are eigenvalue problems. In general, for a partial differential equation in N variables that completely separates. there will be N ordinary differential equations, $N - 1$ of which are one-dimensional eigenvalue problems (to determine the $N-1$ separation constants). We have already shown this for $N = 3$ (this section) and $N = 2$.

EXERCISES 7.3

7.3.1. Consider the heat equation in a two-dimensional rectangular region $0 < x < L$, $0 < y < H$,

$$
\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
$$

subject to the initial condition

$$
u(x,y,0)=f(x,y).
$$

Solve the initial value problem and analyze the temperature as $t \to \infty$ if the boundary conditions are

- $^{*}(a)$ $u(0, y, t) = 0,$ $u(L,$ (b) $\frac{\partial u}{\partial x}(0, y, t) = 0, \quad \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x}(0, y, t) = 0, \quad \frac{\partial u}{\partial x}$ (d) $u(0, y, t) = 0, \frac{dy}{dt}$ (e) $u(0, y, t) = 0, \quad u(L, t)$ $u(L,y,t)=0,\hspace{5mm} u(x,0,t)=0,\hspace{5mm} u(x,H,t)=0$ $\frac{\partial u}{\partial x}(L, y, t) = 0, \quad \frac{\partial u}{\partial y}(x, 0, t) = 0, \quad \frac{\partial u}{\partial y}(x, H, t) = 0$ $\frac{\partial u}{\partial x}(L, y, t) = 0, \quad u(x, 0, t) = 0, \quad u(x, H, t) = 0$ $(L, y, t) = 0, \quad \frac{\partial u}{\partial y}(x, 0, t) = 0, \quad \frac{\partial u}{\partial y}(x, H, t) = 0$ $u(L, y, t) = 0, \quad u(x, 0, t) = 0,$ $\frac{\partial u}{\partial u}(x,H,t)+hu(x,H,t)=0.$ (h > 0)
- 7.3.2. Consider the heat equation in a three-dimensional box-shaped region, $0 < x < L$, $0 < y < H$, $0 < z < W$,

$$
\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
$$

subject to the initial condition

$$
u(x,y,z,0)=f(x,y,z).
$$

Solve the initial value problem and analyze the temperature as $t \to \infty$ if the boundary conditions are

- (a) $u(0, y, z, t) = 0,$ $\frac{\partial u}{\partial y}(x, 0, z, t) = 0,$ $\frac{\partial u}{\partial z}(x, y, 0, t) = 0,$
	- $u(L, y, z, t) = 0,$ $\frac{\partial u}{\partial y}(x, H, z, t) = 0,$ $u(x, y, W, t) = 0$

*(b)
$$
\frac{\partial u}{\partial x}(0, y, z, t) = 0,
$$
 $\frac{\partial u}{\partial y}(x, 0, z, t) = 0,$ $\frac{\partial u}{\partial z}(x, y, 0, t) = 0,$
 $\frac{\partial u}{\partial z}(L, y, z, t) = 0,$ $\frac{\partial u}{\partial y}(x, H, z, t) = 0,$ $\frac{\partial u}{\partial z}(x, y, W, t) = 0$

7.3. Vibrating Rectangular Membrane

7.3.3 Solve

$$
\frac{\partial u}{\partial t} = k_1 \frac{\partial^2 u}{\partial x^2} + k_2 \frac{\partial^2 u}{\partial y^2}
$$

on a rectangle $(0 < x < L, 0 < y < H)$ subject to

$$
u(x, y, 0) = f(x, y) \begin{array}{rcl} u(0, y, t) & = & 0 & \frac{\partial u}{\partial y}(x, 0, t) & = & 0 \\ u(L, y, t) & = & 0 & \frac{\partial u}{\partial y}(x, H, t) & = & 0. \end{array}
$$

7.3.4. Consider the wave equation for a vibrating rectangular membrane $(0 < x < L, 0 < y < H)$

$$
\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
$$

subject to the initial conditions

$$
u(x,y,0)=0\;\;\text{and}\;\;\frac{\partial u}{\partial t}(x,y,0)=f(x,y).
$$

Solve the initial value problem if

(a)
$$
u(0, y, t) = 0
$$
, $u(L, y, t) = 0$, $\frac{\partial u}{\partial y}(x, 0, t) = 0$, $\frac{\partial u}{\partial y}(x, H, t) = 0$
\n*(b) $\frac{\partial u}{\partial x}(0, y, t) = 0$, $\frac{\partial u}{\partial x}(L, y, t) = 0$, $\frac{\partial u}{\partial y}(x, 0, t) = 0$, $\frac{\partial u}{\partial y}(x, H, t) = 0$

7.3.5. Consider

$$
\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - k \frac{\partial u}{\partial t} \quad \text{with } k > 0.
$$

- (a) Give a brief physical interpretation of this equation.
- (b) Suppose that $u(x, y, t) = f(x)g(y)h(t)$. What ordinary differential equations are satisfied by f, g , and h ?

7.3.6. Consider Laplace's equation

$$
\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0
$$

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top is $z = H$ and the bottom is $z = 0$. Assume that

$$
\frac{\partial}{\partial z}u(x,y,0) = 0u(x,y,H) = f(x,y)
$$

and $u = 0$ on the "lateral" sides.

- (a) Separate the z-variable in general.
- *(b) Solve for $u(x, y, z)$ if the region is a rectangular box, $0 < x < L$, $0 < y < W$, $0 < z < H$.

7.3.7. If possible, solve Laplace's equation

$$
\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0,
$$

in a rectangular-shaped region, $0 < x < L$, $0 < y < W$, $0 < z < H$, subject to the boundary conditions

(a) $\frac{\partial u}{\partial x}(0, y, z) = 0,$ $u(x, 0, z) = 0,$ $(u, y, z) = 0,$ $u(x, W, z) = 0,$ $u(x, y, H) = 0$ (b) $u(0, y, z) = 0$, $u(L, y, z) = 0,$ $u(x, W, z) = f(x, z),$ $u(x, y, H) = 0$ * (c) $\frac{\partial u}{\partial x}(0, y, z) = 0,$ $\frac{\partial u}{\partial y}(x, 0, z) = 0,$ $\frac{\partial u}{\partial z}(x, y, 0) = 0$ $(L,y,z) = f(y,z), \qquad \frac{\partial u}{\partial y}(x,W,z) = 0, \qquad \qquad \frac{\partial u}{\partial z}(x,y,H) = 0$ $u(L, y, z) = g(y, z),$ $\frac{\partial u}{\partial y}(x, W, z) = 0,$ $\frac{\partial u}{\partial z}(x, y, H) = 0$ $u(x, 0, z) = 0,$ $\frac{\partial u}{\partial y}(x,0,z) = 0, \qquad \qquad \frac{\partial u}{\partial z}(x,y,0) = 0$ $u(x, y, 0) = f(x, y)$ $u(x,y,0) = 0,$

Appendix to 7.3: Outline of Alternative Method to Separate Variables

An alternative (and equivalent) method to separate variables for

$$
\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \tag{7.3.33}
$$

is to assume product solutions of the form

$$
u(x, y, t) = f(x)g(y)h(t).
$$
 (7.3.34)

By substituting (7.3.34) into (7.3.33) and dividing by $c^2 f(x)g(y)h(t)$, we obtain

$$
\frac{1}{c^2} \frac{1}{h} \frac{d^2 h}{dt^2} = \frac{1}{f} \frac{d^2 f}{dx^2} + \frac{1}{g} \frac{d^2 g}{dy^2} = -\lambda,
$$
 (7.3.35)