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for any constant C2. Unlike the first example (with fixed temperatures at both
ends), here there is not a unique equilibrium temperature. Any constant tempera-
ture is an equilibrium temperature distribution for insulated boundary conditions.
Thus, for the time-dependent initial value problem, we expect

slim u(x, t) = C2;
00

if we wait long enough, a rod with insulated ends should approach a constant
temperature. This seems physically quite reasonable. However, it does not make
sense that the solution should approach an arbitrary constant; we ought to know
what constant it approaches. In this case, the lack of uniqueness was caused by
the complete neglect of the initial condition. In general, the equilibrium solution
will not satisfy the initial condition. However, the particular constant equilibrium
solution is determined by considering the initial condition for the time-dependent
problem (1.4.11). Since both ends are insulated, the total thermal energy is con-
stant. This follows from the integral conservation of thermal energy of the entire
rod [see (1.2.4)1:
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Since both ends are insulated,

1
L

cpu dx = constant. (1.4.20)

One implication of (1.4.20) is that the initial thermal energy must equal the fi-
nal (limt.,,,) thermal energy. The initial thermal energy is ep fL f (x) dx since
u(x, 0) = f (x), while the equilibrium thermal energy is cp LL C2 dx = cpC2L since
the equilibrium temperature distribution is a constant u(x, t) = C2. The constant
C2 is determined by equating these two expressions for the constant total ther-
mal energy, cp fL f (x) dx = cpC2L. Solving for C2 shows that the desired unique
steady-state solution should be

t
u(x) = C2 = L J f (x) dx,

0

(1.4.21)

the average of the initial temperature distribution. It is as though the initial
condition is not entirely forgotten. Later we will find a u(x, t) that satisfies (1.4.10-
1.4.13) and show that limt.,,. u(x, t) is given by (1.4.21).

EXERCISES 1.4
1.4.1. Determine the equilibrium temperature distribution for a one-dimensional

rod with constant thermal properties with the following sources and bound-
ary conditions:
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* (a) Q = 0, u(0) = 0,

(b) Q = 0, u(0) = T,

(c) Q = 0, (0) = 0,

* (d) Q = 0, u(0) = T,

(e)
Ko

= 1, u(0) = T1, u(L) = T2

* (f)
Qc = x2, u(0) = T, 8 (L) = 0

(g) Q = 0, u(0) = T, ax (L) + u(L) = 0

*(h) Q=0, 8 (0)-[u(0)-TJ=0, ax(L)-a

In these you may assume that u(x, 0) = f (x).

1.4.2. Consider the equilibrium temperature distribution for a uniform one-dimen-
sional rod with sources Q/Ko = x of thermal energy, subject to the bound-
ary conditions u(0) = 0 and u(L) = 0.

*(a) Determine the heat energy generated per unit time inside the entire
rod.

(b) Determine the heat energy flowing out of the rod per unit time at x = 0
and at x = L.

(c) What relationships should exist between the answers in parts (a) and
(b)?

1.4.3. Determine the equilibrium temperature distribution for a one-dimensional
rod composed of two different materials in perfect thermal contact at x = 1.
For 0 < x < 1, there is one material (cp = 1, Ko = 1) with a constant
source (Q = 1), whereas for the other 1 < x < 2 there are no sources
(Q = 0, cp = 2, Ko = 2) (see Exercise 1.3.2) with u(O) = 0 and u(2) = 0.

1.4.4. If both ends of a rod are insulated, derive from the partial differential equa-
tion that the total thermal energy in the rod is constant.

1.4.5. Consider a one-dimensional rod 0 < x < L of known length and known
constant thermal properties without sources. Suppose that the temperature
is an unknoum constant T at x = L. Determine T if we know (in the steady
state) both the temperature and the heat flow at x = 0.

1.4.6. The two ends of a uniform rod of length L are insulated. There is a constant
source of thermal energy Qo 54 0, and the temperature is initially u(x, 0) _
f (x)-



20 Chapter 1. Heat Equation

(a) Show mathematically that there does not exist any equilibrium tem-
perature distribution. Briefly explain physically.

(b) Calculate the total thermal energy in the entire rod.

1.4.7. For the following problems, determine an equilibrium temperature distri-
bution (if one exists). For what values of ,3 are there solutions? Explain
physically.
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1.4.8. Express the integral conservation law for the entire rod with constant ther-
mal properties. Assume the heat flow is known to be different constants at
both ends By integrating with respect to time, determine the total thermal
energy in the rod. (Hint: use the initial condition.)

(a) Assume there are no sources.
(b) Assume the sources of thermal energy are constant.

1.4.9. Derive the integral conservation law for the entire rod with constant thermal
properties by integrating the heat equation (1.2.10) (assuming no sources).
Show the result is equivalent to (1.2.4).

1.4.10. Suppose = e + 4, u(x, 0) = f (x), Ou (0, t) = 5, "u (L, t) = 6. Calculate
the total thermal energy in the one-dimensional rod (as a function of time).

1.4.11. Suppose = s + x, u(x, 0) = f (x), Ou (0, t) = Q, &u (L, t) = 7.

(a) Calculate the total thermal energy in the one-dimensional rod (as a
function of time).

(b) From part (a), determine a value of Q for which an equilibrium exists.
For this value of Q, determine lim u(x, t).t00

1.4.12. Suppose the concentration u(x, t) of a chemical satisfies Fick's law (1.2.13),
and the initial concentration is given u(x, 0) = f (x). Consider a region
0 < x < L in which the flow is specified at both ends -kOu (0, t) = a and
-kOu (L, t) _ 0. Assume a and # are constants.

(a) Express the conservation law for the entire region.
(b) Determine the total amount of chemical in the region as a function of

time (using the initial condition).
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(c) Under what conditions is there an equilibrium chemical concentration
and what is it?

1.4.13. Do Exercise 1.4.12 if a and Q are functions of time.

1.5 Derivation of the Heat Equation
in Two or Three Dimensions

Introduction. In Sec. 1.2 we showed that for the conduction of heat in a one-
dimensional rod the temperature u(x, t) satisfies

cp
8t a (KO a / + Q.

In cases in which there are no sources (Q = 0) and the thermal properties are
constant, the partial differential equation becomes

8u 82u
at = k-- ,

where k = K°/cp. Before we solve problems involving these partial differential
equations, we will formulate partial differential equations corresponding to heat
flow problems in two or three spatial dimensions. We will find the derivation to be
similar to the one used for one-dimensional problems, although important differences
will emerge. We propose to derive new and more complex equations (before solving
the simpler ones) so that, when we do discuss techniques for the solutions of PDEs,
we will have more than one example to work with.

Heat energy. We begin our derivation by considering any arbitrary subregion
R, as illustrated in Fig. 1.5.1. As in the one-dimensional case, conservation of heat
energy is summarized by the following word equation:

rate of change
of heat energy

heat energy flowing heat energy generatedacross the boundaries + inside per unit time,per unit time

where the heat energy within an arbitrary subregion R is

heat energy = fff cpu dV,
R

instead of the one-dimensional integral used in Sec. 1.2.


