contact with the combinatorial problems of Chapter 7—which are matrix problems of an important and special kind.

EXERCISES

- **1.6.1** Suppose you are given a list of the edges of a graph; for edge i you are given its two node numbers a(i) and b(i). Describe the steps of an algorithm (or write a code) to decide whether or not the graph is connected.
- **1.6.2** Write down the incidence matrices A_1 and A_2 for the following graphs:

For which right sides does $A_1x = b$ have a solution? Which vectors are in the nullspace of A_1^T ?

- **1.6.3** The previous matrix A_2 should have n-1 independent rows; which are they? There should also be m-n+1 independent vectors in the nullspace of A_2^T , one from each loop; which are they?
- 1.6.4 If those two graphs are the disconnected pieces of a single graph with 9 nodes and 10 edges, what is the rank of its incidence matrix? With n nodes, m edges, and p unconnected pieces, find the number of independent solutions to Ax = 0 and $A^Ty = 0$.
- **1.6.5** If A is the incidence matrix of a connected graph and Ax = 0, show that $x_1 = x_2 = \cdots = x_n$. Each row of Ax = 0 is an equation $x_j x_k = 0$; how do you prove that $x_j = x_k$ even when no edge goes from node j to node k?
- 1.6.6 In a graph with N nodes and N edges show that there must be a loop.
- 1.6.7 For electrical networks x represents potentials, Ax represents potential differences, y represents currents, and $A^Ty = 0$ is Kirchhoff's current law (Section 2.3). Tellegen's theorem says that Ax is perpendicular to y. How does this follow from the fundamental theorem of linear algebra?
- **1.6.8** By transposing $AA^{-1} = I$, show that the transpose of A^{-1} is the inverse of A^T . Verify $(A^{-1})^T = (A^T)^{-1}$ for the 2 by 2 matrix

$$A = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}.$$

1.6.9 Describe the vectors in the column space, nullspace, row space, and left nullspace of

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

1.6.10 In the list below, which classes of matrices contain

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}?$$

Symmetric, orthogonal, triangular, invertible, projection, permutation, Jordan form, diagonalizable. Find the eigenvalues of A and B.

1.6.11 Find the LU factorizations of A_1 and PA_2 :

$$A_{1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

L contains the multipliers l_{ij} , with $l_{ii} = 1$, and the permutation P exchanges rows 3 and 4 to avoid a zero in the pivot position.

- 1.6.12 Invert PA = LDU to find a formula for A^{-1} . It allows the inverse to be computed with n^3 multiplications—or about $n^3/2$ when A is symmetric.
- 1.6.13 Factor A into LU and find $A^{-1} = U^{-1}L^{-1}$ if

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

Solve Ax = b if b has components 1, 0, 0, 0.

- **1.6.14** (a) Find two vectors that are orthogonal to (1, 1, 1, 0) and (0, 1, 1, 1), by making these the rows of A and solving Ax = 0.
- (b) Find 2 equations in 4 unknowns whose solutions are the linear combinations of (1, 1, 1, 0) and (0, 1, 1, 1).
- **1.6.15** The fundamental theorem says that either b is in the column space or it is not orthogonal to the left nullspace: Either (1) Ax = b for some x, or (2) $A^Ty = 0$, $y^Tb \neq 0$ for some y. Show directly that (1) and (2) cannot both be true.
- 1.6.16 Find matrices A for which the number of solutions to Ax = b is
 - (1) 0 or 1 depending on b
 - (2) ∞ for every b
 - (3) 0 or ∞ depending on b
 - (4) 1 for every b.

How is the rank r related to m and n in each of your examples?

