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Evaluating this at the endpoints yields

dG(x, xo)
dxo

Consequently,

and
dG(x, xo

dxo

u(x) = f f (xo)G(x, xo) dxo + /jL +a 1- L) . (9.3.52)

The solution is the sum of a particular solution of (9.3.42) satisfying homogeneous
boundary conditions obtained earlier, f L f (xo)G(x, xo) dxo, and a homogeneous
solution satisfying the two required nonhomogeneous boundary conditions, Q(x/L)+
all - x/L).

9.3.6 Summary
We have described three fundamental methods to obtain Green's functions:

1. Variation of parameters
2. Method of eigenfunction expansion
3. Using the defining differential equation for the Green's function

In addition, steady-state Green's functions can be obtained as the limit as t oo of
the solution with steady sources. To obtain Green's functions for partial differential
equations, we will discuss one important additional method. It will be described in
Sec. 9.5.

EXERCISES 9.3

9.3.1. The Green's function for (9.3.1) is given explicitly by (9.3.16). The method
of eigenfunction expansion yields (9.3.6). Show that the Fourier sine series
of (9.3.16) yields (9.3.6).

9.3.2. (a) Derive (9.3.17).

(b) Integrate (9.3.17) by parts to derive (9.3.16).

(c) Instead of part (b), simplify the double integral in (9.3.17) by inter-
changing the orders of integration. Derive (9.3.16) this way.

9.3.3. Consider
a

8t k 8x2
+ Q(x, t)

subject to u(0, t) = 0, ai (L, t) = 0, and u(x, 0) = g(x).

(a) Solve by the method of eigenfunction expansion.

(b) Determine the Green's function for this time-dependent problem.
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(c) If Q(x, t) = Q(x), take the limit as t -+ oo of part (b) in order to
determine the Green's function for

d
22 = f (x) with u(0) = 0 and dx (L) = 0.

9.3.4. (a) Derive (9.3.29) from (9.3.28) (Hint: Let f (x) = 1.]
(b) Show that (9.3.33) satisfies (9.3.31).

(c) Derive (9.3.30) [Hint: Show for any continuous f (x) thatI
f(xo)6(x - xo) dxo =

1
f(xo)6(xo - x) dxo

00

by letting xo - x = s in the integral on the right.]
(d) Derive (9.3.34) [Hint: Evaluate f f (x)b[c(x - xo)] dx by making the

change of variables y = c(x - xo).]

9.3.5. Consider
d2 dux2 = Ax) with u(O)=O and (L) = 0.

*(a) Solve by direct integration.

*(b) Solve by the method of variation of parameters.

*(c) Determine G(x, xo) so that (9.3.15) is valid.

(d) Solve by the method of eigenfunction expansion. Show that G(x, xo)
is given by (9.3.23).

9.3.6. Consider

2 = 6(x - xo) with G(0, xo) = 0 and
dx

(L, xo) = 0.

*(a) Solve directly.

*(b) Graphically illustrate G(x, xo) = G(xo, x).
(c) Compare to Exercise 9.3.5.

9.3.7. Redo Exercise 9.3.5 with the following change: (L) + hu(L) = 0, h > 0.

9.3.8. Redo Exercise 9.3.6 with the following change: dG (L) + hG(L) = 0, h > 0.

9.3.9. Consider

dx2 + u = f (x) with u(0) = 0 and u(L) = 0.

Assume that (nir/L)2 54 1 (i.e., L nir for any n).
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(a) Solve by the method of variation of parameters.
*(b) Determine the Green's function so that u(x) may be represented in

terms of it [see (9.3.15)).

9.3.10. Solve the problem of Exercise 9.3.9 using the method of eigenfunction ex-
pansion.

9.3.11. Consider

d2Gdx2 + G = b(x - xo) with G(0, xo) = 0 and G(L, xo) = 0.

*(a) Solve for this Green's function directly. Why is it necessary to assume
that L 3A nit?

(b) Show that G(x, xo) = G(xo, x).

9.3.12. For the following problems, determine a representation of the solution in
terms of the Green's function. Show that the nonhomogeneous boundary
conditions can also be understood using homogeneous solutions of the dif-
ferential equation:

(a) X22 = f (x), u(0) = A, dx (L) = B. (See Exercise 9.3.6.)

(b) z + u = f (x), u(0) = A, u(L) = B. Assume L 0 na. (See Exercise
9.3.11.)

d2u du
(c)

dx2
= f (x), u(0) = A,

dx
(L) + hu(L) = 0. (See Exercise 9.3.8.)

9.3.13. Consider the one-dimensional infinite space wave equation with a periodic
source of frequency w:

a2
0 = c2 2 + g(x)e-:Wt. (9.3.53)

(a) Show that a particular solution 0 = u(x)e-"t of (9.3.53) is obtained
if u satisfies a nonhomogeneous Helmholtz equation

d(u 2

dx2
+ k u = f(x).

*(b) The Green's function G(x, xo) satisfies

d2G 2

dx2
+ k G = 5(x - xo).

Determine this infinite space Green's function so that the corresponding
O(x, t) is an outward-propagating wave.

