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“Any fool can know. The point is to understand.”

— Albert Einstein
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Chapter 1

Vector Geometry and
Algebra

What is a vector? In calculus, you may have defined vectors as lists of numbers
such as (a1, a2) or (a1, a2, a3), mathematicians favor that approach nowadays
because it readily generalizes to n dimensional space (a1, a2, . . . , an) and re-
duces geometry to arithmetic. But in physics, and in geometry before that, you
encountered vectors as quantities with both magnitude and direction such as
displacements, velocities and forces. The geometric point of view emphasizes
the invariance of these quantities with respect to the observer and the system
of coordinates.

1 Get your bearings

1.1 Magnitude and direction

We write
a = a â (1)

for a vector a of magnitude |a| = a in the direction â. The magnitude of vector
a is denoted |a| which is a positive real number with appropriate physical units
(meters, Newtons, . . . ), |a| ≥ 0. The direction of vector a is denoted â which is
a vector of unit magnitude, |â| = 1. For that reason, direction vectors are often
called unit vectors, but ‘unit’ vectors have no physical units.
For example,

30◦
a

N

a ≡ 2 km heading 30◦clockwise from North

specifies a horizontal displacement a of magnitude |a| = 2 kilometers and di-
rection â ≡ 30◦ clockwise from North.

Two points A and B specify a displacement vector a =
−−→
AB. The same

displacement a starting from point C leads to point D, with
−−→
CD = a =

−−→
AB.

Conversely, we can specify points (locations) by specifying displacements from

1
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a reference point, thus point B is located displacement a from point A, and D
is a from C.

a

a

A

B

C

D
Vectors are denoted with a boldface: a, b, u, v, . . . , usually lower-case but some-
times upper-case as in a magnetic field B, electric field E or force F . Some
authors write ~a for a and we use that notation to denote the displacement from

point A to point B as
−−→
AB. Writing by hand, we use the typographical notation

for boldface which is a˜ for a, â˜ for â, etc. This notation allows distinguish-

ing between a collection of unit vectors {â1, â2, â3} ≡ {â1˜ , â2˜ , â3˜ } and the

components of a unit vector â ≡ â˜ ≡ (â1, â2, â3).

1.2 Representations of 2D vectors

For vectors in a plane (2D), a direction â can be specified by an angle from a
reference direction as in the section 1.1 example. In navigation, that angle is
usually defined clockwise from North and called an azimuthal angle or azimuth
or heading. In mathematical physics, we specify the direction using an angle α
counterclockwise from a reference direction x̂. We can specify a 2D vector a
by giving the pair (a, α) for vector a of magnitude |a| = a and direction â ≡
“angle α counterclockwise from x̂.”

a

α

a

x̂

a ayŷ

axx̂

Figure 1.1: Polar and cartesian representations of vectors in a plane.

We can also specify the vector a as a sum of displacements in two reference
perpendicular directions, ax in direction x̂ and ay in direction ŷ perpendicular to
x̂. Now the pair (ax, ay) specifies a. The pairs (a, α) and (ax, ay) are equivalent
representations of a,

a ≡ (a, α) ≡ (ax, ay)

but in general they are not equal

(a, α) 6= (ax, ay).

To express the equality of the representations, we need to include the direction
vectors and write

a = a â = ax x̂+ ay ŷ (2)

then by Pythagoras and basic trigonometry

ax = a cosα

ay = a sinα

}
⇔ a2 = a2

x + a2
y, (3)
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â = cosα x̂+ sinα ŷ. (4)

This confirms that a direction vector â is a vector of unit magnitude.
The representation a = a â, where â = â(α) is a function of α, is a polar

representation of the 2D vector a and a = axx̂+ayŷ is a cartesian representation
with x̂ and ŷ two arbitrary perpendicular directions.

The vector a is specified by the pair (a, α) or (ax, ay), or many other pairs
of numbers depending on how we specify the direction, for instance ‘20 feet
toward the water tower then 5 meters toward the oak tree’ specifies a displace-
ment as (20ft,5m) but the reference directions may not be perpendicular. The
same physical 2D vector can be represented by an infinity of pairs of numbers
depending on how we choose our reference magnitudes and directions.

Exercises:

1. If you move 2 miles heading 030◦ then 3 miles heading 290◦, how far are
you from your original position? what heading from your original position?
Make a sketch. All headings are measured clockwise from North.

2. If you move distance a heading α then distance b heading β, how far are
you and in what heading from your original position? Make a sketch and
show/explain your algorithm. Headings are clockwise from North.

3. Find |v| and v̂ for the vector v ≡ −5 miles per hour heading Northeast.

4. True or False: in SI units |â| = 1 meter while in CGS units |â| = 1 cm.

1.3 Representations of 3D vectors

How do you specify an arbitrary direction â in 3D space?
Astronomers use an azimuth angle measured clockwise from North in the

horizontal plane and an inclination (or zenith) angle measured from the vertical.
An altitude (or elevation) angle measured up from the horizontal plane may be
used instead of the inclination. Azimuth and elevation angles are also used in
ballistics and computer graphics. The illustration is from NOAA, the National
Ocean and Atmosphere Administration.

8/30/14 6:46 PMazelzen.gif 592×470 pixels

Page 1 of 1http://www.esrl.noaa.gov/gmd/grad/solcalc/azelzen.gif

Figure 1.2 shows the mathematical physics convention, where we use the angle
β between a reference direction ẑ (typically the vertical direction or the polar
axis) and the arbitrary direction â, as well as the angle α between the (ẑ, x̂)
and the (ẑ, â) planes. Thus α is an azimuthal angle but defined to be posi-
tive counterclockwise around ẑ as opposed to the clockwise convention used in
navigation. A little trigonometry applied to fig. 1.2 yields

â = sinβ â⊥ + cosβ ẑ, â⊥ = cosα x̂+ sinα ŷ. (5)

Thus an arbitrary vector a = aâ can be specified by its magnitude a and
its direction â, the latter being specified by its polar angle β and its azimuthal
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x̂

ŷ

ẑ

α

β

â⊥

â

β
â

ẑ

â⊥

α

â⊥

x̂

ŷ

Figure 1.2: Top: Perspective view of arbitrary direction â with respect to mutu-
ally orthogonal directions x̂, ŷ, ẑ, where â⊥ is the direction of â perpendicular
to ẑ. Bottom left: Meridional (or vertical) (ẑ, â, â⊥) plane view. Bottom right:
azimuthal (or horizontal) (x̂, â⊥, ŷ) plane view.

angle α. That is the spherical representation a ≡ (a, β, α). The cylindrical
representation (a⊥, α, az) specifies a by its horizontal magnitude a⊥ = a sinβ,
azimuthal angle α and vertical component az = a cosβ. The cartesian represen-
tation consists of the familiar (ax, ay, az). A 3D vector a can thus be represented
by 3 real numbers, for instance (a, β, α) or (a⊥, α, az) or (ax, ay, az). Each of
these triplets are equivalent representations of the vector a

a ≡ (a, β, α) ≡ (a⊥, α, az) ≡ (ax, ay, az) (6)

but they are not equal to each other, in general,

(a, β, α) 6= (a⊥, α, az) 6= (ax, ay, az). (7)

To express equality, we need the direction vectors to write (fig. 1.3)

a = a â = a⊥â⊥ + azẑ = axx̂+ ayŷ + azẑ. (8)

From this vector equation (8), and with a little help from Pythagoras and
basic trigonometry, we deduce

a2 = a2
⊥ + a2

z, a2
⊥ = a2

x + a2
y, (9)

â =
a⊥
a
â⊥ +

az
a
ẑ = sinβ â⊥ + cosβ ẑ, (10)
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β
a

ẑ

azẑ

a⊥â⊥

α

a⊥â⊥

x̂

ŷ

ayŷ

axx̂

Figure 1.3: Spherical, cylindrical and cartesian representations of vectors in 3D.

