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2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)
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(C) 09x2 + ft2 = o
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2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L
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[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?
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(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).
(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider
8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.
Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?
(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.
(b) Express the inequality using both

00 00 b

n.
n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integral
J L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2
=

02u 02u
V U

axe
+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0
u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)


