
Math 415: Modeling hagfish slime

Jean-Luc Thiffeault

(Extracted from Unraveling hagfish slime by Chaudhary, Ewoldt, and Thiffeault [3].)

I. INTRODUCTION

Marine organisms present numerous interesting examples of fluid-structure interactions
that are necessary for their physiological functions such as feeding [1, 18], motion [2],
mechanosensing [15], and defense [16]. A rather remarkable and unusual example of fluid-
structure interaction is the production of hagfish slime, also known as hagfish defense
gel. The hagfish is an eel-shaped deep-sea creature that produces the slime when it is
provoked [7]. Slime is formed from a small amount of biomaterial ejected from the hagfish’s
slime glands into the surrounding water [9]. The biomaterial expands by a factor of 10,000
(by volume) into a mucus-like cohesive mass, which is hypothesized to choke predators and
thus provide defense against attacks (Fig. 1A) [19].

The secreted biomaterial contains thread cells, which possess a remarkable structure
wherein a long filament (10–16 cm in length) is efficiently packed in canonical loops into
a prolate spheroid (120–150µm by 50–60µm) [8, 9], called the skein (Fig. 1B). When
mixed with the surrounding water, the fiber (1–3µm thread diameter) unravels from the
skein (Fig. 1C) and forms a fibrous network with other threads and mucous vesicles. This
process occurs on timescales of a predator attack (100–400 ms), as apparent from the video
evidence [12, 19].

Little is known about mechanisms involved in the rapid thread cell deployment. Moti-
vated by the aforementioned experimental studies, our objective is to investigate the role
of viscous hydrodynamics in skein unraveling via a simple physical model.

II. UNRAVELING EXPERIMENT

To motivate the mathematical modeling, we perform a simple experiment demonstrating
the force-induced unraveling of thread from a skein. Figure 2 shows the unraveling skein
at different time frames. Frame 1 shows the unforced and stable configuration, with no
unraveling. Unraveling occurs only when a force is applied from frame 2 onward. There are
events when the thread peels away in clumps, but the orderly unraveling recovers quickly.
A minimum peeling force seems required to unravel the thread from the skein. A simple
estimate of the minimum peeling force based on weak adhesion (van der Waals interaction)
between unraveling fiber and skein gives an estimate of 0.1µN.
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FIG. 1. Slime defends hagfish against predator attacks. (A) Sequence of events during a predator
attack (adapted from [19]). On being attacked, the hagfish produces a large quantity of slime that
chokes the predator. The process of secretion and slime creation took less than 0.4 s. (B) Slime
is formed from the secreted biomaterial, in part containing prolate-shaped thread cells. (C) A
thread cell unravels under the hydrodynamic forces from the surrounding flow field and produces
a micron-width fiber of length 10–15 cm. (D) The unraveled fibers and mucous vesicles entrain a
large volume of water to form a cohesive network.

FIG. 2. Unraveling a thread skein by pulling, as viewed with brightfield microscopy. Bottom right
scale bar 50µm.

III. UNRAVELING FROM THE SKEIN

Figure 3 shows a schematic representation of thread unraveling from a skein. The
relationship between R and L, respectively the radius of the spherical skein and the length
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FIG. 3. Simplified model of thread being drawn from a skein. The thread has length L(t) with
initial length L(0) = L0. The thread is peeling from the skein at L(t).

of the unraveled thread, is described by volume conservation

d

dt

(
4
3πηR

3 + πr2L
)

= 0 =⇒ L̇ = −4ηR2Ṙ/r2. (3.1)

Here r is the thread radius and 0 < η ≤ 1 is the packing fraction of thread into the
spherical skein, assumed independent of R. (In this section we keep the packing fraction
as a variable, but in all later numerical simulations we take η = 1, since the skein is fairly
tightly packed.) Explicitly, we have

R3 = R3
0 − 3

4(L− L0)r
2/η (3.2)

with R0 the initial skein radius and L0 the initial unraveled length. A convenient way of
relating R and L is

R = R0

(
Lmax − L
Lmax − L0

)1/3

, Lmax := L0 + 4
3ηR

3
0/r

2 (3.3)

where Lmax is the total length of thread that can be extracted and L0 is the initial unraveled
length.