â⊥ =
ax
a⊥
x̂+

ay
a⊥
ŷ = cosα x̂+ sinα ŷ. (11)

Unique and positive angles can be specified by restricting them to the ranges
0 ≤ α < 2π and 0 ≤ β ≤ π, similar to the navigation convention where headings
are specified as angles between 0 and 359◦ from North (in degrees). In mathe-
matical physics, it is more common to use the definition −π < α ≤ π together
with 0 ≤ β ≤ π then we have

α = atan2(ay, ax), β = acos(az/a) (12)

where atan2 is the arctangent function with range in (−π, π] and acos is the arc-
cosine function whose range is [0, π]. The classic arctangent function atan(ay/ax)
has the range [−π/2, π/2] and determines α only up to a multiple of π, that is
α = atan(ay/ax) + kπ where k is an integer.

Exercises:

1. In astronomy, meteorology and computer graphics: what is an azimuth?
What is an elevation? What is an inclination? Sketch, explain.

2. What are longitude and latitude? Sketch, explain. What are the longitude
and latitude at the North pole? in Madison, WI? in London, UK?

3. What is a direction in 3D space, mathematically: is it a number, a pair
of numbers, a triplet of numbers, a vector?

4. Find the angles α and β, defined in fig. 1.2, for the vector a given in
cartesian form as (−1,−1,−1).

5. A vector v is specified in cartesian components as (−3, 2, 1). Find v̂⊥ for
that vector and express v̂⊥ in terms of the cartesian direction vectors.
Write v in cylindrical representation.

6. A vector is specified in cartesian coordinates as (3, 2, 1). Find its mag-
nitude and direction. Express its direction in cartesian, cylindrical and
spherical representations using the cartesian direction vectors.
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2 Addition and scaling of vectors

The fundamental algebraic properties of the geometric vectors, such as the ori-
ented line segments used in the previous section, is that they can be added and
scaled. Geometric vector addition obeys the parallelogram rule illustrated in
the following figure:

a

a

b b
b
+
a

a
+
b

a

b

c

a+ b
+ c

a+ b

b+ c

Thus vector addition is commutative: a+b = b+a, and associative: a+b+c =
(a + b) + c = a + (b + c). Note that a, b and c are not in the same plane, in
general.

To every vector a we can associate an opposite vector denoted (−a) that is
the displacement exactly opposite to a. Vector subtraction b−a is then defined
as the addition of b and (−a). In particular a+(−a) = 0 corresponds to no net
displacement. This is an important difference between points and displacements,
there is no special point in our space, but there is one special displacement: the
zero vector 0 such that a+ (−a) = 0 = (−a) + a and a+ 0 = a, for any a.a

(−a)

The other key operation that characterizes vectors is scaling, that is, multipli-
cation by a real number α ∈ R.

a

|α|a
− |α|a

a

b

a+ b
αa

αb

αa+ αb
α(a+ b)

Geometrically, v = αa is a new vector parallel to a but of length |v| = |α||a|.
The direction of v is the same as a if α > 0 and opposite to a if α < 0. Obviously
(−1)a = (−a), multiplying a by (−1) yields the previously defined opposite
of a. Other geometrically obvious properties are distributivity with respect to
addition of real factors: (α+ β)a = αa+ βa, and with respect to multiplication
of real factors: (αβ)a = α(βa). Slightly less trivial is distributivity with respect
to vector addition: α(a + b) = αa + αb, which geometrically corresponds to
similarity of triangles, as illustrated above.

Exercises:

1. Given arbitrary a and b, sketch a+ b/2 and a− b.

2. An airplane travels at airspeed V , heading θ (clockwise from north).
Weather reports state that the wind has speed W heading φ. Make
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a clean sketch. Show/explain the algorithm to calculate the airplane’s
ground speed and heading.

3 General Vector Spaces

3.1 Axiomatic definition of a vector space

Vector addition and scaling are the two key operations that define a Vector
Space, provided those operations satisfy the following 8 properties ∀a, b in the
vector space and ∀α, β in R. The symbol ∀ means for all or for any. It is now
common practice in defining vector spaces to assume a priori that addition and
scaling of vectors yield vectors in the same space as that of the vectors that are
added or scaled.

Vector addition must satisfy:

a+ b = b+ a, (13)

a+ (b+ c) = (a+ b) + c, (14)

a+ 0 = a, (15)

a+ (−a) = 0. (16)

Scalar multiplication must satisfy:

(α+ β)a = αa+ βa, (17)

(αβ)a = α(βa), (18)

α(a+ b) = αa+ αb, (19)

1 a = a. (20)

3.2 The vector space Rn

Consider the set of ordered n-tuplets of real numbers x ≡ (x1, x2, . . . , xn). These
could correspond to student grades on a particular exam, for instance. What
kind of operations would we want to do on these lists of student grades? We’ll
probably want to add several grades for each student and we’ll probably want
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to rescale the grades. So the natural operations on these n-tuplets are addition
defined1 by adding the respective components:

x+ y , (x1 + y1, x2 + y2, . . . , xn + yn) = y + x. (21)

and multiplication by a real number α ∈ R defined as

αx , (αx1, αx2, . . . , αxn). (22)

The set of n-tuplets of real numbers equipped with addition and multiplication
by a real number as just defined is a fundamental vector space called Rn. The
vector spaces R2 and R3 are particularly important to us as they will soon
correspond to the components of our physical vectors. But we also use Rn for
very large n when studying systems of equations, for instance.

Exercises:

1. Show that addition and scalar multiplication of n-tuplets satisfy the 8
required properties listed above.

2. Define addition and scalar multiplication of n-tuplets of complex numbers
and show that all 8 properties are satisfied. That vector space is called
Cn.

3. The set of real functions f(x) is also a vector space. Define addition in
the obvious way: f(x) + g(x) ≡ h(x) another real function, and scalar
multiplication: αf(x) = F (x) yet another real function. Show that all 8
properties are again satisfied.

4. Suppose you define addition of n-tuplets x = (x1, x2, . . . , xn) as usual
but define scalar multiplication according to αx = (αx1, x2, · · · , xn), that
is, only the first component is multiplied by α. Which property is vio-
lated? What if you defined αx = (αx1, 0, · · · , 0), which property would
be violated?

5. From the 8 properties, show that (0)a = 0 and (−1)a = (−a), ∀a, i.e.
show that multiplication by the scalar 0 yields the neutral element for
addition, and multiplication by −1 yields the additive inverse.

4 Bases and Components

Addition and scaling of vectors allow us to define the concepts of linear combina-
tion, linear (in)dependence, dimension, basis and components. These concepts
apply to any vector space.

1The symbol , means “equal by definition”.
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Linear Combination. A linear combination of k vectors a1, a2, . . . , ak is an
expression of the form

χ1a1 + χ2a2 + · · ·+ χkak

where χ1, χ2, . . . , χk are arbitrary real numbers.

Linear Independence. The k vectors a1,a2, · · · ,ak are linearly independent
(L.I.) if

χ1a1 + χ2a2 + · · ·+ χkak = 0 ⇔ χ1 = χ2 = · · · = χk = 0.

Otherwise, the vectors are linearly dependent. For instance if 3a1+2a2+a3 = 0,
then a1,a2,a3 are linearly dependent.

Dimension. The dimension of a vector space is the largest number of linearly
independent vectors, n say, in that space.

Basis. A basis for a n dimensional vector space is any collection of n linearly
independent vectors.

