EXERCISES 5.3

- *5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be put into Sturm-Liouville form.
 - 5.3.2. Consider

$$\rho \frac{\partial^2 u}{\partial t^2} = T_0 \frac{\partial^2 u}{\partial x^2} + \alpha u + \beta \frac{\partial u}{\partial t}.$$

- (a) Give a brief physical interpretation. What signs must α and β have to be physical?
- (b) Allow ρ, α, β to be functions of x. Show that separation of variables works only if $\beta = c\rho$, where c is a constant.
- (c) If $\beta = c\rho$, show that the spatial equation is a Sturm-Liouville differential equation. Solve the time equation.
- *5.3.3. Consider the non-Sturm-Liouville differential equation

$$\frac{d^2\phi}{dx^2} + \alpha(x)\frac{d\phi}{dx} + [\lambda\beta(x) + \gamma(x)]\phi = 0.$$

Multiply this equation by H(x). Determine H(x) such that the equation may be reduced to the standard Sturm-Liouville form:

$$\frac{d}{dx}\left[p(x)\frac{d\phi}{dx}\right] + [\lambda\sigma(x) + q(x)]\phi = 0.$$

Given $\alpha(x)$, $\beta(x)$, and $\gamma(x)$, what are p(x), $\sigma(x)$, and q(x)?

5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - V_0 \frac{\partial u}{\partial x}.$$

- (a) Show that the spatial ordinary differential equation obtained by separation of variables is not in Sturm-Liouville form.
- *(b) Solve the initial boundary value problem

$$u(0,t) = 0$$

 $u(L,t) = 0$
 $u(x,0) = f(x)$.

(c) Solve the initial boundary value problem

$$\begin{array}{rcl} \frac{\partial u}{\partial x}(0,t) & = & 0 \\ \frac{\partial u}{\partial x}(L,t) & = & 0 \\ u(x,0) & = & f(x). \end{array}$$

5.3.5. For the Sturm-Liouville eigenvalue problem,

$$\frac{d^2\phi}{dx^2} + \lambda\phi = 0$$
 with $\frac{d\phi}{dx}(0) = 0$ and $\frac{d\phi}{dx}(L) = 0$,

verify the following general properties:

- (a) There is an infinite number of eigenvalues with a smallest but no largest.
- (b) The *n*th eigenfunction has n-1 zeros.
- (c) The eigenfunctions are complete and orthogonal.
- (d) What does the Rayleigh quotient say concerning negative and zero eigenvalues?
- 5.3.6. Redo Exercise 5.3.5 for the Sturm-Liouville eigenvalue problem

$$\frac{d^2\phi}{dx^2} + \lambda\phi = 0$$
 with $\frac{d\phi}{dx}(0) = 0$ and $\phi(L) = 0$.

5.3.7. Which of statements 1-5 of the theorems of this section are valid for the following eigenvalue problem?

$$\begin{array}{rcl} \frac{d^2\phi}{dx^2} + \lambda\phi & = & 0 & \text{with} \\ \phi(-L) & = & \phi(L) \\ \frac{d\phi}{dx}(-L) & = & \frac{d\phi}{dx}(L). \end{array}$$

5.3.8. Show that $\lambda \geq 0$ for the eigenvalue problem

$$\frac{d^2\phi}{dx^2} + (\lambda - x^2)\phi = 0 \quad \text{with} \quad \frac{d\phi}{dx}(0) = 0, \quad \frac{d\phi}{dx}(1) = 0.$$

Is $\lambda = 0$ an eigenvalue?

5.3.9. Consider the eigenvalue problem

$$x^2 \frac{d^2 \phi}{dx^2} + x \frac{d\phi}{dx} + \lambda \phi = 0$$
 with $\phi(1) = 0$, and $\phi(b) = 0$. (5.3.10)

- (a) Show that multiplying by 1/x puts this in the Sturm-Liouville form. (This multiplicative factor is derived in Exercise 5.3.3.)
- (b) Show that $\lambda \geq 0$.
- *(c) Since (5.3.10) is an equidimensional equation, determine all positive eigenvalues. Is $\lambda = 0$ an eigenvalue? Show that there is an infinite number of eigenvalues with a smallest, but no largest.
- (d) The eigenfunctions are orthogonal with what weight according to Sturm-Liouville theory? Verify the orthogonality using properties of integrals.
- (e) Show that the nth eigenfunction has n-1 zeros.
- 5.3.10. Reconsider Exercise 5.3.9 with the boundary conditions

$$\frac{d\phi}{dx}(1) = 0$$
 and $\frac{d\phi}{dx}(b) = 0$.