
2.4. Worked Examples with the Heat Equation

Table 2.4.1: Boundary Value Problems
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EXERCISES 2.4

*2.4.1. Solve the heat equation 8u/8t = k82u/8x2, 0 < x < L, t > 0, subject to

8x(O,t)0 t>0

(L, t)0 t>0.

(a) u(x,0) =
0 x < L/2
1 x>L/2

(c) u(x, 0) = -2 sin L

(b)
u(x,0)=6+4cos31rx

(d) u(x, 0) = -3 cos jLx
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*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
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r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)


