[for a one-dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate $\nabla^2 u = 0$ over the entire two-dimensional region

$$0 = \iint \nabla^2 u \ dx \ dy = \iint \nabla \cdot (\nabla u) \ dx \ dy.$$

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise 1.5.8)

$$0 = \oint \nabla u \cdot \hat{\boldsymbol{n}} \, ds. \qquad (2.5.61)$$

Since $\nabla u \cdot \hat{n}$ is proportional to the heat flow through the boundary, (2.5.61) implies that the *net* heat flow through the boundary must be zero in order for a steady state to exist. This is clear physically, because otherwise there would be a change (in time) of the thermal energy inside, violating the steady-state assumption. Equation (2.5.61) is called the solvability condition or compatibility condition for Laplace's equation.

EXERCISES 2.5

- 2.5.1. Solve Laplace's equation inside a rectangle $0 \le x \le L$, $0 \le y \le H$, with the following boundary conditions:
 - $\begin{aligned} *(a) \ \frac{\partial u}{\partial x}(0,y) &= 0, \quad \frac{\partial u}{\partial x}(L,y) &= 0, \quad u(x,0) &= 0, \\ (b) \ \frac{\partial u}{\partial x}(0,y) &= g(y), \ \frac{\partial u}{\partial x}(L,y) &= 0, \quad u(x,0) &= 0, \\ *(c) \ \frac{\partial u}{\partial x}(0,y) &= 0, \quad u(L,y) &= g(y), \quad u(x,0) &= 0, \\ (d) \ u(0,y) &= g(y), \quad u(L,y) &= 0, \quad \frac{\partial u}{\partial y}(x,0) &= 0, \quad u(x,H) &= 0 \\ *(e) \ u(0,y) &= 0, \quad u(L,y) &= 0, \quad u(x,0) \frac{\partial u}{\partial y}(x,0) &= 0, \quad u(x,H) &= f(x) \\ (f) \ u(0,y) &= f(y), \quad u(L,y) &= 0, \quad \frac{\partial u}{\partial y}(x,0) &= 0, \quad \frac{\partial u}{\partial y}(x,H) &= 0 \end{aligned}$
 - (g) $\frac{\partial u}{\partial x}(0,y) = 0$, $\frac{\partial u}{\partial x}(L,y) = 0$, $u(x,0) = \begin{cases} 0 & x > L/2 \\ 1 & x < L/2 \end{cases}$, $\frac{\partial u}{\partial y}(x,H) = 0$
- 2.5.2. Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x < L, 0 < y < H) subject to the boundary conditions

$$\frac{\partial u}{\partial x}(0,y) = 0 \quad \frac{\partial u}{\partial y}(x,0) = 0$$
$$\frac{\partial u}{\partial x}(L,y) = 0 \quad \frac{\partial u}{\partial y}(x,H) = f(x).$$

- *(a) Without solving this problem, briefly explain the physical condition under which there is a solution to this problem.
 - (b) Solve this problem by the method of separation of variables. Show that the method works only under the condition of part (a).

(c) The solution [part (b)] has an arbitrary constant. Determine it by consideration of the time-dependent heat equation (1.5.11) subject to the initial condition

$$u(x,y,0)=g(x,y)$$

- *2.5.3. Solve Laplace's equation outside a circular disk $(r \ge a)$ subject to the boundary condition
 - (a) $u(a,\theta) = \ln 2 + 4\cos 3\theta$

(b)
$$u(a,\theta) = f(\theta)$$

You may assume that $u(r, \theta)$ remains finite as $r \to \infty$.

*2.5.4. For Laplace's equation inside a circular disk $(r \le a)$, using (2.5.45) and (2.5.47), show that

$$u(r,\theta) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \left[-\frac{1}{2} + \sum_{n=0}^{\infty} \left(\frac{r}{a} \right)^n \cos n(\theta - \bar{\theta}) \right] d\bar{\theta}.$$

Using $\cos z = \operatorname{Re} [e^{iz}]$, sum the resulting geometric series to obtain Poisson's integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 ($0 \le \theta \le \pi/2, 0 \le r \le 1$) subject to the boundary conditions

* (a)	$\tfrac{\partial u}{\partial \theta}(r,0)=0,$	$u\left(r,\frac{\pi}{2}\right)=0,$	$u(1, \theta) = f(\theta)$
(b)	$\frac{\partial u}{\partial \theta}(r,0)=0,$	$\frac{\partial u}{\partial \theta}\left(r,\frac{\pi}{2}\right)=0,$	$u(1,\theta)=f(\theta)$
* (c)	u(r,0)=0,	$u\left(r,\frac{\pi}{2}\right)=0,$	$rac{\partial u}{\partial r}(1, heta)=f(heta)$
(d)	$rac{\partial u}{\partial heta}(r,0)=0,$	$\frac{\partial u}{\partial \theta}\left(r,\frac{\pi}{2}\right)=0,$	$\frac{\partial u}{\partial r}(1,\theta) = g(\theta)$

Show that the solution [part (d)] exists only if $\int_0^{\pi/2} g(\theta) \ d\theta = 0$. Explain this condition physically.

