for a one-dimensional example, see Exercise $1.4.7(b)$. To show this, we integrate $\nabla^2 u = 0$ over the entire two-dimensional region

$$
0=\iint \nabla^2 u \ dx \ dy = \iint \nabla \cdot (\nabla u) \ dx \ dy.
$$

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise 1.5.8)

$$
0 = \oint \nabla u \cdot \hat{\boldsymbol{n}} \ ds. \tag{2.5.61}
$$

Since $\nabla u \cdot \hat{\boldsymbol{n}}$ is proportional to the heat flow through the boundary, (2.5.61) implies that the net heat flow through the boundary must be zero in order for a steady state to exist. This is clear physically, because otherwise there would be a change (in time) of the thermal energy inside, violating the steady-state assumption. Equation (2.5.61) is called the solvability condition or compatibility condition for Laplace's equation.

EXERCISES 2.5

- 2.5.1. Solve Laplace's equation inside a rectangle $0 \le x \le L$, $0 \le y \le H$, with the following boundary conditions:
	- $*(\mathbf{a}) \frac{\partial u}{\partial x}(0, y) = 0, \quad \frac{\partial u}{\partial x}(L, y) = 0, \quad u(x, 0) = 0, \quad u(x, H) = f(x)$ (b) $\frac{\partial u}{\partial x}(0, y) = g(y), \frac{\partial u}{\partial x}(L, y) = 0, \quad u(x, 0) = 0, \quad u(x, H) = 0$ $*(c) \frac{\partial a}{\partial x}(0, y) = 0, \quad u(L, y) = g(y), \quad u(x, 0) = 0,$ (d) $u(0, y) = g(y)$, $u(L, y) = 0$, $\frac{\partial u}{\partial y}(x, 0) = 0$, $u(x, H) = 0$ $*(e) u(0, y) = 0,$ $u(L, y) = 0,$ $u(x, 0) - \frac{\partial u}{\partial y}(x, 0) = 0, u(x, H) = f(x)$ (f) $u(0, y) = f(y)$, $u(L, y) = 0$, $\frac{\partial u}{\partial y}(x, 0) = 0$, $u(x,H)=0$ $\frac{\partial u}{\partial y}(x,H)=0$
	- $\zeta(\mathrm{g}) \;\frac{\partial u}{\partial x}(0,y) = 0, \hspace{5mm} \frac{\partial u}{\partial x}(L,y) = 0, \hspace{5mm} u(x,0) = \begin{cases} 0 & x > L/2 \ 1 & x < L/2 \end{cases}, \frac{\partial u}{\partial y}(x,H) = 0.$
- $2.5.2.$ Consider $u(x, y)$ satisfying Laplace's equation inside a rectangle $(0 < x <$ L, $0 < y < H$) subject to the boundary conditions

$$
\frac{\partial u}{\partial x}(0, y) = 0 \qquad \frac{\partial u}{\partial y}(x, 0) = 0
$$

$$
\frac{\partial u}{\partial x}(L, y) = 0 \qquad \frac{\partial u}{\partial y}(x, H) = f(x).
$$

- $*(a)$ Without solving this problem, briefly explain the physical condition under which there is a solution to this problem.
	- (b) Solve this problem by the method of separation of variables. Show that the method works only under the condition of part (a).

(c) The solution [part (b)] has an arbitrary constant. Determine it by consideration of the time-dependent heat equation (1.5.11) subject to the initial condition

$$
u(x,y,0)=g(x,y).
$$

- *2.5.3. Solve Laplace's equation *outside* a circular disk $(r \ge a)$ subject to the boundary condition
	- (a) $u(a, \theta) = \ln 2 + 4 \cos 3\theta$

(b)
$$
u(a, \theta) = f(\theta)
$$

You may assume that $u(r, \theta)$ remains finite as $r \to \infty$.

*2.5.4. For Laplace's equation inside a circular disk $(r \le a)$, using (2.5.45) and (2.5.47), show that

$$
u(r,\theta)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\bar{\theta})\left[-\frac{1}{2}+\sum_{n=0}^{\infty}\left(\frac{r}{a}\right)^{n}\cos n(\theta-\bar{\theta})\right]d\bar{\theta}.
$$

Using $\cos z = \text{Re}[e^{iz}]$, sum the resulting geometric series to obtain Poisson's integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 ($0 \le \theta \le$ $\pi/2$, $0 \le r \le 1$) subject to the boundary conditions

Show that the solution [part (d)] exists only if $\int_0^{\pi/2} g(\theta) d\theta = 0$. Explain this condition physically.

- 2.5.6. Solve Laplace's equation inside a semicircle of radius $a(0 < r < a, 0 < \theta <$ π) subject to the boundary conditions
	- *(a) $u = 0$ on the diameter and $u(a, \theta) = g(\theta)$
	- (b) the diameter is insulated and $u(a, \theta) = g(\theta)$
- 2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the boundary conditions

(a)
$$
u(r, 0) = 0
$$
, $u(r, \frac{\pi}{3}) = 0$, $u(a, \theta) = f(\theta)$

* (b) $\frac{\partial u}{\partial \theta}(r, 0) = 0,$ $\frac{\partial u}{\partial \theta}(r, \frac{\pi}{3}) = 0,$ $u(a, \theta) = f(\theta)$