(c) Determine a particular solution of (9.3.53).
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9.3.14. Consider L(u) = f (x) with L = (per) + q. Assume that the appropriate
Green's function exists. Determine the representation of u(x) in terms of
the Green's function if the boundary conditions are nonhomogeneous:

(a) u(0) = a and u(L) =,6

(b) du- (0) = a and (L) = 3

(c) u(O) = a and
TX

(L)

*(d) u(0) = a and dx (L) + hu(L) = J3

9.3.15. Consider L(G) = 5(x - xo) with L = d (pg) + q subject to the boundary
conditions G(0, xo) = 0 and G(L, xo) = 0. Introduce for all x two homoge-
neous solutions, yl and Y2, such that each solves one of the homogeneous
boundary conditions:

L(yi) = 0 L(y2) = 0

yi(0) = 0 y2(L) = 0
dy, (0)1 d2(L)1.
Iii-

Even if yl and y2 cannot be explicitly obtained, they can be easily calculated
numerically on a computer as two initial value problems. Any homogeneous
solution must be a linear combination of the two.

*(a) Solve for G(x,xo) in terms of y, (x) and y2(x). You may assume that
yi(x) 0 CY2(x)

(b) What goes wrong if yl (x) = cy2 (x) for all x and why?

9.3.16. Reconsider (9.3.41), whose solution we have obtained, (9.3.46). For (9.3.41),
what is yl and Y2 in Exercise 9.3.15? Show that G(x, xo) obtained in Exer-
cise 9.3.15 reduces to (9.3.46) for (9.3.41).

9.3.17. Consider

L(u) = f (x) with L =
d (pd)+q

dx dx

u(0) = 0 and u(L) = 0.

Introduce two homogeneous solutions yl and y2, as in Exercise 9.3.15.

(a) Determine u(x) using the method of variation of parameters.

(b) Determine the Green's function from part (a).

(c) Compare to Exercise 9.3.15.

9.3.18. Reconsider Exercise 9.3.17. Determine u(x) by the method of eigenfunction
expansion. Show that the Green's function satisfies (9.3.23).
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9.3.19. (a) If a concentrated source is placed at a node of some mode (eigen-
function), show that the amplitude of the response of that mode is
zero. [Hint: Use the result of the method of eigenfunction expansion
and recall that a node x* of an eigenfunction means anyplace where
-0n(x*) =

(b) If the eigenfunctions are sin nirx/L and the source is located in the
middle, xo = L/2, show that the response will have no even harmonics.

9.3.20. Derive the eigenfunction expansion of the Green's function (9.3.23) directly
from the defining differential equation (9.3.41) by letting

00

G(x, xo) = anOn(x)
n=1

Assume that term-by-term differentiation is justified.

*9.3.21. Solve
dG
dx

=b(x-xo) with G(0,xo)=0.

Show that G(x, xo) is not symmetric even though b(x - xo) is.

9.3.22. Solve
dG with G 0

Show that G(x, xo) is not symmetric even though 6(x - xo) is.

9.3.23. Solve

C = b(x - xo)

G(0, xo) = 0 G(L, xo) = 0

dG d2G
dx

(0, xo) = 0 -2 (L, xo) = 0.

9.3.24. Use Exercise 9.3.23 to solve

dau
= f(x)

u(0) = 0 u(L) = 0

(0)=02(L)=0.
(Hint: Exercise 5.5.8 is helpful.)

9.3.25. Use the convolution theorem for Laplace transforms to obtain particular
solutions of

(a) X22 = f (x) (See Exercise 9.3.5.)
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4d*(b)4 = f (x) (See Exercise 9.3.24.)

9.3.26 Determine the Green's function satisfying = - G = 6(x - xo):

(a) Directly on the interval 0 < x < L with G(0, xo) = 0 and G(L, xo) = 0
(b) Directly on the interval 0 < x < L with G(0, xo) = 0 and AG- (L, xo) = 0

(c) Directly on the interval 0 < x < L with dz (0, xo) = 0 and 9(L, xo) _
0

(d) Directly on the interval 0 < x < oc with G(0, xo) = 0
(e) Directly on the interval 0 < x < oo with (0, xo) = 0
(f) Directly on the interval -oo < x < oc

Appendix to 9.3: Establishing Green's Formula
with Dirac Delta Functions
Green's formula is very important when analyzing Green's functions. However, our
derivation of Green's formula requires integration by parts. Here we will show that
Green's formula,

f[uL(v) - vL(u)] dx = p I udv - vdu J where L = dx (-) + q (9.3.54)

is valid even if v is a Green's function,

L(v) = 6(x - xo). (9.3.55)

We will derive (9.3.54). We calculate the left-hand side of(9.3.54). Since there is
a singularity at x = xo, we are not guaranteed that (9.3.54) is valid. Instead, we
divide the region into three parts:

fb

- Ja
czo-

+

xo+ Zb

a Jx0- +0+
In the regions that exclude the singularity, a < x < xo_ and xo+ < x < b, Green's
formula can be used. In addition, due to the property of the Dirac delta function,

+

f.020-

[uL(v) - vL(u)] dx =
XOX_

[ub(x - xo) - vL(u)] dx = u(xo),
fx

since f=o ± vL(u) dx = 0. Thus, we obtain

r° / dv du \
J [uL(v) - vL(u)] dx = p ( ud -

vdx
I

a

=
p

dv du ludx-vdx

xO-
p

(Udv du) lb

+ -v- +u x )( o
a dx dx xo+

b (udv du1lx0-
+ u(xo).a + p dx - vdx

du)
x.+

b

(9.3.56)


