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of standing waves, it can be shown that this solution is a combination of just two
waves (each rather complicated)-one traveling to the left at velocity -c with fixed
shape and the other to the right at velocity c with a different fixed shape. We are
claiming that the solution to the one-dimensional wave equation can be written as

u(x, t) = R(x - ct) + S(x + ct),

even if the boundary conditions are not fixed at x = 0 and x = L. We will show
and discuss this further in the Exercises and in Chapter 12.

EXERCISES 4.4

4.4.1. Consider vibrating strings of uniform density po and tension To.

*(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends?

*(b) What are the natural frequencies of a vibrating string of length H,
which is fixed at x = 0 and "free" at the other end [i.e., Ou/8x(H, t) =
01? Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n =
1, 3, 5, ...) of part (a) are identical to modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.

4.4.2. In Sec. 4.2 it was shown that the displacement u of a nonuniform string
satisfies

02u 92u
Po To 8x2 + Q,

where Q represents the vertical component of the body force per unit length.
If Q = 0, the partial differential equation is homogeneous. A slightly differ-
ent homogeneous equation occurs if Q = au.

(a) Show that if a < 0, the body force is restoring (toward u = 0). Show
that if a > 0, the body force tends to push the string further away
from its unperturbed position u = 0.

(b) Separate variables if po(x) and a(x) but To is constant for physical
reasons. Analyze the time-dependent ordinary differential equation.

*(c) Specialize part (b) to the constant coefficient case. Solve the initial
value problem if a < 0:

u(0, t) = 0 u(x,0) = 0

u(L, t) = 0 5 (x, 0) = f W.

What are the frequencies of vibration?
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4.4.3. Consider a slightly damped vibrating string that satisfies

211
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(a) Briefly explain why /3 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0, t) = 0 and u(L, t) = 0

and the initial conditions

u(x,0) = f(x) and 8t(x,0) = g(x)-

You can assume that this frictional coefficient Q is relatively small
()32 < 4rr2poTo/L2).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfunction expansion method.

4.4.5. Redo Exercise 4.4.3(b) if 4rr2poTo/L2 < p2 < 16rr2poTo/L2.

4.4.6. For (4.4.1)-(4.4.3), from (4.4.11) show that

u(x, t) = R(x - ct) + S(x + ct),

where R and S are some functions.

4.4.7. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially at rest, g(x) = 0,
show that

u(x, t) = I [F(x - ct) + F(x + ct)],

where F(x) is the odd periodic extension of f (x). Hints.

1. For all x, F(x) _ An sin !.
2. sin a cos b = [sin(a + b) + sin(a - b)].

Comment: This result shows that the practical difficulty of summing an
infinite number of terms of a Fourier series may be avoided for the one-
dimensional wave equation.

4.4.8. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially unperturbed, f (x) _
0, with the initial velocity given, show that

Ect
u(x, t) = 1 G(x) dam,

2c t

where G(x) is the odd periodic extension of g(x). Hints:

1. For all x, G(x) _ °O_1 nir-c sin nT
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2. sin a sin b = 1 [cos(a - b) cos(a + b)].

See the comment after Exercise 4.4.7.

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

dE 2'9U &U L

wt -c8x8to, (4.4.15)

where the total energy E is the sum of the kinetic energy, defined by
f L 2 (8u) 2 dx, and the potential energy, defined by f L z (&) 2 dx.

4.4.10. What happens to the total energy E of a vibrating string (see Exercise 4.4.9)

(a) If u(0, T) = 0 and u(L, t) = 0
(b) If Ou(0,t) = 0 and u(L,t) = 0

(c) If u(0, t) = 0 and Ou (L, t) = -ryu(L, t) with y > 0
(d) If y < 0 in part (c)

4.4.11. Show that the potential and kinetic energies (defined in Exercise 4.4.9) are
equal for a traveling wave, u = R(x - ct).

4.4.12. Using (4.4.15), prove that the solution of (4.4.1)-(4.4.3) is unique.

4.4.13. (a) Using (4.4.15), calculate the energy of one normal mode.

(b) Show that the total energy, when u(x, t) satisfies (4.4.11), is the sum
of the energies contained in each mode.

4.5 Vibrating Membrane
The heat equation in one spatial dimension is 8u/8t = k82u/8x2. In two or three
dimensions, the temperature satisfies 8u/8t = kV2u. In a similar way, the vibration
of a string (one dimension) can be extended to the vibration of a membrane (two
dimensions).

The vertical displacement of a vibrating string satisfies the one-dimensional wave
equation

82u 82u
c2 8x2

There are important physical problems that solve

,92 = c2V2u, (4.5.1)

known as the two- or three-dimensional wave equation. An example of a physical
problem that satisfies a two-dimensional wave equation is the vibration of a highly
stretched membrane. This can be thought of as a two-dimensional vibrating string.
We will give a brief derivation in the manner described by Kaplan [1981], omitting


