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In solids, chemicals spread out from regions of high concentration to regions of low
concentration. According to Fick's law of diffusion, the flux is proportional to
Si the spatial derivative of the chemical concentration:

(1.2.13)

If the concentration u(x, t) is constant in space, there is no flow of the chemical.
If the chemical concentration is increasing to the right (au > 0), then atoms of
chemicals migrate to the left, and vice versa. The proportionality constant k
is called the chemical diffusivity, and it can be measured experimentally. When
Fick's law (1.2.13) is used in the basic conservation law (1.2.12), we see that the
chemical concentration satisfies the diffusion equation:
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since we are assuming as an approximation that the diffusivity is constant. Fick's
law of diffusion for chemical concentration is analogous to Fourier's law for heat
diffusion. Our derivations are quite similar.

EXERCISES 1.2

1.2.1. Briefly explain the minus sign:

(a) in conservation law (1.2.3) or (1.2.5) if Q = 0
(b) in Fourier's law (1.2.8)
(c) in conservation law (1.2.12),

(d) in Fick's law (1.2.13)

1.2.2. Derive the heat equation for a rod assuming constant thermal properties
and no sources.

(a) Consider the total thermal energy between x and x + Ox.
(b) Consider the total thermal energy between x = a and x = b.

1.2.3. Derive the heat equation for a rod assuming constant thermal properties
with variable cross-sectional area A(x) assuming no sources by considering
the total thermal energy between x = a and x = b.
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1.2.4. Derive the diffusion equation for a chemical pollutant.

(a) Consider the total amount of the chemical in a thin region between x
and x + Ax.

(b) Consider the total amount of the chemical between x = a and x = b.

1.2.5. Derive an equation for the concentration u(x, t) of a chemical pollutant if
the chemical is produced due to chemical reaction at the rate of au(,3 - u)
per unit volume.

1.2.6. Suppose that the specific heat is a function of position and temperature,
c(x, u).

(a) Show that the heat energy per unit mass necessary to raise the temper-
ature of a thin slice of thickness Ax from 0° to u(x, t) is not c(x)u(x, t),
but instead fo c(x, u) du.

(b) Rederive the heat equation in this case. Show that (1.2.3) remains
unchanged.

1.2.7. Consider conservation of thermal energy (1.2.4) for any segment of a one-
dimensional rod a < x < b. By using the fundamental theorem of calculus,

a
ab

jb
f (x) dx = f (b),

derive the heat equation (1.2.9).

*1.2.8. If u(x, t) is known, give an expression for the total thermal energy contained
in a rod (0 < x < L).

1.2.9. Consider a thin one-dimensional rod without sources of thermal energy
whose lateral surface area is not insulated.

(a) Assume that the heat energy flowing out of the lateral sides per unit
surface area per unit time is w(x, t). Derive the partial differential
equation for the temperature u(x, t).

(b) Assume that w(x, t) is proportional to the temperature difference be-
tween the rod u(x, t) and a known outside temperature -y(x, t). Derive
that

cp at ax
(Koe / - A [u(x, t) - y(x, t))h(x), (1.2.15)

where h(x) is a positive x-/dependent proportionality, P is the lateral
perimeter, and A is the cross-sectional area.

(c) Compare (1.2.15) to the equation for a one-dimensional rod whose
lateral surfaces are insulated, but with heat sources.

(d) Specialize (1.2.15) to a rod of circular cross section with constant ther-
mal properties and 0° outside temperature.
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*(e) Consider the assumptions in part (d). Suppose that the temperature
in the rod is uniform [i.e., u(x,t) = u(t)]. Determine u(t) if initially
u(0) = uo.

1.3 Boundary Conditions
in solving the heat equation, either (1.2.9) or (1.2.10), one boundary condition
(BC) is needed at each end of the rod. The appropriate condition depends on the
physical mechanism in effect at each end. Often the condition at the boundary
depends on both the material inside and outside the rod. To avoid a more difficult
mathematical problem, we will assume that the outside environment is known, not
significantly altered by the rod.

Prescribed temperature. In certain situations, the temperature of the
end of the rod, for example, x = 0, may be approximated by a prescribed tem-
perature,

u(0, t) = us(t), (1.3.1)

where uB(t) is the temperature of a fluid bath (or reservoir) with which the rod is
in contact.

Insulated boundary. In other situations it is possible to prescribe the
heat flow rather than the temperature,

-Ko(0) - (0, t) = 0(t), (1.3.2)

where 0(t) is given. This is equivalent to giving one condition for the first derivative,
Ou/8x, at x = 0. The slope is given at x = 0. Equation (1.3.2) cannot be integrated
in x because the slope is known only at one value of x. The simplest example of the
prescribed heat flow boundary condition is when an end is perfectly insulated
(sometimes we omit the "perfectly"). In this case there is no heat flow at the
boundary. If x = 0 is insulated, then

a(0, t= 0.
x

Newton's law of cooling. When a one-dimensional rod is in contact at
the boundary with a moving fluid (e.g., air), then neither the prescribed temperature
nor the prescribed heat flow may be appropriate. For example, let us imagine a
very warm rod in contact with cooler moving air. Heat will leave the rod, heating
up the air. The air will then carry the heat away. This process of heat transfer is
called convection. However, the air will be hotter near the rod. Again, this is a
complicated problem; the air temperature will actually vary with distance from the
rod (ranging between the bath and rod temperatures). Experiments show that, as a
good approximation. the heat flow leaving the rod is proportional to the temperature