Components. If a1,a2, · · · ,an is a basis for an n dimensional vector space,
then any vector v in that space can be expanded as

v = v1a1 + v2a3 + · · ·+ vnan

where the n real numbers (v1, v2, . . . , vn) are the components of v in the basis
a1,a2, · · · ,an.

a1

a2

v1a1

v2a2
v

Examples
• Two non-parallel vectors a1 and a2 in a plane (for instance, horizontal

plane) are L.I. and these vectors form a basis for vectors (for instance, dis-
placements) in the plane. Any given vector v in the plane can be written as
v = v1a1 + v2a2, for a unique pair (v1, v2). Three or more vectors in a plane
are linearly dependent.
• Three non-coplanar vectors a1, a2 and a3 in 3D space are L.I. and those

vectors form a basis for 3D space. However 4 or more vectors in 3D are linearly
dependent. Any given vector v can be expanded as v = v1a1 + v2a2 + v3a3, for
a unique triplet of real numbers (v1, v2, v3). Make sketches to illustrate.

The 8 properties of addition and scalar multiplication imply that if two
vectors u and v are expanded with respect to the same basis {a1, a2, a3}, that
is

u = u1a1 + u2a2 + u3a3,

v = v1a1 + v2a2 + v3a3,
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then

u+ v = (u1 + v1)a1 + (u2 + v2)a2 + (u3 + v3)a3,

αv = (αv1)a1 + (αv2)a2 + (αv3)a3,

thus addition and scalar multiplication are performed component by component
and the triplets of real components (u1, u2, u3) and (v1, v2, v3) are elements of
the vector space R3. A basis {a1,a2,a3} in 3D space provides a one-to-one
correspondence (mapping) between displacements v in 3D (Euclidean) space
(call it E3) and triplets of real numbers in R3

v ∈ E3 ←→ (v1, v2, v3) ∈ R3.

Exercises

1. Given vectors a, b in E3 , show that the set of all v = αa+βb, ∀α, β ∈ R
is a vector space. What is the dimension of that vector space?

2. Show that the set of all vectors v = αa+ b, ∀α ∈ R and fixed a, b is not
a vector space.

3. If you defined addition of ordered pairs x = (x1, x2) as usual but scalar
multiplication by αx = (αx1, x2), would it be possible to represent any
vector x as a linear combination of two basis vectors a and b?

4. Prove that if {a1, . . . ,ak} and {b1, . . . , bl} are two distinct bases for the
same vector space, then k = l.

5. Prove that the components of any v with respect to a basis a1,a2, . . . ,an
are unique.

6. Given three points P1, P2, P3 in Euclidean 3D space, let M be the mid-

point of segment P1P2, what are the components of
−−−→
P2P3 and

−−−→
P3M in the

basis
−−−→
P1P2,

−−−→
P1P3? Sketch.

7. Find a basis for Rn (consider the natural basis: e1 = (1, 0, · · · , 0), e2 =
(0, 1, 0, · · · , 0), etc.)

8. Find a basis for Cn. What is the dimension of that space?

9. What is the dimension of the vector space of real continuous functions
f(x) in 0 < x < 1?

10. What could be a basis for the vector space of ‘nice’ functions f(x) in (0, 1)?
(i.e. 0 < x < 1) (what’s a nice function? smooth functions are infinitely
differentiable, that’s nice!)
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5 Points and Coordinates

5.1 Position vector

In elementary calculus and linear algebra it is easy to confuse points and vectors.
In R3 for instance, a point P is defined as a triplet (x1, x2, x3) but a vector a is
also defined by a real number triplet (a1, a2, a3), but in physical space, points
and displacements are two clearly different things. The confusion arises from the
fundamental way to locate points by specifying displacements from a reference
point called the origin and denoted O. An arbitrary point P is then specified by

providing the displacement vector r =
−−→
OP . That vector is called the position

vector of P and denoted r for radial vector from the origin O.

x̂

ŷ

ẑ

O

ρ̂ϕ

θ

P

r

ρx

y

z

Figure 1.4: Position vector r =
−−→
OP in spherical, cylindrical and cartesian coor-

dinates. Mathematical physics convention, θ is the angle between ẑ and r.

A Cartesian system of coordinates consists of a reference point O and three
mutually orthogonal directions x̂, ŷ, ẑ that provide a basis for displacements

in 3D Euclidean space E3. The position vector r =
−−→
OP of point P can then be

specified in spherical, cylindrical or cartesian form as in sect. 1.3 now for the
position vector r instead of the arbitrary vector a,

r = r r̂ = ρ ρ̂+ zẑ = x x̂+ y ŷ + zẑ, (23)

from which we deduce that

ρ =
√
x2 + y2 ⇔

{
x = ρ cosϕ

y = ρ sinϕ
(24)

r =
√
ρ2 + z2 ⇔

{
ρ = r sin θ

z = r cos θ
(25)

and we can eliminate ρ to obtain

r =
√
x2 + y2 + z2 ⇔


x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

(26)
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We can also deduce the expression for the direction vectors ρ̂ and r̂ in terms of
the cartesian directions x̂, ŷ, ẑ

ρ̂ = cosϕ x̂+ sinϕ ŷ, r̂ = sin θ ρ̂+ cos θ ẑ. (27)

We refer to these as hybrid representations using spherical coordinates (θ, ϕ)
with cartesian direction vectors, to distinguish them from the full cartesian
expressions

ρ̂ =
x x̂+ y ŷ√
x2 + y2

, r̂ =
x x̂+ y ŷ + z ẑ√
x2 + y2 + z2

. (28)

Note that θ is the angle between ẑ and r (called the polar or zenith or in-
clination angle, depending on the context) while ϕ is the azimuthal angle about
the z axis, the angle between the (ẑ, x̂) and the (ẑ, r) planes. The distance to
the origin is r while ρ is the distance to the z-axis. This is the physics conven-
tion corresponding to ISO 80000-2 (International Standards Organization) that
has been used for many decades in mathematical physics. American calculus
teachers often reverse the definitions of θ and ϕ, confusing many engineering
and physics students.

The unit vectors x̂, ŷ, ẑ form a basis for 3D Euclidean vector space, but ρ̂
and ẑ do not, and r̂ does not either. The cartesian basis x̂, ŷ, ẑ consists of
three fixed and mutually orthogonal directions independent of P , but ρ̂ and r̂
depend on P , each point has its own ρ̂ and r̂. We will construct and use full
cylindrical and spherical orthogonal bases, (ρ̂, ϕ̂, ẑ) and (r̂, θ̂, ϕ̂) later in vector
calculus. These cylindrical and spherical basis vectors vary with P , or more
precisely with ϕ and θ.

Once a Cartesian system of coordinates, O, x̂, ŷ, ẑ, has been chosen,
the cartesian coordinates (x, y, z) of P are the cartesian components of r =
x x̂ + y ŷ + zẑ. The cylindrical coordinates of P are (ρ, ϕ, z) and its spherical
coordinates are (r, θ, ϕ), but cylindrical and spherical coordinates are not vector
components, they are the cylindrical and spherical representations of r.

F1 F2

P

θ1

θ2

α

r1
r2

Figure 1.5: A point P in a plane can be specified using bi-angular coordi-
nates (θ1, θ2), or two-center bipolar coordinates (r1, r2) or bipolar coordinates
(ln(r1/r2), α). The latter bipolar coordinates occur in electrostatics and aero-
dynamics in the definition of source panels.



c©F. Waleffe, Math 321, 2016/1/18 13

Coordinates can be specified in many other ways that do not correspond to
a displacement vector. In 2D for instance, point P can be located by specifying

the angles θ1 and θ2 between the vector
−−−→
F1F2 and

−−→
F1P and

−−→
F2P , respectively,

where F1 and F2 are two reference points (the foci). In navigation, F1 and
F2 would be lighthouses or radio beacons. Alternatively, one could specify
P by specifying the distances r1 = |F1P | and r2 = |F2P | (as in the global
positioning system (GPS) that measures distance from satellites in 3D space).

