## **EXERCISES**

- **1.3.1** Write  $A = \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix}$  in the forms  $A = LDL^T$  and  $A = l_1d_1l_1^T + l_2d_2l_2^T$ . Are the pivots positive, so that A is symmetric positive definite? Write  $3x_1^2 6x_1x_2 + 5x_2^2$  as a sum of squares.
- **1.3.2** Factor  $A = \begin{bmatrix} 3 & 6 \\ 6 & 8 \end{bmatrix}$  into  $A = LDL^T$ . Is this matrix positive definite? Write  $x^T Ax$  as a combination of two squares.
- 1.3.3 Find the triangular factors L and U of

$$A = egin{bmatrix} 1 & 1 & 0 & 0 \ 1 & 2 & 1 & 0 \ 0 & 1 & 2 & 1 \ 0 & 0 & 1 & 2 \end{bmatrix}.$$

In this case U is the same as  $L^T$ . What is the pivot matrix D? Solve Lc = b and Ux = c if b = (1, 0, 0, 0).

- 1.3.4 How do you know from elimination that the rows of L always start with the same zeros as the rows of A? Note: Zeros inside the central band of A may be lost by L; this is the "fill-in" that is painful for sparse matrices.
- **1.3.5** Write  $f = x_1^2 + 10x_1x_2 + x_2^2$  as a difference of squares, and  $f = x_1^2 + 10x_1x_2 + 30x_2^2$  as a sum of squares. What symmetric matrices correspond to these quadratic forms by  $f = x^T A x$ ?
- **1.3.6** In the 2 by 2 case, suppose the positive coefficients a and c dominate b in the sense that a + c > 2b. Is this enough to guarantee that  $ac > b^2$  and the matrix is positive definite? Give a proof or a counterexample.
- 1.3.7 Decide for or against the positive definiteness of

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad A' = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}.$$

Write A as  $l_1 d_1 l_1^T$  and write A' as  $LDL^T$ .

**1.3.8** If each diagonal entry  $a_{ii}$  is larger than the sum of the absolute values  $|a_{ij}|$  along the rest of its row, then the symmetric matrix A is positive definite. How large would c have to be in

$$A = \begin{bmatrix} c & 1 & 1 \\ 1 & c & 1 \\ 1 & 1 & c \end{bmatrix}$$

for this statement to apply? How large does c actually have to be to assure that A is positive definite? Note that

$$x^{T}Ax = (x_1 + x_2 + x_3)^2 + (c - 1)(x_1^2 + x_2^2 + x_3^2);$$

when is this positive?

1.3.9 (i) The determinant of a triangular matrix is the product of the entries on the diagonal. Thus det L=1 and

$$\det A = \det LDL^T = (\det L)(\det D)(\det L^T) = \det D.$$

The determinant is the product of the pivots. Show that det A > 0 if A is positive definite.

- (ii) Give an example with det A > 0 in which A is not positive definite.
- (iii) What is the determinant of A in Exercise 1.3.3?
- **1.3.10** Inverting  $A = LDL^T$  gives  $A^{-1} = MD^{-1}M^T$ , where M is the inverse of  $L^T$ . Is M lower triangular or upper triangular? How could you factor A itself, so that the first factor is upper and not lower triangular?
- **1.3.11** A function F(x, y) has a local minimum at any point where its first derivatives  $\partial F/\partial x$  and  $\partial F/\partial y$  are zero and the matrix of second derivatives

$$A = \begin{bmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} \\ \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial y^2} \end{bmatrix}$$

is positive definite. Is this true for  $F_1 = x^2 - x^2y^2 + y^2 + y^3$  and  $F_2 = \cos x \cos y$  at x = y = 0? Does  $F_1$  have a global minimum or can it approach  $-\infty$ ?

**1.3.12** Find the inverse of the 2 by 2 symmetric matrix  $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ . Verify by direct multiplication that the inverse of a 2 by 2 block symmetric matrix is

$$\begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BSB^{T}A^{-1} & -A^{-1}BS \\ -SB^{T}A^{-1} & S \end{bmatrix},$$

where  $S = (C - B^T A^{-1} B)^{-1}$ . A and C are square but B can be rectangular.

