sitmilar equation from u(1) = 0 and solve
for d,. We expect d, ~ —1 to produce the boundary layer at x =0.

3.1.11  What is the general solution to the constant-coefhicient equation —u” + pu’ =0? Try
exponentials u = e?*.

3.1.12 For —u” + pu’' =1 with small p, find the regular perturbation pV by substituting
u=4(x — x*?) + pV and keeping the terms that are linear in p.

3.1.13 Thesolutionto —cu” +u' =1isu=d, + d,e** + x. Find d, and d, if u(0) = u(1) =0,
and find their limits as ¢ — 0. The limit of u should satisfy U’ = 1; which boundary condition
does 1t keep and which end has a boundary layer?

3.1.14 Find the exponentials u = ¢?* that satisfy —u” + 5u’ — 4u =0 and the combination
that has u(0) =4 and u(1) = 4e.

3.1.15 Solve the equation —u” = f with u(0) =0 and «'(1) =0 when fis a delta function at
x = 3. The impulse f'is zero (and u is linear, u = Ax + B) except at 1, where «’ has a unit step
down. The bar is stretched above x =, then free.

3.1.16 Solve the same problem with u(0) = u(1) =0, leading to the Green’s function of page
351. The solution to —u” = 0 1s again piecewise linear.

3.1.17 My class thinks that w in equation (9) should be .f; fdx + C. But what constant of
integration makes w(1) =0?

Notes on the Dirac delta function (6 = unit impulse at x = 0)

Its integral from — o0 to x 1s a step function: jump from O to 1 at x =0
Second 1ntegral i1s a ramp function (= x for x > 0; solution to u” = 9)

Third integral is a quadratic spline (= 3x* for x > 0; jump in second derivative)
Fourth integral is a cubic spline (= x> for x > 0; solution to u”” = §, p. 177)
Its derivative o' 1s a doublet (p. 327)

Delta function 6(x)é(y) in two dimensions: || f(x, y) d(x)d(y) dxdy = f(0, 0)

Defining property: [v(x)ddx = v(0) for every smooth function v