Bipolar coordinates specify P through the angle α between
−−→
F1P and

−−→
F2P and

the natural log of the distance ratio ln(r1/r2). Bipolar coordinates arise in
various areas of physics that lead to Laplace’s equation, including electrostatics
and aerodynamics. Thus, in general, coordinates of points are not necessarily
the components of vectors.

5.2 Lines and Planes

The line passing through point A that is parallel to the vector a consists of all
points P such that

−→
AP = ta, ∀t ∈ R. (29)

This vector equation expresses that the vector
−→
AP is parallel to a. In terms of

an origin O we have
−−→
OP =

−→
OA+

−→
AP , that is

O

r
A

r

a
A

P

r = r
A

+ ta, (30)

where r =
−−→
OP and r

A
=
−→
OA are the position vectors of P and A with respect

to O, respectively. The real number t is the parameter of the line, it is the
coordinate of P in the system of coordinates (A,a) specified by the reference
point A and the reference direction a.

Likewise the equation of a plane passing through A and parallel to the vectors
a and b consists of all points P such that

−→
AP = sa+ t b, ∀s, t ∈ R (31)

or with respect to the origin O:

r = r
A

+ sa+ t b. (32)

This is the parametric vector equation of that plane with parameters s, t, that
are the coordinates of P in the system of coordinates specified by A, a, b.

Exercises

1. Pick two vectors a, b and some arbitrary point A in the plane of your

sheet of paper. If
−−→
AB = αa+ βb, sketch the region where B can be if: (i)

α and β are both between 0 and 1, (ii) |β| ≤ |α| ≤ 1.
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2. Let rA and rB be the position vectors of points A and B, respectively
and consider all points r = (αrA +βrB)/(α+β) for all real α and β with
α+ β 6= 0. Do these points lie along a line or a plane?

3. Given three points P1, P2, P3 in R3, what are the coordinates of the

midpoints of the triangle with respect to P1 and the basis
−−−→
P1P2,

−−−→
P1P3?

4. Sketch the coordinates curves, the curves along which the coordinates are
constant, in 2D for (1) cartesian coordinates, (2) polar coordinates (ρ, ϕ)
(often denoted (r, θ) in 2D), (3) Biangular coordinates (θ1, θ2), (4) Biradial
coordinates (r1, r2), (5) Bipolar coordinates (α, ln(r1/r2)).

5. Show that the line segment connecting the midpoints of two sides of a
triangle is parallel to and equal to half of the third side using methods of
plane geometry and using vectors.

6. Show that the medians of a triangle intersect at the same point, the cen-
troid G, which is 2/3 of the way down from the vertices along each median
(a median is a line that connects a vertex to the middle of the opposite
side). Do this in two ways: (1) using both plane geometry and (2) using
vector methods.

7. Given three points A, B, C, not co-linear, find a point X such that
−−→
XA+−−→

XB +
−−→
XC = 0. Show that the line through A and X cuts BC at its

mid-point. Deduce similar results for the other sides of the triangle ABC
and therefore that X is the point of intersection of the medians. Sketch.

[Hint:
−−→
XB =

−−→
XA+

−−→
AB,

−−→
XC = · · · ]

8. Given four points A, B, C, D not co-planar, find a point X such that−−→
XA+

−−→
XB+

−−→
XC+

−−→
XD = 0. Show that the line through A and X intersects

the triangle BCD at its center of area. Deduce similar results for the other
faces and therefore that the medians of the tetrahedron ABCD, defined as
the lines joining each vertex to the center of area of the opposite triangle,
all intersect at the same point X which is 3/4 of the way down from the
vertices along the medians. Visualize. [Hint: solve previous problem first,
of course.]

6 Dot Product

The geometric definition of the dot product of vectors in 3D Euclidean space is

a · b , a b cos θ, (33)

where a = |a|, b = |b| are the magnitudes of a and b, respectively, and θ is
the angle between the vectors a and b, with 0 ≤ θ ≤ π. The dot product is
also called the scalar product since its result is a scalar, or the inner product
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in linear algebra (where the fundamental data structure is the ‘matrix’ and the
dot product is done over the ‘inner indices’).

The dot product is a real number such that a·b = 0 iff a and b are orthogonal
(perpendicular), that is when θ = π/2 if |a| and |b| are not zero. The 0 vector is
considered orthogonal to any vector. The dot product of any vector with itself
is the square of its length

a · a = a2 = |a|2. (34)

The dot product is directly related to the perpendicular projections of b onto a
and a onto b. The latter are, respectively,

a a

b b
θ

b‖

a‖

b‖ = b cos θ â 6= a‖ = a cos θ b̂ (35)

where â = a/|a| and b̂ = b/|b| are the unit vectors in the a and b directions,
respectively. While the perpendicular projections are not equal, â ·b 6= a · b̂ the
dot product does commute a · b = b ·a and has the fundamental property that

a · b = a · b‖ = a‖ · b. (36)

In physics, the work W done by a force F on a particle undergoing the
displacement ` is equal to distance ` times F‖ = F · ˆ̀, but that is equal to the

total force F times `‖ = ` · F̂ ,

W = F‖` = F`‖ = F · `.

Parallel and Perpendicular Components

We often want to decompose a vector b into vector components, b‖ and b⊥,
parallel and perpendicular to a vector a, respectively, such that b = b‖ + b⊥
with

b‖

b⊥
b

ab‖ = (b · â) â =
b · a
a · a

a

b⊥ = b− b‖ = b− (b · â)â = b− b · a
a · a

a

(37)

Properties of the dot product

The dot product has the following properties:
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1. a · b = b · a,

2. a · a ≥ 0, a · a = 0 ⇔ a = 0,

3. (a · b)2 ≤ (a · a) (b · b) (Cauchy-Schwarz)

4. (αa+βb)·c = α(a·c)+β(b·c) (distributivity)

a

b

a+ b

a · ĉ b · ĉ

The first three properties follow directly from the geometric definition. To verify
the distributive property, first, show that (αa) · c = α(a · c). This is left as an
exercise (consider both α ≥ 0 and α < 0). Next, show that (a+b)·c = a·c+b·c.
Note that c = c ĉ is the key reference direction. Let a+ b , s = s‖ĉ+ s⊥ then
(a+b) ·c = s ·c = s‖c. Likewise, a = a‖ĉ+a⊥ with a ·c = a‖c and b = b‖ĉ+b⊥
with b · c = b‖c. Thus verifying that (a + b) · c = a · c + b · c is equivalent to

verifying that s‖ = a‖ + b‖. This follows directly from s = s‖ĉ+ s⊥ , a+ b =
a‖ĉ+ a⊥ + b‖ĉ+ b⊥ that is

(s‖ − a‖ − b‖)ĉ = a⊥ + b⊥ − s⊥
but vectors parallel to c cannot add up to vectors perpendicular to c unless
both sides are zero. Thus

s‖ = a‖ + b‖ and s⊥ = a⊥ + b⊥.

