EXERCISES 2.3

2.3.1. For the following partial differential equations, what ordinary differential equations are implied by the method of separation of variables?

*(a)
$$
\frac{\partial u}{\partial t} = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right)
$$

\n*(b) $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - v_0 \frac{\partial u}{\partial x}$
\n*(c) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
\n(d) $\frac{\partial u}{\partial t} = \frac{k}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right)$
\n*(e) $\frac{\partial u}{\partial t} = k \frac{\partial^4 u}{\partial x^4}$
\n*(f) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$

2.3.2. Consider the differential equation

$$
\frac{d^2\phi}{dx^2} + \lambda\phi = 0.
$$

Determine the eigenvalues λ (and corresponding eigenfunctions) if ϕ satisfies the following boundary conditions. Analyze three cases ($\lambda > 0, \lambda = 0, \lambda <$ 0). You may assume that the eigenvalues are real.

(a)
$$
\phi(0) = 0
$$
 and $\phi(\pi) = 0$
\n*(b) $\phi(0) = 0$ and $\phi(1) = 0$
\n(c) $\frac{d\phi}{dx}(0) = 0$ and $\frac{d\phi}{dx}(L) = 0$ (If necessary, see Sec. 2.4.1.)
\n*(d) $\phi(0) = 0$ and $\frac{d\phi}{dx}(L) = 0$
\n(e) $\frac{d\phi}{dx}(0) = 0$ and $\phi(L) = 0$
\n*(f) $\phi(a) = 0$ and $\phi(b) = 0$ (You may assume that $\lambda > 0$.)
\n(g) $\phi(0) = 0$ and $\frac{d\phi}{dx}(L) + \phi(L) = 0$ (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

$$
\frac{\partial u}{\partial t}=k\frac{\partial^2 u}{\partial x^2},
$$

subject to the boundary conditions

$$
u(0,t)=0 \qquad \text{and} \qquad u(L,t)=0.
$$

Solve the initial value problem if the temperature is initially

- (a) $u(x, 0) = 6 \sin \frac{9\pi x}{L}$ (b) $u(x, 0) = 3 \sin \frac{\pi x}{L} \sin \frac{3\pi x}{L}$
- $*(c) \quad u(x,0) = 2\cos\frac{3\pi x}{L} \qquad \qquad (d) \quad u(x,0) = \begin{cases} 1 & 0 < x \leq L/2 \\ 2 & L/2 < x < L \end{cases}$

[Your answer in part (c) may involve certain integrals that do not need to be evaluated.]

2.3.4. Consider

$$
\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},
$$

subject to $u(0, t) = 0, u(L, t) = 0$, and $u(x, 0) = f(x)$.

- *(a) What is the total heat energy in the rod as a function of time?
- (b) What is the flow of heat energy out of the rod at $x = 0$? at $x = L$?
- *(c) What relationship should exist between parts (a) and (b)?
- 2.3.5. Evaluate (be careful if $n = m$)

$$
\int_0^L \sin \frac{n\pi x}{L} \sin \frac{m\pi x}{L} dx \quad \text{for } n > 0, m > 0.
$$

Use the trigonometric identity

$$
\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)].
$$

*2.3.6. Evaluate

$$
\int_0^L \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} dx \quad \text{for } n \ge 0, m \ge 0.
$$

Use the trigonometric identity

$$
\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right].
$$

(Be careful if $a - b = 0$ or $a + b = 0$.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

$$
\frac{\partial u}{\partial t}=k\frac{\partial^2 u}{\partial x^2} \text{ with } \frac{\partial u}{\partial x}(0,t)=0, \frac{\partial u}{\partial x}(L,t)=0, \text{ and } u(x,0)=f(x).
$$

- (a) Give a one-sentence physical interpretation of this problem.
- (b) Solve by the method of separation of variables. First show that there are no separated solutions which exponentially grow in time. [Hint: The answer is

$$
u(x,t) = A_0 + \sum_{n=1}^{\infty} A_n e^{-\lambda_n kt} \cos \frac{n\pi x}{L}.
$$

What is λ_n ?

(c) Show that the initial condition, $u(x, 0) = f(x)$, is satisfied if

$$
f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n \pi x}{L}.
$$

- (d) Using Exercise 2.3.6, solve for A_0 and $A_n (n \ge 1)$.
- (e) What happens to the temperature distribution as $t \to \infty$? Show that it approaches the steady-state temperature distribution (see Sec. 1.4).
- *2.3.8. Consider

$$
\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - \alpha u.
$$

This corresponds to a one-dimensional rod either with heat loss through the lateral sides with outside temperature 0° ($\alpha > 0$, see Exercise 1.2.4) or with insulated lateral sides with a heat sink proportional to the temperature. Suppose that the boundary conditions are

$$
u(0,t)=0 \quad \text{and} \quad u(L,t)=0.
$$

- (a) What are the possible equilibrium temperature distributions if $\alpha > 0$?
- (b) Solve the time-dependent problem $[u(x, 0) = f(x)]$ if $\alpha > 0$. Analyze the temperature for large time $(t \to \infty)$ and compare to part (a).
- *2.3.9. Redo Exercise 2.3.8 if $\alpha < 0$. [Be especially careful if $-\alpha/k = (n\pi/L)^2$.]
- 2.3.10. For two- and three-dimensional vectors, the fundamental property of dot products, $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$, implies that

$$
|\boldsymbol{A} \cdot \boldsymbol{B}| \leq |\boldsymbol{A}| |\boldsymbol{B}|. \tag{2.3.44}
$$

In this exercise we generalize this to n -dimensional vectors and functions, in which case (2.3.44) is known as Schwarz's inequality. [The names of Cauchy and Buniakovsky are also associated with (2.3.44).]

- (a) Show that $|A \gamma B|^2 > 0$ implies (2.3.44), where $\gamma = A \cdot B/B \cdot B$.
- (b) Express the inequality using both

$$
\boldsymbol{A} \cdot \boldsymbol{B} = \sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} a_n c_n \frac{b_n}{c_n}.
$$

- *(c) Generalize (2.3.44) to functions. [Hint: Let $\mathbf{A} \cdot \mathbf{B}$ mean the integral $\int_{0}^{L} A(x)B(x) dx.$
- 2.3.11. Solve Laplace's equation inside a rectangle:

$$
\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0
$$

subject to the boundary conditions

$$
u(0, y) = g(y) \qquad u(x, 0) = 0u(L, y) = 0 \qquad u(x, H) = 0.
$$

(*Hint*: If necessary, see Sec. 2.5.1.)