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Since the coefficient o(x) = 1 in (5.8.41), the eigenfunctions on(x) are orthogonal
with weight 1. Thus, we know that the generalized Fourier coefficients of the initial
condition f (x) are

an
f d,, =

L

f L f (x) sinh slx dx/ f L sinh2

L

stx dx n=1
f (X) sin vx dx/ fL sin2f 0n dx f anx dx n > 2.

In particular, we could show LL
sin2 vfA-.x dx 54 L/2. Perhaps we should empha-

size one additional point. We have utilized the theorem that states that eigenfunc-
tions corresponding to different eigenvalues are orthogonal; it is guaranteed that
fo sin / xsin.,,,x dx = 0(n # m) and fLsinv1xsinh stx dx = 0. We do
not need to verify these by integration (although it can be done).

Other problems with boundary conditions of the third kind appear in the Exer-
cises.

EXERCISES 5.8

5.8.1. Consider
au 92u

at = kax2
subject to u(0, t) = 0, ai (L, t) = -hu(L, t), and u(x, 0) = f (x).

(a) Solve if hL > -1.
(b) Solve if hL = -1.

5.8.2. Consider the eigenvalue problem (5.8.8)-(5.8.10). Show that the nth eigen-
function has n - 1 zeros in the interior if

(a) h>0 (b) h=0
* (c) -1 < hL < 0 (d) hL = -1

5.8.3. Consider the eigenvalue problem

2

d2 +X =0,

subject to Px (0) = 0 and 9t (L) + h¢(L) = 0 with h > 0.

(a) Prove that A > 0 (without solving the differential equation).

*(h) Determine all eigenvalues graphically. Obtain tipper and lower bounds.
Estimate the large eigenvalues.

(c) Show that the nth eigenfunction has n - 1 zeros in the interior.

5.8.4. Redo Exercise 5.8.3 parts (b) and (c) only if h < 0.
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5.8.5. Consider
8u 02U

at
k

8x2

with Ou (0, t) = 0, au (L, t) = -hu(L, t), and u(x, 0) = f (x).

(a) Solve if h > 0.
(b) Solve if h < 0.

5.8.6. Consider (with h > 0)
02U_

C

202U

0t2 8x2

(0,t) - hu(0,t) = 0 u(x,0) = f(x)

N 49Ua (L, t) =
0

8t (x, 0) = 9(x)

(a) Show that there are an infinite number of different frequencies of os-
cillation.

(b) Estimate the large frequencies of oscillation.

(c) Solve the initial value problem.

*5.8.7. Consider the eigenvalue problem

d2x2 + W = 0 subject to 0(0) = 0 and 0(1r) - 2L(0) = 0.

(a) Show that usually

J
d2v d2u

(Ud-X2 - v dx2 dx 0
0

for any two functions u and v satisfying these homogeneous boundary
conditions.

(b) Determine all positive eigenvalues.
(c) Determine all negative eigenvalues.

(d) Is A = 0 an eigenvalue?

(e) Is it possible that there are other eigenvalues besides those determined
in parts (b) through (d)? Briefly explain.

5.8.8. Consider the boundary value problem

d2o 0(0) - LO (0) = 0
dx2

+ A = 0 with
d

.0(1)+TX(1)=0.

(a) Using the Rayleigh quotient, show that A > 0. Why is A > 0?
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(b) Prove that eigenfunctions corresponding to different eigenvalues are
orthogonal.

*(c) Show that

tanf = 2f
a-1*

Determine the eigenvalues graphically. Estimate the large eigenvalues.

(d) Solve

with

8u _ 82u

8t
k

8x2

u(0, t) - ax (0, t) = 0

U(1, t) + Ox (l, t) = 0
u(x,0) = f(x).

You may call the relevant eigenfunctions 0 , (x) and assume that they
are known.

5.8.9. Consider the eigenvalue problem

dx46 + A i = 0 with 0(0) = LO (0) and 0(1) = 8 (1).

For what values (if any) of 8 is A = 0 an eigenvalue?

5.8.10. Consider the special case of the eigenvalue problem of Sec. 5.8:

d.0+A = 0 with 0(0) = 0 and dx(1)+m(1)=o.

*(a) Determine the lowest eigenvalue to at least two or three significant
figures using tables or a calculator.

*(b) Determine the lowest eigenvalue using a root finding algorithm (e.g..
Newton's method) on a computer.

(c) Compare either part (a) or (b) to the bound obtained using the Ray-
leigh quotient [see Exercise 5.6.1(c)].

5.8.11. Determine all negative eigenvalues for

dx2+50=-A5 with 0(0)=0andtj(ir)=0.

5.8.12. Consider 82u/8t2 = c202u/8x2 with the boundary conditions

u=0 atx=0
m2 = TO a - ku at x = L.
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(a) Give a brief physical interpretation of the boundary conditions.
(b) Show how to determine the frequencies of oscillation. Estimate the

large frequencies of oscillation.
(c) Without attempting to use the Rayleigh quotient, explicitly determine

if there are any separated solutions that do not oscillate in time. (Hint:
There are none.)

(d) Show that the boundary condition is not self-adjoint: that is, show
IL \

(u
d2u" - u

d2 un) dx # 0
" dx2 - dxz

///

even when u" and u,,, are eigenfunctions corresponding to different
eigenvalues.

*5.8.13. Simplify f L sine fx dx when .1 is given by (5.8.15).

5.9 Large Eigenvalues (Asymptotic Behavior)
For the variable coefficient case, the eigenvalues for the Sturm-Liouville differential
equation,

{(x] + [Ao,(x) + q(x)]O = 0, (5.9.1)

usually must be calculated numerically. We know that there will be an infinite num-
ber of eigenvalues with no largest one. Thus, there will be an infinite sequence of
large eigenvalues. In this section we state and explain reasonably good approxima-
tions to these large eigenvalues and corresponding eigenfunctions. Thus, numerical
solutions will be needed only for the first few eigenvalues and eigenfunctions.

A careful derivation with adequate explanations of the asymptotic method would
be lengthy. Nonetheless, some motivation for our result will be presented. We
begin by attempting to approximate solutions of the differential equation (5.9.1) if
the unknown eigenvalue A is large (A >> 1). Interpreting (5.9.1) as a spring-mass
system (x is time, 0 is position) with time-varying parameters is helpful. Then
(5.9.1) has a large restoring force [-Aa(x)O) such that we expect the solution to have
rapid oscillation in x. Alternatively, we know that eigenfunctions corresponding to
large eigenvalues have many zeros. Since the solution oscillates rapidly, over a few
periods (each small) the variable coefficients are approximately constant. Thus,
near any point xo, the differential equation may be approximated crudely by one
with constant coefficients:

P(xo) d O + )a(xo)O 0, (5.9.2)

since in addition Aa(x) >> q(x). According to (5.9.2), the solution is expected to
oscillate with "local" spatial (circular) frequency

frequency = Aa(xo)

P(xo)
(5.9.3)