The distributivity property (also called multi-linearity in mathematics) is a
fundamental algebraic property of the dot product. It allows us to deduce that

a · b = (axx̂+ ayŷ + azẑ) · (bxx̂+ byŷ + bzẑ)

= axbx + ayby + azbz
(38)

in terms of cartesian components for a and b, since x̂ · ŷ = 0, ŷ · ẑ = 0 and
ẑ · x̂ = 0. That result (38) is the standard definition of dot product in R3

but the geometric definition is more general. For an arbitrary basis a1,a2,a3,
expanding a vector v as v = v1a1 + v2a2 + v3a3, the distributivity property of
the dot product yields

v · v =v2
1 (a1 · a1) + v2

2 (a2 · a2) + v2
3 (a3 · a3)

+ 2v1v2 (a1 · a2) + 2v2v3 (a2 · a3) + 2v3v1 (a3 · a1)

6= v2
1 + v2

2 + v2
3 .

(39)

In matrix notation, this reads

v · v =
[
v1 v2 v3

] a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3

a3 · a1 a3 · a2 a3 · a3


v1

v2

v3

 (40)

while in index notation, this is

v · v = vivj gij (41)

with implicit sums over the repeated i and j indices, where gij , ai · aj = gji
is the metric. Matrix and index notations are discussed later in these notes.
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Exercises

1. A skier slides down an inclined plane with a total vertical drop of h, show
that the work done by gravity is independent of the slope. Use F and `’s
and sketch the geometry of this result.

2. Sketch the solutions of a · x = α, where a and α are known.

3. Sketch c = a + b then calculate c · c = (a + b) · (a + b) and deduce the
‘law of cosines’.

4. Show that a⊥ , a− (a · n̂)n̂ is orthogonal to n̂, ∀ a. Sketch.

5. If c = a + b show that c⊥ = a⊥ + b⊥ (defined in previous exercise).
Interpret geometrically.

6. B is a magnetic field and v is the velocity of a particle. We want to
decompose v = v⊥ + v‖ where v⊥ is perpendicular to the magnetic field
and v‖ is parallel to it. Derive vector expressions for v⊥ and v‖.

7. Show that the three normals (or heights, or altitudes) dropped from the
vertices of a triangle perpendicular to their opposite sides intersect at the
same point, the orthocenter H.

8. Three points A, B, C in 3D space are specified by their cartesian coor-

dinates. Show that the three equations
−−→
AB ·

−−→
CH = 0,

−−→
BC ·

−−→
AH = 0,−→

CA ·
−−→
BH = 0, are not sufficient to find the coordinates of H. Explain.

9. Three points A, B, C in 3D space are specified by their cartesian coor-
dinates. Derive the algorithm to compute the coordinates of the point H
that is the intersection of the heights.

10. A and B are two points on a sphere of radius R specified by their longitude
and latitude. What are longitude and latitude? Draw clean sketches and
explain. Find the shortest distance between A and B, traveling on the

sphere. [If O is the center of the sphere consider
−→
OA ·

−−→
OB to determine

their angle].

11. Consider v(t) = a+ tb where t ∈ R and a, b are arbitrary constant. What
is the minimum |v| and for what t? Solve two ways: (1) geometrically and
(2) using calculus.

12. Prove that the point of intersection O of the perpendicular bisectors of
any two sides of a triangle also lies on the perpendicular bisector of the
3rd side and that point is the center of a circle that passes through all
three vertices of the triangle. That point O is called the circumcenter.
[Hint: this is most easily done with methods from plane geometry].
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13. In an arbitrary triangle, let O be the circumcenter and G be the cen-

troid. Consider the point P such that
−−→
GP = 2

−−→
OG. Show that P is the

orthocenter H, hence O, G and H are on the same line called the Euler
line.

7 Orthonormal bases

Given an arbitrary vector v and three non co-planar vectors a1, a2 and a3 in
E3, you can find the three (signed) scalars v1, v2 and v3 such that

v = v1 a1 + v2 a2 + v3 a3

by parallel projections (sect. 4). The scalars v1, v2 and v3 are the components
of v in the basis a1, a2, a3. Finding those components is simpler if the basis is
orthogonal, that is if the basis vectors a1, a2 and a3 are mutually orthogonal,
in which case a1 · a2 = a2 · a3 = a3 · a1 = 0. For an orthogonal basis, a
projection parallel to a1 say, is a projection perpendicular to a2 and a3, but a
perpendicular projection is a dot product. In fact, we can forget geometry and
crank out the vector algebra: take the dot product of both sides of the equation
v = v1 a1 + v2 a2 + v3 a3 with each of the 3 basis vectors to obtain

v1 =
a1 · v
a1 · a1

, v2 =
a2 · v
a2 · a2

, v3 =
a3 · v
a3 · a3

.

An orthonormal basis is even better. That’s a basis for which the vectors
are mutually orthogonal and of unit norm. Such a basis is often denoted2 e1,
e2, e3. Its compact definition is

ei · ej = δij (42)

where i, j = 1, 2, 3 and δij is the Kronecker symbol, δij = 1 if i = j and 0 if
i 6= j.

The components of a vector v with respect to the orthonormal basis e1, e2,
e3 in E3 are the real numbers v1, v2, v3 such that

v = v1e1 + v2e2 + v3e3 ≡
3∑
i=1

viei

vi = ei · v, ∀i = 1, 2, 3.

(43)

2Forget about the notation i, j, k for cartesian unit vectors. This is 19th century notation,
it is unfortunately still very common in elementary courses but that old notation will get in
the way if you stick to it. We will NEVER use i, j, k, instead we use (x̂, ŷ, ẑ) or (e1, e2, e3)
or (ex, ey , ez) to denote a set of three orthonormal vectors in 3D euclidean space. We will
soon use indices i, j and k (next line already!). Those indices are positive integers that can
take all the values from 1 to n, the dimension of the space. We spend most of our time in 3D
space, so most of the time the possible values for these indices i, j and k are 1, 2 and 3. They
should not be confused with those old orthonormal vectors i, j, k from elementary calculus.
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If two vectors a and b are expanded in terms of e1, e2, e3, that is

a = a1e1 + a2e2 + a3e3, b = b1e1 + b2e2 + b3e3,

use the distributivity properties of the dot product and the orthonormality of
the basis to show that

a · b = a1b1 + a2b2 + a3b3. (44)

B Show that this formula is valid only for orthonormal bases.
One remarkable property of this formula is that its value is independent of

the orthonormal basis. The dot product is a geometric property of the vectors
a and b, independent of the basis. This is obvious from the geometric definition
(33) but not from its expression in terms of components (44). If e1, e2, e3 and
e1
′, e2

′, e3
′ are two distinct orthogonal bases then

a = a1e1 + a2e2 + a3e3 = a′1e1
′ + a′2e2

′ + a′3e3
′

but, in general, the components in the two bases are distinct: a1 6= a′1, a2 6= a′2,
a3 6= a′3, and likewise for another vector b, yet

a · b = a1b1 + a2b2 + a3b3 = a′1b
′
1 + a′2b

′
2 + a′3b

′
3. (45)

The simple algebraic form of the dot product is invariant under a change of
orthonormal basis.

Exercises

1. Given the orthonormal (cartesian) basis (e1, e2, e3), consider a = a1e1 +
a2e2, b = b1e1 + b2e2, v = v1e1 + v2e2. What are the components of v
(i) in terms of a and b? (ii) in terms of a and b⊥ where a · b⊥ = 0?

2. If (e1, e2, e3) and (e′1, e
′
2, e
′
3) are two distinct orthogonal bases and a

and b are arbitrary vectors, prove (45) but construct an example that
a1b1 + 2a2b2 + 3a3b3 6= a′1b

′
1 + 2a′2b

′
2 + 3a′3b

′
3 in general.

3. If w =
∑3
i=1 wiei, calculate ej ·w using

∑
notation and (42).

4. Why is not true that ei ·
∑3
i=1 wiei =

∑3
i=1 wi(ei · ei) =

∑3
i=1 wiδii =

w1 + w2 + w3?

