
1.5. Heat Equation in Two or Three Dimensions
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EXERCISES 1.5
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1.5.1. Let c(x, y, z, t) denote the concentration of a pollutant (the amount per unit
volume).

(a) What is an expression for the total amount of pollutant in the region
R?

(b) Suppose that the flow J of the pollutant is proportional to the gradient
of the concentration. (Is this reasonable?) Express conservation of the
pollutant.

(c) Derive the partial differential equation governing the diffusion of the
pollutant.

*1.5.2. For conduction of thermal energy, the heat flux vector is 4 _ -KoVu. If
in addition the molecules move at an average velocity V, a process called
convection, then briefly explain why 0 _ -KoVu + cpuV. Derive the
corresponding equation for heat flow, including both conduction and con-
vection of thermal energy (assuming constant thermal properties with no
sources).

1.5.3. Consider the polar coordinates

x=rcos9
y = r sin 9.

(a) Since r2 = x2 + y2, show that O = cos 0, = sing, " =Ty-
cos B and 8B sin 9
r ' 8x r

(b) Show that r = cos Bi + sin 03 and B = - sin 0 + cos 63.
(c) Using the chain rule, show that V = r" ar + 9,i- g and hence Vu =

r"+ -r 8e 9.
(d) If A = ArT + Ae6, show that r Tr_ (rAr) + r 8 (AB), since

8r" /8B = 9 and 86/80 = -f follows from part (b).
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z
(e) Show that V2u = 1 (r a;`) + 3 aer Or

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the
special case of Exercise 1.5.3(e) if u(r) only.

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where
r2 = x2 + y2. We will derive the heat equation for this problem. Consider
any circular annulus a < r < b.

(a) Show that the total heat energy is 21r fQ cpur dr.
(b) Show that the flow of heat energy per unit time out of the annulus at

r = h is --21rbKoau/ar 1,=b. A similar result holds at r = a.
(c) Use parts (a) and (b) to derive the circularly symmetric heat equation

without sources:
au -k a aul
at r ar r

' a , _ J

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r.

1.5.7. Derive the heat equation in two dimensions by using Green's theorem,
(1.5.16), the two-dimensional form of the divergence theorem.

1.5.8. If Laplace's equation is satisfied in three dimensions, show that

Vu-ft dS = 0

for any closed surface. (Hint:

Use

the divergence theorem.) Give a physical
interpretation of this result (in the context of heat flow).

1.5.9. Determine the equilibrium temperature distribution inside a circular annu-
lus (rl < r < r2):

*(a) if the outer radius is at temperature T2 and the inner at T1
(b) if the outer radius is insulated and the inner radius is at temperature

Ti

1.5.10. Determine the equilibrium temperature distribution inside a circle (r < ro)
if the boundary is fixed at temperature To.

*1.5.11. Consider

subject to
at _r 5T Crar)

a<r<b

u r, 0
au au

(b, t) = 1.( ) = f (r), ar (a, t) = f3, and
19r

Using physical reasoning, for what value(s) of 0 does an equilibrium tem-
perature distribution exist?
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1.5.12. Assume that the temperature is spherically symmetric, u = u(r, t), where r
is the distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 47r fo cpur2 dr.
(b) Show that the flow of heat energy per unit time out of the spherical

shell at r = b is -4irb2Ko 8u/8r Ir=b. A similar result holds at r = a.
(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

8u k 8 T28u
8t r2 8r C?

.

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendic-
ular to any part of the boundary that is insulated.

1.5.15. Derive the heat equation in three dimensions assuming constant thermal
properties and no sources.

1.5.16. Express the integral conservation law for any three-dimensional object. As-
sume there are no sources. Also assume the heat flow is specified,
g(x, y, z), on the entire boundary and does not depend on time. By in-
tegrating with respect to time, determine the total thermal energy. (Hint:
Use the initial condition.)

1.5.17. Derive the integral conservation law for any three dimensional object (with
constant thermal properties) by integrating the heat equation (1.5.11) (as-
suming no sources). Show that the result is equivalent to (1.5.1).
Orthogonal curvilinear coordinates. A coordinate system (u,
v, w) may be introduced and defined by x = x(u, v, w), y = y(u, v, w) and
z = z(u, v, w). The radial vector r =_ At + yj + A. Partial derivatives of
r with respect to a coordinate are in the direction of the coordinate. Thus,
for example, a vector in the u-direction 8r/8u can be made a unit vector e
in the u-direction by dividing by its length h = I8r/8ul called the scale
factor: cu = - er/au .

1.5.18. Determine the scale factors for cylindrical coordinates.

1.5.19. Determine the scale factors for spherical coordinates.

1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate
system Vg = a 6)r/8u + b 8r/(7v + c Or/Ow, where you will determine the
scalars a, b, c. Using dg = V9 dr, derive that the gradient in an orthogonal
curvilinear coordinate system is given by

Vg = 1 8g _ 1 8g 1 8g
0-

( )

T" T. eu + h 8; e +
hu, 8w

. 1.5.23
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An expression for the divergence is more difficult to derive, and we will just
state that if a vector p is expressed in terms of this new coordinate system
p = pueu + Pwew, then the divergence satisfies

p huh hw
[57u (hvhwpu) + 8v (huhwpv) + ru (huhvPw)] . (1.5.24)

v

1.5.21. Using (1.5.23) and (1.5.24), derive the Laplacian in an orthogonal curvi-
linear coordinate system:

V2 T
= huhvhw [a

(hhuw

n) + On

(huhw

va/ + Ow \ hw° Ow
(1.5.25)

1.5.22. Using (1.5.25), derive the Laplacian for cylindrical coordinates.

1.5.23. Using (1.5.25), derive the Laplacian for spherical coordinates.

Appendix to 1.5: Review of Gradient and a
Derivation of Fourier's Law of Heat Conduction
Experimentally, for isotropic6 materials (i.e., without preferential directions) heat
flows from hot to cold in the direction in which temperature differences
are greatest. The heat flow is proportional (with proportionality constant KO, the
thermal conductivity) to the rate of change of temperature in this direction.

The change in the temperature Au is

Du = u(x + Ax, t) - u(x, t) -- a-1 x + On
Ay + 8 Az.

In the direction a = a1z+a2j+a3%, Ox = Lisa, where As is the distance between
x and x + Ax. Thus, the rate of change of the temperature in the direction a is
the directional derivative:

AU &U
+ a2

On + a3 On = a Vu,lim
= a1o Os 8 8y 8z

where it has been convenient to define the following vector.

8u. 8u . 8u .
Vu = 8x z+ ay7 + 8z

k, (1.5.26)

called the gradient of the temperature. From the property of dot products, if 0
is the angle between a and Vu, then the directional derivative is JVul cos B since

6Examples of nonisotropic materials are certain crystal and grainy woods.


