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This approximation is not very good if a1 = 0, in which case (5.4.14) should begin
with the first nonzero term. However, often the initial temperature f (x) is non-
negative (and not identically zero). In this case, we will show from (5.4.13) that
al 0:

al
= fL f(x)4i(x)c(x)p(x) dx

5.4.15

fL O1(x)c(x)p(x) dx
( )

It follows that a1 96 0, because 41(x) is the eigenfunction corresponding to the
lowest eigenvalue and has no zeros; 01(x) is of one sign. Thus, if f (x) > 0 it
follows that al $ 0, since c(x) and p(x) are positive physical functions. In order to
sketch the solution for large fixed t, (5.4.14) shows that all that is needed is the first
eigenfunction. At the very least, a numerical calculation of the first eigenfunction
is easier than the computation of the first hundred.

For large time, the "shape" of the temperature distribution in space stays ap-
proximately the same in time. Its amplitude grows or decays in time depending on
whether Al > 0 or Al < 0 (it would be constant in time if Al = 0). Since this is a
heat flow problem with no sources and with zero temperature at x = 0, we certainly
expect the temperature to be exponentially decaying toward 0° (i.e., we expect that
Al > 0). Although the right end is insulated, heat energy should flow out the left
end since there u = 0. We now prove mathematically that all A > 0. Since p(x) _
Ko(x), q(x) = 0, and o(x) = c(x)p(x), it follows from the Rayleigh quotient that

A = f L
Ko(x)(d4ldx)2 dx

(5.4.16)0

fL 02c(x)p(x) dx ,

where the boundary contribution to (5.4.16) vanished due to the specific homoge-
neous boundary conditions, (5.4.7) and (5.4.8). It immediately follows from (5.4.16)
that all A > 0, since the thermal coefficients are positive. Furthermore, A > 0, since
0 = constant is not an allowable eigenfunction [because 0(0) = 0]. Thus, we have
shown that limt_,, u(x, t) = 0 for this example.

EXERCISES 5.4
5.4.1. Consider
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where c, p, KO, a are functions of x, subject to

u(0, t) = 0
u(L, t) = 0
u(x,0) = f(x).

Assume that the appropriate eigenfunctions are known.

(a) Show that the eigenvalues are positive if a < 0 (see Sec. 5.2.1).
(b) Solve the initial value problem.
(c) Briefly discuss limt,. u(x, t).
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*5.4.2. Consider
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where c, p, KO are functions of x, subject to

(0, t) = 0L 9uTx-

(L,t) = 0
uu(x, 0) _ .f (x)

Assume that the appropriate eigenfunctions are known. Solve the initial
value problem, briefly discussing limt.,,. u(x, t).

*5.4.3. Solve
49U =
at k r 5+r (r 5+r )

with u(r, 0) = 1(r), u(0, t) bounded, and u(a, t) = 0. You may assume
that the corresponding eigenfunctions, denoted are known and are
complete. (Hint: See Sec. 5.2.2.)

5.4.4. Consider the following boundary value problem:

2

= k2 with a (0, t) = 0 and u(L, t) = 0.i§j

Solve such that u(x, 0) = sin7rx/L (initial condition). (Hint: If necessary,
use a table of integrals.)

5.4.5. Consider
8u2 02up2 TD

8x2
+au,

where p(x) > 0, a(x) < 0, and To is constant, subject to

u(0,t) = 0 u(x,0) = f(x)

u(L,t) = 0 au(x,0) = g(x).

Assume that the appropriate eigenfunctions are known. Solve the initial
value problem.

*5.4.6. Consider the vibrations of a nonuniform string of mass density po(x). Sup-
pose that the left end at x = 0 is fixed and the right end obeys the elastic
boundary condition: Ou/8x = -(k/To)u at x = L. Suppose that the string
is initially at rest with a known initial position f (x). Solve this initial
value problem. (Hints: Assume that the appropriate eigenvalues and corre-
sponding eigenfunctions are known. What differential equations with what
boundary conditions do they satisfy? The eigenfunctions are orthogonal
with what weighting function?)