Next, we use a modified form of the work-energy theorem [11] to describe the unraveling
dynamics,

Ėtotal = (TL − FP(V ))V, V = L̇ , (3.4)

where Ėtotal is the rate of change in total energy of the system, TL is the net force drawing
out the thread at a peeling velocity V , and FP(V ) is a velocity-dependent peeling force
acting at the peeling site. Neglecting the inertia and changes to the elastic energy of the
peeling thread gives

TL = FP(V ), V = L̇ . (3.5)

A natural dimensionless quantity that will determine the dynamics of the unraveling
process is given by the ratio of the net viscous drag force on the thread and the resisting
peel force, each of which depends on a characteristic velocity U :

℘ := FD(U)/FP(U) . (3.6)
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The functional form of the peeling force, FP(V ), in general is dependent on parameters
such as the chemistry of peeling surfaces, velocity of peeling, etc. In the absence of a
known functional form for hagfish thread peeling, we use a simple constitutive form of
peeling force that includes a wide range of behavior, given by

FP(V ) = αV m, 0 ≤ m ≤ 1, (3.7)

for constant α > 0 and m. Such a power-law form of peeling force has been observed
in several engineered and biological systems [4, 5, 13, 14, 17]. Several other parametric
forms of velocity-dependent peeling force exist that are functionally more complex [6, 10].
However, to obtain simple and insightful solutions, we use the power-law form defined
above. The form (3.6) allows for the limiting case m = 0, a constant peeling force, e.g. to
simply counteract van der Waals attractions at the peel site.

For m > 0, we can rearrange equation (3.5) for the velocity, V = L̇ = (TL/α)1/m.
Using (3.1) we can then obtain a solution for the case where the tension at the peeling
point, TL, is constant:

4
3(R3

0 −R3) = (TL/α)1/m r2t/η , (3.8)

where R0 = R(0). From (3.8) we can easily extract the ‘depletion time’ or ‘full-unraveling
time’ tdep by setting R = 0:

tdep =
4ηR3

0

3r2
(TL/α)−1/m . (3.9)

In the next section we compute this timescale when the thread cells are subjected to
different hydrodynamic flow scenarios, which cause different time histories of tension, TL(t).

IV. FLOW-INDUCED UNRAVELING FROM A PINNED THREAD

Having described the unraveling dynamics in Sec. III for the case of constant tension,
TL, we now consider a thread cell (skein) in a uniform hydrodynamic flow where generally
TL varies in time as the thread-skein geometry changes during unraveling. To simplify the
problem, we assume that the thread is pinned at 0 in Fig. 3, with a uniform flow to the
right, U . This situation can arise in a controlled experiment if the thread is pinned down,
or in the physiological unraveling process if the end of the thread is caught in the network
of other threads, or stuck on the mouth of a predator.

The tension in the thread TL at the peeling point balances the Stokes drag force on the
skein of radius R:

TL = 6πµR (U − L̇). (4.1)
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Using (3.5) and (3.7), we obtain the governing equation for unraveling as

(L̇)m = 6πµα−1R(L) (U − L̇). (4.2)

From (3.1), since L̇ > 0 (the thread never ‘re-spools’), the unspooling speed satisfies L̇ ≤ U ,
i.e. the thread cannot unspool faster than the ambient flow speed. The radius R(L) is given
by (3.2).

We nondimensionalize (4.2) using a characteristic length scale R0 and flow speed U
which gives

(L̇∗)m = ℘R∗(L∗) (1− L̇∗) (4.3)

where L̇∗ = L̇/U and R∗ = R/R0 are the nondimensional unraveling rate and skein radius,
respectively. The nondimensional timescale naturally results from these choices as t∗ =
t/(R0/U). The dimensionless quantity ℘ on the right hand side of (4.3) is given by

℘ =
6πµR0 U

αUm
= 6πµR0 U

1−mα−1 . (4.4)

This is the ratio of characteristic drag to peeling force, as defined in (3.6). If ℘ is large
(e.g. zero resistance to peeling), then (4.2) implies L̇ ≈ U , that is, in this drag-dominated
limit the drag force so easily unravels the skein that it advects with the local flow velocity.
In the opposite limit of small ℘, we get L̇ ≈ 0 and the skein cannot unravel. Hence, we
require ℘� 1 for a fast unravel time.

To achieve the criterion ℘ � 1, at a flow of speed U = 1 m/s and a skein of initial
radius R0 = 50µm, we require the peeling resistance at this velocity to satisfy FP(1 m/s)�
1.4×10−6 N. The estimated van der Waals peeling force is much lower than this threshold,
FvdW ∼ 10µN. At such a flow speed a skein containing 16.7 cm of thread (an upper
bound physiological value) will unravel affinely (kinematically matching the flow speed) in
roughly 167 ms. This lower bound estimate is commensurate with the rapidity with which
hagfish slime is created (100–400 ms).

In Fig. 4 we show a numerical solution of (4.2) with a uniform flow for some typical
physical parameters values, and assuming a moderately-large force ratio ℘ = 10. (Equa-
tion (4.2) is an implicit relation for L̇ which must be solved numerically at every time step;
it is a Differential-Algebraic Equation rather than a simple ODE [6].) For these parameters,
the kinematic lower bound on the depletion time is Lmax/U ≈ 167 ms, and the numerical
value is tdep ≈ 194 ms.

