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Summing over all bars, the complementary energy is the quadratic Q we met
earlier:

1y 1,
() =L 52 =2 y"C Y. (12

Therefore the energy principle discovered by Castigliano becomes exactly our
theorem of duality. And the saddle point problem for L=Q + x"(ATy —f) is
known as the Hellinger—Reissner principle.

2H At equilibrium, the bar forces y minimize the complementary energy Q(y)
subject to ATy = f. Furthermore the minimum values of P and Q satisfy

Pmin = —Qmin'

~ This is identical to the main result of Section 2.2 (with b = 0) after a sign change
in x. There the quadratic was P =4 xTATCAx + x"f; changing x to —x reverses the
linear term and produces the potential energy of a truss. The equations also reverse
sign: mechanics has elongations e = Ax instead of e = — Ax, y = CAx instead of
y= —CAx, and f = A"CAx instead of f = —A"CAx. But the minimum of P is
unchanged since — x is as admissible as x.

The two principles are in perfect duality, but in practice one completely
dominates the other. The displacement method (which minimizes P) is in constant
use; the force method (which minimizes Q) is comparatively dormant. The reason
can be found in the principles themselves. In the first, kinematic constraints like
x; = 0 are easy to impose. In the complementary principle we have to obey A"y = f,
and that is harder to do. It asks us to identify all the “redundancies,” which are the
solutions to A"y = 0; they are the m — n degrees of freedom in minimizing Q. For a
small truss these self-stresses can be computed and added to a particular solution of
ATy =f. Codes for the nullspace are beginning to appear. But for a large truss or a
discrete approximation to a continuous structure—as in the finite element method
of Section 5.4, where thousands of unknowns are quite common—the displace-
ment method seems to win.

EXERCISES

2.41 Write down m, N, r, and n for the three trusses in Fig. 2.10, and establish which is
statically determinate, which is statically indeterminate, and which one has a mechanism.
Describe the mechanism (the uncontrolled deformation).

2.4.2  With horizontal forces f;} and f;} pulling the upper nodes in Fig. 2.10a to the right,
and vertical forces f} and f# pulling them up, write down the four equilibrium equations
ATy = f. Assuming the diagonal is at 30° and all ¢; = 1, form the stiffness matrix K = ATCA
=ATA4.
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2.4.3 With a single horizontal force fgz applied to the upper left node in Fig. 2.10b, and the
diagonal still at 30°, find the four equations A"y =f. Since A is square solve directly for y.
What reactive forces are supplied by the supports?

2.4.4 For the truss in Fig. 2.10c, write down the equations A"y =/ in three unknowns
V1, V4, V4 to balance the four external forces fy, fi, fv, fi¥- Under what condition on these
forces will the equations have a solution (allowing the truss to avoid collapse)?

245 For example 1 in the text, from Fig. 2.12a, equilibrium at the left support gives

1
2

Vi =fu (horizontal reaction)

1

/2

Vi =fy (vertical reaction)

What are the corresponding equations at the second support? These four equations
correspond to the four columns of A, eliminated by the fixed displacements xj; = x} = x3

= xt = 0 at the supports.

24.6 For example 3 (Fig. 2.12¢) let the forces be f, =f,=f,=f =0, =1, f¢= — 1. These
satisfy the conditions for no rigid motion. Write down directly the solution to the 6

equations in the text for y,, y,, y,.

2.4.7 In example 4 with a mechanism, what forces fy and f, at the lower node would make
it possible to solve the three equations A"y =f? F still acts horizontally at the roller.

2.4.8 With the bridge in Fig. 2.10a on top of the one in Fig. 2.10c (the supports remain only
at the bottom) show that m = n = 8 but there 1s still a mechanism. What force would make

this ladder collapse?

2.4.9 Sketch a six-sided truss with fixed supports at two opposite vertices. Will one
diagonal crossbar between free nodes make 1t stable, or what 1s the mechanism? What are m
and n? What if a second crossbar 1s added?

2.4.10 If we create a new node in Fig. 2.10a where the diagonals cross, 1s the resulting truss
statically determinate or indeterminate?

2.4.11 In continuum mechanics, work 1s the product of stress and strain integrated over the
structure: W = | o¢ dV. If a bar has uniform stress ¢ = y/A and uniform strain ¢ = e¢/L, show
by integrating over the volume of the bar that W = ye. Then the sum over all bars 1s W,
= yTe; show that this equals f'x.

2.4.12 At the equilibrium x = K™ 'f, show that the strain energy U (the quadratic term in P)
equals —P,..., and therefore U =0_,;..

2.4.13 The “stifiness coefhicients” k;; in K give the forces f; corresponding to a unit
displacement x;=1, since Kx=f. What are the “flexibility coefhcients” that give the

displacements x; caused by a unit force f;=1?
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2.4.14 At equilibrium, where x = K ~If, the terms in the potential energy P(x) are 3x"Kx
=1fTK~!'f and f"x = fTK™'f. The internal strain energy and the external potential energy
are not equal! Why not?

Note The point of virtual work is that, starting from x and making a small change v, the
changes 1n internal and external terms are equal.

2.4.15 (a) Turn the square network of Exercise 2.3.14 into a truss. With the usual pin
supports at the two nodes that were grounded, write down the 7 by 6 matrix in e = Ax.
(b) Which of the four types of truss 1s this?
(c) What is the rank of A and what are the solutions to Ax =0?
(d) What are the solutions to ATy =0?

2.4.16 Suppose a truss consists of one bar at an angle 6 with the horizontal. Sketch forces f;
and f, at the upper end, acting in the positive x and y directions, and corresponding forces f;
and f, at the lower end. Write down the 1 by 4 matrix A4, the 4 by 1 matrix AJ, and the 4 by 4
matrix AJCA,. For which forces can the equation AJy = f be solved?

2.4.17 For networks, a typical row of A;CA, (say row 1) is described on page 92: The
diagonal entry i1s Xc;, including all edges into node 1, and each —c; appears along the row. It
is in column k if edge i connects nodes 1 and k. (A" CA is the same with the grounded row
and column removed.) The problem is to describe AJCA, for trusses, and the idea is to put
together the special A;CA, found in the previous exercise (a 4 by 4 matrix for each bar).

(a) Suppose bar i goes at angle 6, from node 1 to node k. By assembling the AJCA, for
each bar, show how the 2 by 2 upper left corner of AJCA, contains

Yc;cos’0, Xc;cos 0;sin 6,
¥ c; cos 6, sin 0, ¥ c; sin® 6,

(b) Where do those terms appear (with minus signs) in the first two rows? All rows of
A{CA, add to zero.

2.4.18 This is another approach to AJCA, for trusses. The first column of 4, contain cos 6,
in row k, if bar i goes at angle 6, from node 1 to node k. The second column contains sin ;.
Multiply out AJCA, to find its 2 by 2 upper left corner.

2.4.19 Sketch a square truss with horizontal forces f,, f5, fs, f7 and vertical forces f,, f4, f6, /5
at the nodes, numbered clockwise.

(a) Write down A, and A;CA,,.

(b) There should be 8 — 4 =4 independent solutions of A,x = 0. Describe or draw four
movements x of the truss (rigid motion or mechanism?) that produce no stretching.

(c) From combinations of the 8 equations 4]y = f, show that x”f must be zero for the four
movements x of part (b). For equilibrium, the force f must not activate the instabilities x.