- **1.6.17** Why is the plane x + 2y + 3z = 0 perpendicular to the vector with components 1, 2, 3? Give the equation of a plane parallel to that one but containing the point x = y = z = 1.
- 1.6.18 Given 4 vectors in 5-dimensional space, how could a computer decide if they are linearly independent?
- **1.6.19** True or false: 1. There is no matrix whose row space contains $\begin{bmatrix} 1 & 2 & 1 & 1 \end{bmatrix}^T$ and whose nullspace contains $\begin{bmatrix} 1 & -2 & 1 & 1 \end{bmatrix}^T$.
 - 2. Exactly one vector is in both the row space and the nullspace.
 - 3. If A and B have rank 3 then A + B has rank at most 6.
 - 4. The rank of the matrix with every $a_{ij} = 1$ is r = 1.
 - 5. The rank of the n by n matrix with $a_{ij} = i + j$ is r = n.
- 1.6.20 From $A = S\Lambda S^{-1}$ construct the matrix that has eigenvalues 3 and 4 with eigenvectors (2, 0) and (1, 1).

1.6.21 Let
$$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ so that $v^T w = 0$.

- (a) What is $A = vw^T$?
- (b) What are the eigenvalues of A?
- (c) What are its eigenvectors?
- (d) What is its Jordan form?
- **1.6.22** If $A = S\Lambda S^{-1}$ show by transposing that A and A^{T} have the same eigenvalues. What matrix contains the eigenvectors of A^{T} ? They agree with the eigenvectors of A only if $AA^{T} = A^{T}A$.
- **1.6.23** If the pivots of A are $d_1 = 2$ and $d_2 = 3$ (without a row exchange) what can you say about the eigenvalues? What if you also know that the trace is $a_{11} + a_{22} = 6$?
- **1.6.24** Show that A^TA can never have a negative eigenvalue: if $A^TAx = \lambda x$ then $\lambda = \|Ax\|^2/\|x\|^2$.
- **1.6.25** Prove (using the trick of multiplying by y^T) that if $AA^Ty = 0$ then $A^Ty = 0$. The matrices AA^T and A^T have the same nullspace, the same row space, and the same rank. Find all three if

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

Note The following three exercises all involve the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}.$$

1.6.26 Factor A into a product QR of an orthogonal matrix times an upper triangular matrix.

- 1.6.27 Factor A into its polar form A = QB.
- 1.6.28 Find the singular value decomposition $A = Q_1 \Sigma Q_2^T$.
- **1.6.29** If *u* has components $\frac{1}{2}$, $\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$, find
 - (a) the rank-one projection matrix $A = uu^T$
 - (b) the projection of b = (1, 0, 0, 0) onto the line through u
 - (c) the eigenvalues of A
 - (d) A^2 .
- **1.6.30** If *u* has components $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$, find
 - (a) the rank-two projection matrix $P = I uu^T$
 - (b) the projection Pb of b = (1, 0, 0) onto the plane perpendicular to u
 - (c) the eigenvalues of P
 - (d) P^2 .
- **1.6.31** If *u* has components $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$, find
 - (a) the Householder matrix $H = I 2uu^T$
 - (b) the eigenvalues of H
 - (c) H^2 .
- 1.6.32 Describe each of the four fundamental subspaces (lines or planes?) of

$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}.$$

- **1.6.33** For a rank-one matrix $A = vw^T$ show that A^TA is a multiple of ww^T , and that it has the eigenvalue $||v||^2 ||w||^2$ with eigenvector w. (The square root ||v|| ||w|| is the nonzero singular value of A.)
- **1.6.34** The inverse of $B = I vw^T$ has the form $B^{-1} = I cvw^T$. By multiplication find the number c. Under what condition on v and w is B not invertible?
- **1.6.35** (a) If A is invertible then the inverse of $B = A vw^T$ has the form $B^{-1} = A^{-1} cA^{-1}vw^TA^{-1}$. By multiplication (watching for a scalar inside $vw^TA^{-1}vw^TA^{-1}$) find the number c.
- (b) If you subtract 1 from the first entry a_{11} of A, what matrix is subtracted from A^{-1} ? In A^{-1} let q be the first column, r^T be the first row, and s be the first entry.