There is a mathematical oddity where the skein might not get depleted in finite time,
depending on the exponent m. To see this, consider a skein close to depletion, L =
Lmax − Uτ , where τ > 0 is small. The equation for τ is

(−τ̇)m = ℘

(
Uτ

Lmax − L0

)1/3

(1 + τ̇), τ̇ < 0. (4.5)
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Since τ is small and we expect the thread to be drawn out slowly as it is almost exhausted,
we take 1 + τ̇ ≈ 1. Hence, we have the approximate form

(−τ̇)m ≈ Cm τ1/3, Cm := ℘ (U/(Lmax − L0))
1/3 (4.6)

for some constant C > 0, with solution

τ(t) ≈
[
τ
1− 1

3m
0 −

(
1− 1

3m

)
C t

] 3m
3m−1

. (4.7)

The behavior of this solution as the skein is almost depleted depends on m. For m > 1/3,
the exponent 3m/(3m − 1) in (4.7) is greater than one, so τ(t) → 0 as t approaches the
depletion time, with τ ′(tdep) = 0 so that L(t) has slope zero when the skein is depleted (as
can be seen at the very end in Fig. 4). We can thus rewrite (4.7) as

τ(t) ≈
[(

1− 1
3m

)
C (tdep − t)

] 3m
3m−1 , m > 1/3, t↗ tdep. (4.8)

For m < 1/3, the exponent 3m/(3m − 1) is negative, but the factor 1 − 1
3m inside the

brackets is also negative, so that τ(t) asymptotes to zero as t → ∞ and the skein never
gets fully depleted. In that case we write (4.7) as

τ(t) ≈
[(

1
3m − 1

)
C t

]− 3m
1−3m , m < 1/3, t→∞. (4.9)

Physically, for m < 1/3 the drag force (∼ τ1/3) is decreasing faster than the peeling force
(∼ (τ̇)m).

In practice, it is difficult to see the difference between m ≶ 1/3 numerically. The thread
appears to get depleted even for m < 1/3 because of limited numerical precision as L
approaches Lmax. The symptom of a problem is that the depletion time starts depending
on the numerical resolution for m < 1/3. Of course, the skeins in the hagfish slime do not
need to get fully depleted to create the gel, so a power m < 1/3 is still applicable. When
comparing the different flow scenarios we will explore a range of m and define an “effective
deployment” time tdep,50%, when 50% of the thread length is unraveled.
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Appendix A: Matlab code to solve Eq. (4.3)

This code is freely available at https://github.com/jeanluct/hagfish-unravel.

function [t,L,R] = Lsolve_pinned_thread(m,P,L0,dLmax,unfrac)

% m, P are dimensionless.

% L0, dLmax scaled by R0.

% unfrac is a fraction in (0,1] denoting the unraveled thread fraction at

% which to stop.

if nargin < 5, unfrac = 1; end

R0 = 1;

tmax = inf;

f = @(t,tau) rhs(t,tau,m,P,L0,dLmax,unfrac);

fe = @(t,tau) events(t,tau,m,P,L0,dLmax,unfrac);

opts = odeset(’Events’,fe,’RelTol’,1e-8,’AbsTol’,1e-8,’NonNegative’,1);

% Solve for tau = Lmax - L.

[t,tau] = ode45(f,[0 tmax],dLmax,opts);

https://github.com/jeanluct/hagfish-unravel
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Lmax = L0 + dLmax;

L = Lmax - tau;

R = R0*nthroot(1 - (L-L0)/dLmax,3);

% =========================================================================

function dtau = rhs(t,tau,m,P,L0,dLmax,unfrac)

Lmax = L0 + dLmax;

L = Lmax - tau;

R = nthroot(1 - (L-L0)/dLmax,3);

if R < 0

warning(’Lsolve_pinned_thread:Rnegative’,’R=%g < 0 at t=%g.’,R,t)

end

f = @(x) (x.^m + P*R*(x - 1));

% The thread equation to solve for x = dL/dt.

dL = fsolve(f,1,optimset(’Display’,’off’,’TolX’,1e-15));

if dL > 1

warning(’Lsolve_pinned_thread:dLabove1’,’dL/dt=%g > 1 at t=%g.’,dL,t)

end

if dL < 0

warning(’Lsolve_pinned_thread:dLnegative’,’dL/dt=%g < 0 at t=%g.’,dL,t)

end

dtau = -dL;

% =========================================================================

function [value,isterm,direc] = events(t,tau,m,P,L0,dLmax,unfrac)

Lmax = L0 + dLmax;

L = Lmax - tau;

value(1) = unfrac - (L-L0)/dLmax;

isterm(1) = 1;

direc(1) = 0;
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