1.3.13 For the block quadratic form

$$f = \begin{bmatrix} x^T & y^T \end{bmatrix} \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^T A x + x^T B y + y^T B^T x + y^T C y,$$

find the term that completes the square:

$$f = (x + A^{-1}By)^T A(x + A^{-1}By) + y^T (?)y.$$

The block matrix is positive definite when A and  $C - B^T A^{-1}B$  are positive definite.

1.3.14 The rule for block multiplication of AB seems to be: Vertical cuts in A must be matched by horizontal cuts in B, while other cuts (horizontal in A or vertical in B) can be arbitrary. Examples for 3 by 3 matrices are

$$\begin{bmatrix} \times & | & \times & | & \times \\ \times & | & \times & | & \times \\ \times & | & \times & | & \times \end{bmatrix} \begin{bmatrix} \frac{\times}{\times} & \times & \times \\ \frac{\times}{\times} & \times & \times \end{bmatrix} \begin{bmatrix} \frac{\times}{\times} & \times & \times \\ \frac{\times}{\times} & \times & \times \end{bmatrix} \begin{bmatrix} \times & | & \times & | & \times \\ \times & | & \times & | & \times \end{bmatrix}$$

column times row

row times column

$$\begin{bmatrix}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{bmatrix}
\begin{bmatrix}
\times & \times & \times \\
\times & \times & \times
\end{bmatrix}$$

matching blocks

Give two more examples and put in numbers to confirm that the multiplication succeeds.

**1.3.15** Find the  $LDL^T$  factorization, and Cholesky's  $\bar{L}\bar{L}^T$  factorization with  $\bar{L}=LD^{1/2}$ , for the matrix

$$A = \begin{bmatrix} 4 & 12 \\ 12 & 45 \end{bmatrix}.$$

What is the connection to  $x^{T}Ax = (2x_1 + 6x_2)^2 + (3x_2)^2$ ?

1.3.16 Suppose

$$A = \begin{bmatrix} 1 & & \\ 2 & 1 & \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ & 3 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ & 1 & 2 \\ & & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ 6 \\ 1 \end{bmatrix}.$$

Solve Ax = b by solving two triangular systems. How do you know that A is symmetric positive definite?

- 1.3.17 If  $a_{11} = d$  is the first pivot of A, under what condition is  $a_{22}$  the second pivot? Are the pivots of  $A^{-1}$  equal to the reciprocals  $1/d_i$  of the pivots of A?
- 1.3.18 Write down in words the sequence of column operations (!) by which the following code computes the usual multipliers  $l_{ij}$ . It overwrites  $a_{ij}$  with these multipliers for i > j, using no extra storage. The notation := signals a definition in terms of existing quantities.

Symmetric factorization  $LDL^{T}$  for positive definite A

For 
$$j = 1, ..., n$$

$$For p = 1, ..., j - 1$$

$$r_p := d_p a_{jp}$$

$$d_j := a_{jj} - \sum_{p=1}^{j-1} a_{jp} r_p$$

If 
$$d_j = 0$$

then quit

else

For  $i = j + 1, ..., n$ 

$$a_{ij} := \left(a_{ij} - \sum_{p=1}^{j-1} a_{ip} r_p\right) / d_j$$

The algorithm requires about  $n^3/6$  multiplications.

**1.3.19** Explain (and if possible code) the following solution of Ax = b for positive definite tridiagonal A. The diagonal of A is originally in  $d_1, \ldots, d_n$  and the subdiagonal and superdiagonal in  $l_1, \ldots, l_{n-1}$ ; the solution x overwrites b.

For 
$$k = 2, ..., n$$

$$t := l_{k-1}$$

$$l_{k-1} := t/d_{k-1}$$

$$d_k := d_k - tl_{k-1}$$
For  $k = 2, ..., n$ 

$$b_k := b_k - l_{k-1}b_{k-1}$$
For  $k = 1, ..., n$ 

$$b_k := b_k/d_k$$
For  $k = n - 1, ..., 1$ 

$$b_k := b_k - l_k b_{k+1}$$

Show how this uses 5n multiplications or divisions, and give an example of failure when A is not positive definite.

**1.3.20.** If a new row  $v^T$  is added to A, what is the change in  $A^TA$ ?