Summing over all bars, the complementary energy is the quadratic Q we met earlier:

$$Q(y) = \sum_{i=1}^{n} \frac{y_i^2}{c_i} = \frac{1}{2} y^T C^{-1} y.$$
 (12)

Therefore the energy principle discovered by Castigliano becomes exactly our theorem of duality. And the saddle point problem for $L = Q + x^{T}(A^{T}y - f)$ is known as the Hellinger-Reissner principle.

2H At equilibrium, the bar forces y minimize the complementary energy Q(y) subject to $A^Ty = f$. Furthermore the minimum values of P and Q satisfy $P_{\min} = -Q_{\min}$.

This is identical to the main result of Section 2.2 (with b = 0) after a sign change in x. There the quadratic was $P = \frac{1}{2} x^T A^T C A x + x^T f$; changing x to -x reverses the linear term and produces the potential energy of a truss. The equations also reverse sign: mechanics has elongations e = Ax instead of e = -Ax, y = CAx instead of y = -CAx, and $f = A^T C Ax$ instead of $f = -A^T C Ax$. But the minimum of P is unchanged since -x is as admissible as x.

The two principles are in perfect duality, but in practice one completely dominates the other. The **displacement method** (which minimizes P) is in constant use; the **force method** (which minimizes Q) is comparatively dormant. The reason can be found in the principles themselves. In the first, kinematic constraints like $x_j = 0$ are easy to impose. In the complementary principle we have to obey $A^T y = f$, and that is harder to do. It asks us to identify all the "redundancies," which are the solutions to $A^T y = 0$; they are the m - n degrees of freedom in minimizing Q. For a small truss these self-stresses can be computed and added to a particular solution of $A^T y = f$. Codes for the nullspace are beginning to appear. But for a large truss or a discrete approximation to a continuous structure—as in the finite element method of Section 5.4, where thousands of unknowns are quite common—the displacement method seems to win.

EXERCISES

- **2.4.1** Write down m, N, r, and n for the three trusses in Fig. 2.10, and establish which is statically determinate, which is statically indeterminate, and which one has a mechanism. Describe the mechanism (the uncontrolled deformation).
- **2.4.2** With horizontal forces f_H^1 and f_H^2 pulling the upper nodes in Fig. 2.10a to the right, and vertical forces f_V^1 and f_V^2 pulling them up, write down the four equilibrium equations $A^Ty = f$. Assuming the diagonal is at 30° and all $c_i = 1$, form the stiffness matrix $K = A^TCA = A^TA$.

- **2.4.3** With a single horizontal force f_H^1 applied to the upper left node in Fig. 2.10b, and the diagonal still at 30°, find the four equations $A^Ty = f$. Since A is square solve directly for y. What reactive forces are supplied by the supports?
- **2.4.4** For the truss in Fig. 2.10c, write down the equations $A^Ty = f$ in three unknowns y_1, y_2, y_3 to balance the four external forces $f_H^1, f_H^2, f_V^1, f_V^2$. Under what condition on these forces will the equations have a solution (allowing the truss to avoid collapse)?
- 2.4.5 For example 1 in the text, from Fig. 2.12a, equilibrium at the left support gives

$$-\frac{1}{\sqrt{2}}y_1 = f_H^1 \qquad \text{(horizontal reaction)}$$

$$-\frac{1}{\sqrt{2}}y_1 = f_V^1 \qquad \text{(vertical reaction)}$$

What are the corresponding equations at the second support? These four equations correspond to the four columns of A_0 eliminated by the fixed displacements $x_H^1 = x_V^1 = x_H^2 = x_V^2 = 0$ at the supports.

