7.10. Spherical Problems and Legendre Polynomials

EXERCISES 7.10

7.10.1. Solve the initial value problem for the wave equation%"-; = c2V?u inside a
sphere of radius a subject to the boundary condition u(a, 6, ¢,t) = 0 and
the initial conditions

() u(p,6,4,0) = F(p,0,¢) and %%(p,0,¢,0) =

(b) u(p,6,4,0) =0 and 5% (p,6,9,0) = G(p,6, ¢)
(c) u(p,8,9,0) = F(p,¢) and 3%(p,0,¢,0) =

(d) u(p,6,4,0) = 0 and &(p,6,4,0) = G(p, ¢)

(e) u(p,6,9,0) = F(p,¢)cos 36 and 3¢(p, 6, ¢,0) =

(f) u(p,6,4,0) = F(p)sin26 and 52 (p,0, 9, 0)
(2) u(p,6,9,0) = F(p) and ¢(p,0,¢,0) =
(b) u(p,6,4,0) =0 and %(p,6,4,0) = G(p)

7.10.2. Solve the initial value problem for the heat equatlon% = kV2y inside a
sphere of radius a subject to the boundary condition u(a, 9, ¢,t) = 0 and

the initial conditions

(a) u(p,0,9,0)

(c) u(p,6,4,0) =
(d) u(p,6,4,0) =
7.10.3.

= F(p,0,9)
(b) u(p,6,9,0) =

F(p,¢)
F(p, ¢) cos

= F(p)

Solve the initial value problem for the heat equation2t
sphere of radius a subject to the boundary condition

= kV2y inside a
3;(a, 0,%,t) = 0 and

the initial conditions

(a) u(p,6,4,0) =
= F(p, ¢)

= F(p, ¢) sin 30

= F(p)

Using the one-dimensional Rayleigh quotient, show that u > 0 (if m > 0)

(b) u(p,6,4,0)
(c) u(p,6,9,0)
(d) u(p,6,9,0)
7.10.4.

F(p,6,9)

as defined by (7.10.11). Under what conditions does u = 0?

7.10.5.

Using the one-dimensional Rayleigh quotient, show that u > 0 (if m > 0)

as defined by (7.10.13). Under what conditions does u = 0?

7.10.6.

Using the one-dimensional Rayleigh quotient, show that A > 0 (if n > 0) as
defined by (7.10.6) with the boundary condition f(a) =0. Can A = 0?

Using the three-dimensional Rayleigh quotient, show that A > 0 as defined
by (7.10.11) with u(a, 6, ¢,t) = 0. Can A = 0?

7.10.7.
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7.10.8. Differential equations related to Bessel’s differential equation. Use this to
show that

£2+z(1 2a— 2b:c) df +[a —p*+(2a—1)bz+(d?+b%)z?)f = 0 (7.10.37)

has solutions z%€%*Z,(dz), where Z,(z) satisfies Bessel's differential equa-
tlon (7. 7 25). By comparing (7.10.21) and (7.10.37), we have a = —1,b =
0,5 —p*=-n(n+1),and d> = X. We find that p= (n + }).

7.10.9. Solve Laplace’s equation inside a sphere p < a subject to the following
boundary conditions on the sphere:
(a) u(a,8,9) = F(¢)cos46
(b) u(a,6,¢) = F(4)
(c) 84(a,6,) = F(¢)cos46
(d) 8%(a,6,9) = F(¢) with [ F(¢) sin ¢dg = 0
(e) §(a,6,9) = F(6, ¢) with IT [ F(6,4)singdfds =0
7.10.10. Solve Laplace’s equation outside a sphere p > a subject to the potential
given on the sphere:
(a) u(a,8,0) = F(6,9)
(b) u(a,8, ) = F(¢), with cylindrical (azimuthal) symmetry
(c) u(a,0,¢) = V in the upper hemisphere, —V in the lower hemisphere
(do not simplify; do not evaluate definite integrals)

7.10.11. Solve Laplace’s equation inside a sector of a sphere p <a with0< 6 < %
subject to u(p,0,¢) = 0 and u(p, ,¢) = 0 and the potential given on the
sphere: u(a,0,¢) = F(6, ¢).

7.10.12. Solve Laplace’s equation inside a hemisphere p > a with z > 0 subject
tou = 0 at z = 0 and the potential given on the hemisphere: u(a,8,¢) =
F(0,¢) [Hint: Use symmetry and solve a different problem, a sphere with
the antisymmetric potential on the lower hemisphere.]

7.10.13. Show that Rodrigues’ formula agrees with the given Legendre polynomials
forn=0,n=1,and n=2.

7.10.14. Show that Rodrigues’ formula satisfies the differential equation for Legen-
dre polynomials.

7.10.15. Derive (7.10.36) using (7.10.35), (7.10.18), and (7.10.25).