- 2.5.6. Solve Laplace's equation inside a semicircle of radius $a(0 < r < a, 0 < \theta < \pi)$ subject to the boundary conditions
 - *(a) u = 0 on the diameter and $u(a, \theta) = g(\theta)$
 - (b) the diameter is insulated and $u(a, \theta) = g(\theta)$
- 2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the boundary conditions

(a)
$$u(r,0) = 0$$
, $u(r,\frac{\pi}{3}) = 0$, $u(a,\theta) = f(\theta)$

* (b) $\frac{\partial u}{\partial \theta}(r,0) = 0$, $\frac{\partial u}{\partial \theta}\left(r,\frac{\pi}{3}\right) = 0$, $u(a,\theta) = f(\theta)$

2.5. Laplace's Equation

2.5.8. Solve Laplace's equation inside a circular annulus (a < r < b) subject to the boundary conditions

* (a)
$$u(a, \theta) = f(\theta), \quad u(b, \theta) = g(\theta)$$

(b)
$$\frac{\partial u}{\partial r}(a,\theta) = 0, \quad u(b,\theta) = g(\theta)$$

(c)
$$\frac{\partial u}{\partial r}(a,\theta) = f(\theta), \quad \frac{\partial u}{\partial r}(b,\theta) = g(\theta)$$

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus $(a < r < b, 0 < \theta < \pi/2)$ subject to the boundary conditions

(a)
$$u(r,0) = 0$$
, $u(r,\pi/2) = 0$, $u(a,\theta) = 0$, $u(b,\theta) = f(\theta)$
(b) $u(r,0) = 0$, $u(r,\pi/2) = f(r)$, $u(a,\theta) = 0$, $u(b,\theta) = 0$

- 2.5.10. Using the maximum principles for Laplace's equation, prove that the solution of Poisson's equation, $\nabla^2 u = g(x)$, subject to u = f(x) on the boundary, is unique.
- 2.5.11. Do Exercise 1.5.8.
- 2.5.12. (a) Using the divergence theorem, determine an alternative expression for $\iint u \nabla^2 u \, dx \, dy \, dz$.
 - (b) Using part (a), prove that the solution of Laplace's equation $\nabla^2 u = 0$ (with u given on the boundary) is unique.
 - (c) Modify part (b) if $\nabla u \cdot \hat{n} = 0$ on the boundary.
 - (d) Modify part (b) if $\nabla u \cdot \hat{n} + hu = 0$ on the boundary. Show that Newton's law of cooling corresponds to h < 0.
- 2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its minimum in the interior.
- 2.5.14. Show that the "backward" heat equation

$$\frac{\partial u}{\partial t} = -k \frac{\partial^2 u}{\partial x^2},$$

subject to u(0,t) = u(L,t) = 0 and u(x,0) = f(x), is not well posed. [Hint: Show that if the data are changed an arbitrarily small amount, for example,

$$f(x) \to f(x) + \frac{1}{n} \sin \frac{n\pi x}{L}$$

for large n, then the solution u(x,t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip $(0 < x < \infty, 0 < y < H)$ subject to the boundary conditions

- (a) $\frac{\partial u}{\partial y}(x,0) = 0$, $\frac{\partial u}{\partial y}(x,H) = 0$, u(0,y) = f(y)
- (b) u(x,0) = 0, u(x,H) = 0, u(0,y) = f(y)
- (c) u(x,0)=0, u(x,H)=0, $\frac{\partial u}{\partial x}(0,y)=f(y)$
- (d) $\frac{\partial u}{\partial y}(x,0) = 0$, $\frac{\partial u}{\partial y}(x,H) = 0$, $\frac{\partial u}{\partial x}(0,y) = f(y)$

Show that the solution [part (d)] exists only if $\int_0^H f(y) \, dy = 0$.

2.5.16. Consider Laplace's equation inside a rectangle $0 \le x \le L$, $0 \le y \le H$, with the boundary conditions

$$\frac{\partial u}{\partial x}(0,y)=0,\quad \frac{\partial u}{\partial x}(L,y)=g(y),\quad \frac{\partial u}{\partial y}(x,0)=0,\quad \frac{\partial u}{\partial y}(x,H)=f(x).$$

- (a) What is the solvability condition and its physical interpretation?
- (b) Show that $u(x, y) = A(x^2 y^2)$ is a solution if f(x) and g(y) are constants [under the conditions of part (a)].
- (c) Under the conditions of part (a), solve the general case [nonconstant f(x) and g(y)]. [Hints: Use part (b) and the fact that $f(x) = f_{av} + [f(x) f_{av}]$, where $f_{av} = \frac{1}{L} \int_0^L f(x) dx$.]
- 2.5.17. Show that the mass density $\rho(x,t)$ satisfies $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$ due to conservation of mass.
- 2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show that $\nabla \cdot \boldsymbol{u} = 0$.
- 2.5.19. Show that the streamlines are parallel to the fluid velocity.
- 2.5.20. Show that anytime there is a stream function, $\nabla \times \boldsymbol{u} = 0$.
- 2.5.21. From $u = \frac{\partial \psi}{\partial y}$ and $v = -\frac{\partial \psi}{\partial x}$, derive $u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$, $u_{\theta} = -\frac{\partial \psi}{\partial r}$.
- 2.5.22. Show the drag force is zero for a uniform flow past a cylinder including circulation.
- 2.5.23. Consider the velocity u_{θ} at the cylinder. Where do the maximum and minimum occur?
- 2.5.24. Consider the velocity u_{θ} at the cylinder. If the circulation is negative, show that the velocity will be larger above the cylinder than below.
- 2.5.25. A stagnation point is a place where u = 0. For what values of the circulation does a stagnation point exist on the cylinder?
- 2.5.26. For what values of θ will $u_r = 0$ off the cylinder? For these θ , where (for what values of r) will $u_{\theta} = 0$ also?
- 2.5.27. Show that $\psi = \alpha \frac{\sin \theta}{r}$ satisfies Laplace's equation. Show that the streamlines are circles. Graph the streamlines.