2.5. Laplace's Equation 87

2.5.8. Solve Laplace's equation inside a circular annulus $(a < r < b)$ subject to the boundary conditions

*(a)
$$
u(a, \theta) = f(\theta), \quad u(b, \theta) = g(\theta)
$$

(b)
$$
\frac{\partial u}{\partial r}(a,\theta) = 0
$$
, $u(b,\theta) = g(\theta)$

(c)
$$
\frac{\partial u}{\partial r}(a,\theta) = f(\theta), \frac{\partial u}{\partial r}(b,\theta) = g(\theta)
$$

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus ($a < r <$ b, $0 < \theta < \pi/2$) subject to the boundary conditions

(a)
$$
u(r, 0) = 0
$$
, $u(r, \pi/2) = 0$, $u(a, \theta) = 0$, $u(b, \theta) = f(\theta)$
\n(b) $u(r, 0) = 0$, $u(r, \pi/2) = f(r)$, $u(a, \theta) = 0$, $u(b, \theta) = 0$

- 2.5.10. Using the maximum principles for Laplace's equation, prove that the solution of Poisson's equation, $\nabla^2 u = g(x)$, subject to $u = f(x)$ on the boundary, is unique.
- 2.5.11. Do Exercise 1.5.8.
- 2.5.12. (a) Using the divergence theorem, determine an alternative expression for $\iint u \nabla^2 u dx dy dz$.
	- (b) Using part (a), prove that the solution of Laplace's equation $\nabla^2 u = 0$ (with u given on the boundary) is unique.
	- (c) Modify part (b) if $\nabla u \cdot \hat{\boldsymbol{n}} = 0$ on the boundary.
	- (d) Modify part (b) if $\nabla u \cdot \hat{\boldsymbol{n}} + h u = 0$ on the boundary. Show that Newton's law of cooling corresponds to $h < 0$.
- 2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its minimum in the interior.
- 2.5.14. Show that the "backward" heat equation

$$
\frac{\partial u}{\partial t}=-k\frac{\partial^2 u}{\partial x^2},
$$

subject to $u(0, t) = u(L, t) = 0$ and $u(x, 0) = f(x)$, is not well posed. [Hint: Show that if the data are changed an arbitrarily small amount, for example,

$$
f(x) \to f(x) + \frac{1}{n} \sin \frac{n \pi x}{L}
$$

for large n, then the solution $u(x, t)$ changes by a large amount.

2.5.15. Solve Laplace's equation inside a semi-infinite strip $(0 < x < \infty, 0 < y < H)$ subject to the boundary conditions

- (a) $\frac{\partial u}{\partial y}(x,0) = 0$, $\frac{\partial u}{\partial y}(x,H) = 0$, $u(0,y) = f(y)$
- (b) $u(x, 0) = 0$, $u(x, H) = 0$, $u(0, y) = f(y)$
- (c) $u(x,0) = 0$, $u(x,H) = 0$, $\frac{\partial u}{\partial x}(0,y) = f(y)$
- (d) $\frac{\partial u}{\partial y}(x, 0) = 0,$ $\frac{\partial u}{\partial y}(x, H) = 0,$ $\frac{\partial u}{\partial x}(0, y) = f(y)$

Show that the solution [part (d)] exists only if $\int_0^H f(y) dy = 0$.

2.5.16. Consider Laplace's equation inside a rectangle $0 \le x \le L$, $0 \le y \le H$, with the boundary conditions

$$
\frac{\partial u}{\partial x}(0,y)=0,\quad \frac{\partial u}{\partial x}(L,y)=g(y),\quad \frac{\partial u}{\partial y}(x,0)=0,\quad \frac{\partial u}{\partial y}(x,H)=f(x).
$$

- (a) What is the solvability condition and its physical interpretation?
- (b) Show that $u(x, y) = A(x^2 y^2)$ is a solution if $f(x)$ and $g(y)$ are constants [under the conditions of part (a)].
- (c) Under the conditions of part (a), solve the general case [nonconstant $f(x)$ and $g(y)$]. [Hints: Use part (b) and the fact that $f(x) = f_{av} +$ $[f(x) - f_{av}]$, where $f_{av} = \frac{1}{L} \int_0^L f(x) dx$.]
- 2.5.17. Show that the mass density $\rho(x, t)$ satisfies $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$ due to conservation of mass.
- 2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show that $\nabla \cdot \mathbf{u} = 0$.
- 2.5.19. Show that the streamlines are parallel to the fluid velocity.
- 2.5.20. Show that anytime there is a stream function, $\nabla \times \mathbf{u} = 0$.
- 2.5.21. From $u = \frac{\partial \psi}{\partial u}$ and $v = -\frac{\partial \psi}{\partial x}$, derive $u_r = \frac{1}{r}\frac{\partial \psi}{\partial \theta}$, $u_\theta = -\frac{\partial \psi}{\partial r}$.
- 2.5.22. Show the drag force is zero for a uniform flow past a cylinder including circulation.
- 2.5.23. Consider the velocity u_{θ} at the cylinder. Where do the maximum and minimum occur?
- 2.5.24. Consider the velocity u_{θ} at the cylinder. If the circulation is negative, show that the velocity will be larger above the cylinder than below.
- 2.5.25. A stagnation point is a place where $u = 0$. For what values of the circulation does a stagnation point exist on the cylinder?
- 2.5.26. For what values of θ will $u_r = 0$ off the cylinder? For these θ , where (for what values of r) will $u_{\theta} = 0$ also?
- 2.5.27. Show that $\psi = \alpha \frac{\sin \theta}{r}$ satisfies Laplace's equation. Show that the streamlines are circles. Graph the streamlines.