5. If v =
∑3
i=1 viei and w =

∑3
i=1 wiei, calculate v · w using

∑
notation

and (42).

6. If v =
∑3
i=1 viai and w =

∑3
i=1 wiai, where the basis ai, i = 1, 2, 3, is

not orthonormal, calculate v ·w.

7. Calculate (i)
∑3
j=1 δijaj , (ii)

∑3
i=1

∑3
j=1 δijajbi, (iii)

∑3
j=1 δjj .
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8 Dot product and norm in Rn (Optional)

Dot product in Rn

The geometric definition of the dot product (33) is great for oriented line seg-
ments as it emphasizes the geometric aspects, but the algebraic formula (44) is
very useful for calculations. It’s also the way to define the dot product for other
vector spaces where the concept of ‘angle’ between vectors may not be obvious
e.g. what is the angle between the vectors (1,2,3,4) and (4,3,2,1) in R4?! The
dot product (a.k.a. scalar product or inner product) of the vectors x and y in
Rn is defined as suggested by (44):

x · y , x1y1 + x2y2 + · · ·+ xnyn. (46)

The reader will verify that this definition satisfies the fundamental properties
of the dot product (sect. 6) (commutativity x · y = y · x, positive definiteness
x ·x ≥ 0 and multi-linearity (or distributivity) (α1x1 +α2x2) ·y = α1(x1 ·y) +
α2(x2 · y).

To show the Cauchy-Schwarz property, you need a bit of Calculus and a
classical trick: consider v = x+ λy, then

F (λ) , v · v = λ2y · y + 2λx · y + x · x ≥ 0.

For given, but arbitrary, x and y, this is a quadratic polynomial in λ. That
polynomial F (λ) has a single minimum at λ∗ = −(x ·y)/(y ·y). That minimum
value is

F (λ∗) = (x · x)− (x · y)2

(y · y)
≥ 0

which must still be positive since F ≥ 0, ∀λ, hence the Cauchy-Schwarz inequal-
ity.

Once we know that the definition (46) satisfies Cauchy-Schwarz, (x · y)2 ≤
(x · x) (y · y), we can define the length of a vector by |x| = (x · x)1/2 (this is
called the Euclidean length since it corresponds to length in Euclidean geometry
by Pythagoras’s theorem) and the angle θ between two vectors in Rn by cos θ =
(x · y)/(|x| |y|). A vector space for which a dot (or inner) product is defined is
called a Hilbert space (or an inner product space).

The bottom line is that for more complex vector spaces, the dot (or scalar or
inner) product is a key mathematical construct that allows us to generalize the
concept of ‘angle’ between vectors and, most importantly, to define ‘orthogonal
vectors’.

Norm of a vector

The norm of a vector, denoted ‖a‖, is a positive real number that defines its size
or ‘length’ (but not in the sense of the number of its components). For displace-
ment vectors in Euclidean spaces, the norm is the length of the displacement,

‖a‖ = |a| i.e. the distance between point A and B if
−−→
AB = a. The following

properties are geometrically straightforward for length of displacement vectors:
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1. ‖a‖ ≥ 0 and ‖a‖ = 0⇔ a = 0,

2. ‖αa‖ = |α| ‖a‖,

3. ‖a+ b‖ ≤ ‖a‖+ ‖b‖. (triangle inequality)

Draw the triangle formed by a, b and a+ b to see why the latter is called the
triangle inequality. For more general vector spaces, these properties become the
defining properties (axioms) that a norm must satisfy. A vector space for which
a norm is defined is called a Banach space.

Norms for Rn

For other types of vector space, there are many possible definitions for the norm
of a vector as long as those definitions satisfy the 3 norm properties. In Rn, the
p-norm of vector x is defined by the positive number

‖x‖p ,
(
|x1|p + |x2|p + · · ·+ |xn|p

)1/p

, (47)

where p ≥ 1 is a real number. Commonly used norms are the 2-norm ‖x‖2
which is the square root of the sum of the squares, the 1-norm ‖x‖1 (sum of
absolute values) and the infinity norm, ‖x‖∞, defined as the limit as p→∞ of
the above expression.

Note that the 2-norm ‖x‖2 = (x ·x)1/2 and for that reason is also called the
Euclidean norm. In fact, if a dot product is defined, then a norm can always
be defined as the square root of the dot product. In other words, every Hilbert
space is a Banach space, but the converse is not true.

Exercises

1. So what is the angle between (1, 2, 3, 4) and (4, 3, 2, 1)?

2. Can you define a dot product for the vector space of real functions f(x)?

3. Find a vector orthogonal to (1, 2, 3, 4). Find all the vectors orthogonal to
(1, 2, 3, 4).

4. Decompose (4,2,1,7) into the sum of two vectors one of which is parallel
and the other perpendicular to (1, 2, 3, 4).

5. Show that cosnx with n integer, is a set of orthogonal functions on (0, π).
Find formulas for the components of a function f(x) in terms of that
orthogonal basis. In particular, find the components of sinx in terms of
the cosine basis in that (0, π) interval.

6. Show that the infinity norm ‖x‖∞ = maxi |xi|.

7. Show that the p-norm satisfies the three norm properties for p = 1, 2,∞.

8. Define a norm for Cn.

9. Define the 2-norm for real functions f(x) in 0 < x < 1.
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9 Cross Product

The cross product, also called the vector product or the area product, is defined
as

a× b , A n̂ = a b sin θ n̂ (48)

where a = |a|, b = |b| and θ is the angle between a and b, with 0 ≤ θ ≤ π. The
a× b

a

b
A

cross product is a vector whose

• magnitude is the area A of the parallelogram with sides a and b,

• direction n̂ is perpendicular to both a and b, with (a, b, n̂) right handed,

Since the area of a parallelogram is base × height and there are two ways to
pick a base and a height, the geometric definition yields the fundamental cross
product identity

a

b⊥

θ

b

b

a⊥

θ

a

a× b = a× b⊥ = a⊥ × b (49)

where b⊥ = b − (b · â)â is the vector component of b perpendicular to a and
likewise a⊥ = a− (a · b̂)b̂ is the vector component of a perpendicular to b (so
the meaning of ⊥ is relative).

The cross-product has the following properties:

1. a× b = −b× a, (anti-commutativity) ⇒ a× a = 0,

2. (αa)× b = a× (αb) = α(a× b),

3. c× (a+ b) = (c× a) + (c× b)

The first 2 properties are geometrically obvious from the definition. To show
the third property (distributivity) let c = |c|ĉ and get rid of |c| by prop 2. All
three cross products give vectors perpendicular to c and furthermore from (49)
we have c×a = c×a⊥, c×b = c×b⊥ and c× (a+b) = c× (a+b)⊥, where ⊥
means perpendicular to c, a⊥ = a−(a·ĉ)ĉ, etc. So the cross-products eliminate
the components parallel to c and all the action is in the plane perpendicular to
c. To visualize the distributivity property it suffices to look at that plane from

(a+ b)⊥

b⊥a⊥

ĉ

ĉ× (a+ b)

ĉ× b

ĉ× a

the top, with c pointing out. Then a cross product by ĉ is equivalent to a
rotation of the perpendicular components by π/2 counterclockwise. Since a, b
and a+ b form a triangle, their perpendicular projections a⊥, b⊥ and (a+ b)⊥
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form a triangle and therefore c× a, c× b and c× (a+ b) also form a triangle,
demonstrating distributivity.