- **2.4.6** For example 3 (Fig. 2.12c) let the forces be $f_1 = f_2 = f_4 = f_6 = 0$, $f_3 = 1$, $f_5 = -1$. These satisfy the conditions for no rigid motion. Write down directly the solution to the 6 equations in the text for y_1, y_2, y_3 .
- 2.4.7 In example 4 with a mechanism, what forces f_H and f_V at the lower node would make it possible to solve the three equations $A^Ty = f$? F still acts horizontally at the roller.
- **2.4.8** With the bridge in Fig. 2.10a on top of the one in Fig. 2.10c (the supports remain only at the bottom) show that m = n = 8 but there is still a mechanism. What force would make this ladder collapse?
- 2.4.9 Sketch a six-sided truss with fixed supports at two opposite vertices. Will one diagonal crossbar between free nodes make it stable, or what is the mechanism? What are m and n? What if a second crossbar is added?
- 2.4.10 If we create a new node in Fig. 2.10a where the diagonals cross, is the resulting truss statically determinate or indeterminate?
- **2.4.11** In continuum mechanics, work is the product of stress and strain integrated over the structure: $W = \int \sigma \varepsilon \, dV$. If a bar has uniform stress $\sigma = y/A$ and uniform strain $\varepsilon = e/L$, show by integrating over the volume of the bar that W = ye. Then the sum over all bars is $W_{\text{total}} = y^T e$; show that this equals $f^T x$.
- **2.4.12** At the equilibrium $x = K^{-1}f$, show that the strain energy U (the quadratic term in P) equals $-P_{\min}$, and therefore $U = Q_{\min}$.
- **2.4.13** The "stiffness coefficients" k_{ij} in K give the forces f_i corresponding to a unit displacement $x_j = 1$, since Kx = f. What are the "flexibility coefficients" that give the displacements x_i caused by a unit force $f_j = 1$?

2.4.14 At equilibrium, where $x = K^{-1}f$, the terms in the potential energy P(x) are $\frac{1}{2}x^TKx = \frac{1}{2}f^TK^{-1}f$ and $f^Tx = f^TK^{-1}f$. The internal strain energy and the external potential energy are not equal! Why not?

Note The point of virtual work is that, starting from x and making a small change v, the changes in internal and external terms are equal.

- **2.4.15** (a) Turn the square network of Exercise 2.3.14 into a truss. With the usual pin supports at the two nodes that were grounded, write down the 7 by 6 matrix in e = Ax.
 - (b) Which of the four types of truss is this?
 - (c) What is the rank of A and what are the solutions to Ax = 0?
 - (d) What are the solutions to $A^T y = 0$?
- **2.4.16** Suppose a truss consists of *one bar* at an angle θ with the horizontal. Sketch forces f_1 and f_2 at the upper end, acting in the positive x and y directions, and corresponding forces f_3 and f_4 at the lower end. Write down the 1 by 4 matrix A_0 , the 4 by 1 matrix A_0^T , and the 4 by 4 matrix $A_0^T C A_0$. For which forces can the equation $A_0^T y = f$ be solved?
- **2.4.17** For networks, a typical row of $A_0^T C A_0$ (say row 1) is described on page 92: The diagonal entry is $\sum c_i$, including all edges into node 1, and each $-c_i$ appears along the row. It is in column k if edge i connects nodes 1 and k. ($A^T C A$ is the same with the grounded row and column removed.) The problem is to describe $A_0^T C A_0$ for trusses, and the idea is to put together the special $A_0^T C A_0$ found in the previous exercise (a + by + a).
- (a) Suppose bar i goes at angle θ_i from node 1 to node k. By assembling the $A_0^T C A_0$ for each bar, show how the 2 by 2 upper left corner of $A_0^T C A_0$ contains

$$\begin{bmatrix} \sum c_i \cos^2 \theta_i & \sum c_i \cos \theta_i \sin \theta_i \\ \sum c_i \cos \theta_i \sin \theta_i & \sum c_i \sin^2 \theta_i \end{bmatrix}$$

- (b) Where do those terms appear (with minus signs) in the first two rows? All rows of $A_0^T C A_0$ add to zero.
- **2.4.18** This is another approach to $A_0^T C A_0$ for trusses. The first column of A_0 contain $\cos \theta_i$ in row k, if bar i goes at angle θ_i from node 1 to node k. The second column contains $\sin \theta_i$. Multiply out $A_0^T C A_0$ to find its 2 by 2 upper left corner.
- **2.4.19** Sketch a square truss with horizontal forces f_1, f_3, f_5, f_7 and vertical forces f_2, f_4, f_6, f_8 at the nodes, numbered clockwise.
 - (a) Write down A_0 and $A_0^T C A_0$.
- (b) There should be 8-4=4 independent solutions of $A_0x=0$. Describe or draw four movements x of the truss (rigid motion or mechanism?) that produce no stretching.
- (c) From combinations of the 8 equations $A_0^T y = f$, show that $x^T f$ must be zero for the four movements x of part (b). For equilibrium, the force f must not activate the instabilities x.