The distributivity property yields the cartesian formula for the cross product

a× b = (axx̂+ ayŷ + azẑ)× (bxx̂+ byŷ + bzẑ)

= x̂(aybz − azby) + ŷ(azbx − axbz) + ẑ(axby − aybx)
(50)

since

x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ (51)

and

x̂ = ŷ × ẑ, ŷ = ẑ × x̂, ẑ = x̂× ŷ. (52)

Note that each of these expressions is a cyclic permutation of the previous one

(x, y, z)→ (y, z, x)→ (z, x, y)

and this enables us to easily reconstruct formula (50) – or any one of its com-
ponents, without having to use our right hand to figure out every cross product
with the right hand rule. We can figure them out simply with that cyclic (even)
or acyclic (odd) permutation rule.

That cartesian expansion (50) of the cross product is often remembered using
the formal ‘determinants’∣∣∣∣∣∣

x̂ ŷ ẑ
ax ay az
bx by bz

∣∣∣∣∣∣ ≡
∣∣∣∣∣∣
x̂ ax bx
ŷ ay by
ẑ az bz

∣∣∣∣∣∣ . (53)

however that mnemonic trick is not emphasized in this course since we will
emphasize the geometric meaning of determinants. The expressions (53) are
not true determinants since they mix geometric vectors with numbers, it is just
a mnemonic trick to reconstruct the vector algebra formula (50). The cyclic
permutation rules (51), (52), enable reconstruction of that formula just as easily
without the need to muddle concepts.

Double cross product (‘Triple vector product’)

Double cross products3 occur frequently in applications (e.g. angular momentum
of a rotating body) directly or indirectly (see the discussion below about mirror
reflection and cross-products in physics). An important special case of double
cross products is

(a× b)× a = a× (b× a) = (a · a) b⊥ (54)

where b⊥ is the vector component of b perpendicular to a. The identity (54)
easily follows from the geometric definition of the cross product since a × b =

3The double cross product is often called ‘triple vector product’, there are 3 vectors but
only 2 vector products!
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a × b⊥, that demonstration is left as an exercise. The general double cross
products obey the following identity

(a× b)× c = (a · c) b− (b · c)a,
a× (b× c) = (a · c) b− (a · b)c.

(55)

thus in general

(a× b)× c 6= a× (b× c),

contrary to what (54) might suggest. The identities (55) follow from each other
after some manipulations and renaming of vectors, but we can remember both
at once as:

middle vector times dot product of the other two minus
other vector in parentheses times dot product of the other two.4

To verify the identities (55) consider the intrinsic orthogonal basis a, b⊥, (a×b).
In that basis

a = a, b =
a · b
a · a

a+ b⊥, c =
a · c
a · a

a+
b⊥ · c
b⊥ · b⊥

b⊥ + γ(a× b)

for some γ.5 Now a× b = a× b⊥ and substituting for c from the (a, b⊥,a× b)
expansion and using (54) yields

(a× b⊥)× c = (a · c)b⊥ − (b⊥ · c)a,

but

(a · c)b⊥ − (b⊥ · c)a = (a · c)b− (b · c)a

since b = αa + b⊥ and (a · c)(αa) − (αa · c)a = 0. Thus (55) is true for all
a, b, c.

Orientation of Bases

If we pick an arbitrary unit vector e1, then a unit vector e2 orthogonal to e1,
there are two opposite unit vectors e3 orthogonal to both e1 and e2. One choice
gives a right-handed basis (i.e. e1 in right thumb direction, e2 in right index
direction and e3 in right major direction). The other choice gives a left-handed
basis. These two types of bases are mirror images of each other as illustrated in
the following figure, where e1

′ = e1 point straight out of the paper (or screen).

4This is more useful than the confusing ‘BAC-CAB’ rule for remembering the 2nd. Try
applying the BAC-CAB mnemonic to (b× c)× a for confusing fun!

5γ = (a× b) · c/|a× b|
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e2
′

e3
′

e1
′

e2

e3

e1

Left-handed Right-handed
mirror

This figure reveals an interesting subtlety of the cross product. For this par-
ticular choice of left and right handed bases (other arrangements are possi-
ble of course), e1

′ = e1 and e2
′ = e2 but e3

′ = −e3 so e1 × e2 = e3 and
e1
′ × e2

′ = e3 = −e3
′. This indicates that the mirror image of the cross-

product is not the cross-product of the mirror images. On the opposite, the
mirror image of the cross-product e3

′ is minus the cross-product of the images
e1
′×e2

′. We showed this for a special case, but this is general, the cross-product
is not invariant under reflection, it changes sign. Physical laws should not de-
pend on the choice of basis, so this implies that they should not be expressed
in terms of an odd number of cross products. When we write that the velocity
of a particle is v = ω × r, v and r are ‘good’ vectors (reflecting as they should
under mirror symmetry) but ω is not quite a true vector, it is a pseudo-vector.
It changes sign under reflection. That is because rotation vectors are themselves
defined according to the right-hand rule, so an expression such as ω × r actu-
ally contains two applications of the right hand rule. Likewise in the Lorentz
force F = qv ×B, F and v are good vectors, but since the definition involves
a cross-product, it must be that B is a pseudo-vector. Indeed B is itself a
cross-product so the definition of F actually contains two cross-products.

The orientation (right-handed or left-handed) did not matter to us before
but, now that we’ve defined the cross-product with the right-hand rule, we’ll
typically choose right-handed bases. We don’t have to, geometrically speaking,
but we need to from an algebraic point of view otherwise we’d need two sets of
algebraic formula, one for right-handed bases and one for left-handed bases. In
terms of our right-handed cross product definition, we can define a right-handed
basis by

e1 × e2 = e3 ⇒ e2 × e3 = e1, e3 × e1 = e2, (56)

⇒ e2 × e1 = −e3, e1 × e3 = −e2, e3 × e2 = −e1. (57)

Note that (56) are cyclic rotations of the basis vectors (1, 2, 3) → (2, 3, 1) →
(3, 1, 2). The orderings of the basis vectors in (57) correspond to a-cyclic ro-
tations of (1, 2, 3). For 3 elements, a cyclic rotation corresponds to an even
number of permutations. For instance we can go from (1, 2, 3) to (2, 3, 1) in
2 permutations (1, 2, 3) → (2, 1, 3) → (2, 3, 1). The concept of even and odd
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number of permutations is more general. But for three elements it is useful to
think in terms of cyclic and acyclic permutations.

If we expand a and b in terms of the right-handed e1, e2, e3, then apply
the 3 properties of the cross-product i.e. in compact summation form

a =

3∑
i=1

aiei, b =

3∑
j=1

bjej , ⇒ a× b =

3∑
i=1

3∑
j=1

aibj (ei × ej),

we obtain

a× b = e1(a2b3 − a3b2) + e2(a3b1 − a1b3) + e3(a1b2 − a2b1), (58)

which, again, we can reconstruct using the cyclic permutations of

+ : (1, 2, 3)→ (2, 3, 1)→ (3, 1, 2),

− : (1, 3, 2)→ (2, 1, 3)→ (3, 2, 1).
(59)

Exercises

1. Show that |a× b|2 + (a · b)2 = |a|2 |b|2, ∀a, b.

2. A particle of charge q moving at velocity v in a magnetic field B experi-
ences the Lorentz force F = qv ×B. Show that there is no force in the
direction of the magnetic field and that the Lorentz force does no work on
the particle. Does it have any effect on the particle?

3. Sketch three vectors such that a+b+c = 0, show that a×b = b×c = c×a
in two ways (1) from the geometric definition of the cross product and (2)
from the algebraic properties of the cross product. Deduce the ‘law of
sines’ relating the sines of the angles of a triangle and the lengths of its
sides.

4. Consider any three points P1, P2, P3 in 3D Euclidean space. Show that
1
2 (r1 × r2 + r2 × r3 + r3 × r1) is a vector whose magnitude is the area of
the triangle and is perpendicular to the triangle in a direction determined
by the ordering P1, P2, P3 and the right hand rule.

5. Consider an arbitrary non-self intersecting quadrilateral in the (x, y) plane
with vertices P1, P2, P3, P4. Show that 1

2 (r1 × r2 + r2 × r3 + r3 × r4 +
r4 × r1) is a vector whose magnitude is the area of the quadrilateral and
points in the±ẑ direction depending on whether P1, P2, P3, P4 are oriented
counterclockwise, or clockwise, respectively. What is the compact formula
for the area of the quadrilateral in terms of the (x, y) coordinates of each
point? Is the vector formula still valid if the points are in a plane but not
the (x, y) plane?
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6. Four arbitrary points in 3D Euclidean space E3 are the vertices of an
arbitrary tetrahedron. Consider the area vectors perpendicular pointing
outward for each of the faces of the tetrahedron, with magnitudes equal
to the area of the corresponding triangular face. Make sketch. Show that
the sum of these area vectors is zero.

7. Point P rotates about the axis parallel to a passing through point A at
angular velocity ω. Derive a vector formula for the velocity of P . Make
sketches to illustrate your derivation.

8. Vector c is the (right hand) rotation of vector b about e3 by angle ϕ. Find
the cartesian components of c in terms of the components of b.

9. Vector c is the (right hand) rotation of vector b about a by angle ϕ. Show
that

c = b‖ + b⊥ cosϕ+ (â× b⊥) sinϕ. (60)

10. Find the cartesian components of the vector c obtained by rotating b =
(b1, b2, b3) about a = (a1, a2, a3) by an angle α. What is c if a ≡ (3, 2, 1),
b = (2, 3, 4) and α = π/3? [Hint: consider the intrinsic orthogonal basis
â, b⊥ and â× b⊥ and obtain the vector solution first, then translate into
cartesian components.]

11. Point P is rotated by angle ϕ about the axis parallel to a that passes
through point A. Derive a vector formula for the new position of P . Make
sketches to illustrate your derivation.

12. True or false: v ⊥ (a × b) ⇔ v = x1a + x2b for some real x1 and x2.
Explain.

13. Show by (1) cross product geometry and (2) cross product algebra that
all the vectors X such that a×X = b have the form

X = αa+
b× a
‖a‖2

, ∀α ∈ R

14. Show the Jacobi identity: a× (b× c) + b× (c× a) + c× (a× b) = 0.

15. If n̂ is any unit vector, show algebraically and geometrically that any
vector a can be decomposed as

a = (n̂ · a)n̂+ n̂× (a× n̂) ≡ a‖ + a⊥. (61)

The first component is parallel to n̂, the second is perpendicular to n̂.

16. A left-handed basis e1
′, e2

′, e3
′, is defined by ei

′ ·ej ′ = δij and e1
′×e2

′ =
−e3

′. Show that (ei
′×ej ′) ·ek′ has the opposite sign to the corresponding

expression for a right-handed basis, ∀i, j, k (the definition of the cross-
product remaining its right-hand rule self). Thus deduce that the formula
for the components of the cross-product in the left handed basis would all
change sign.
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17. Show (54) from the geometric definition of the cross-product.

18. Prove (55) using the intrinsic right-handed orthonormal basis e1 = a/|a|,
e3 = (a× b)/|a× b| and e2 = e3 × e1. Then a = a1e1, b = b1e1 + b2e2,
c = c1e1 + c2e2 + c3e3. Visualize and explain why this is a general result
and therefore a proof of the double cross product identity.

19. Magnetic fieldsB are created by electric currents according to the Ampère
and Biot-Savart laws. The simplest current is a moving charge. Consider
two electric charges q1 and q2 moving at velocity v1 and v2, respectively.
Assume along the lines of the Biot-Savart law that the magnetic field
induced by q1 at q2 is

B2 =
µ0

4π

q1v1 × (r2 − r1)

|r2 − r1|3
(62)

where r1 and r2 are the positions of q1 and q2, respectively, and µ0 is the
magnetic constant. The Lorentz force experienced by q2 is F 2 = q2v2×B2.
What is the corresponding magnetic field and Lorentz force induced by q2

at q1? Do the forces satisfy Newton’s action-reaction law?
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10 Index notation

10.1 Levi-Civita symbol

We have used the Kronecker delta δij (42) to express all the 9 dot products in
a very compact form as ei · ej = δij . There is a similar symbol, εijk, the Levi-
Civita symbol (also known as the alternating or permutation symbol), defined
as

εijk =

 1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),

0 otherwise,
(63)

or, explicitly: ε123 = ε231 = ε312 = 1 and ε213 = ε132 = ε321 = −1, all other
εijk = 0. For 3 distinct elements, (a, b, c) say, an even permutation is the same
as a cyclic permutation – for example, the cyclic permutation (a, b, c)→ (b, c, a)
is equivalent to the two permutations (a, b, c) → (b, a, c) → (b, c, a). Thus
the even permutations of (1, 2, 3) are the cyclic permutations (1, 2, 3), (2, 3, 1),
(3, 1, 2) and the odd permutations are the acyclic permutations (2, 1, 3), (3, 2, 1),
(1, 3, 2). This implies that

εijk = εjki = εkij , ∀i, j, k (64)

(why?). The εijk symbol provides a compact expression for the components of
the cross-product of right-handed basis vectors:

(ei × ej) · ek = εijk. (65)

but since this is the k-component of (ei × ej) we can also write

(ei × ej) =

3∑
k=1

εijkek. (66)

Note that there is only one non-zero term in the latter sum (but then, why can’t
we drop the sum?). Verify this result for yourself.

Sigma notation, free and dummy indices

The expansion of vectors a and b in terms of basis e1,e2,e3, a = a1e1 + a2e2 +
a3e3 and b = b1e1 + b2e2 + b3e3, can be written compactly using the sigma (Σ)
notation

a =

3∑
i=1

aiei, b =

3∑
i=1

biei. (67)

We have introduced the Kronecker symbol δij and the Levi-Civita sym-
bol εijk in order to write and perform our basic vector operations such as dot
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and cross products in compact forms, when the basis is orthonormal and right-
handed, for instance using (42) and (66)

a · b =

3∑
i=1

3∑
j=1

aibj ei · ej =

3∑
i=1

3∑
j=1

aibjδij =

3∑
i=1

aibi (68)

a× b =

3∑
i=1

3∑
j=1

aibj ei × ej =

3∑
i=1

3∑
j=1

3∑
k=1

aibjεijk ek (69)

Note that i and j are dummy or summation indices in the sums (67) and (68),
they do not have a specific value, they have all the possible values in their range.
It is their place in the particular expression and their range that matters, not
their name

a =

3∑
i=1

aiei =

3∑
j=1

ajej =

3∑
k=1

akek = · · · 6=
3∑
k=1

akei (70)

Indices come in two kinds, the dummies and the free. Here’s an example

ei · (a · b)c =

 3∑
j=1

ajbj

 ci, (71)

here j is a dummy summation index, but i is free, we can pick for it any value
1, 2, 3. Freedom comes with constraints. If we use i on the left-hand side of the
equation, then we have no choice, we must use i for ci on the right hand side.
By convention we try to use i, j, k, l, m, n, to denote indices, which are positive
integers. Greek letters are sometimes used for indices.

Mathematical operations impose some naming constraints however. Al-
though, we can use the same index name, i, in the expansions of a and b,
when they appear separately as in (67), we cannot use the same index name
if we multiply them as in (68) and (69). Bad things will happen if you do, for
instance

a× b =

(
3∑
i=1

aiei

)
×

(
3∑
i=1

biei

)
=

3∑
i=1

aibi ei × ei = 0 (WRONG!) (72)

10.2 Einstein summation convention

While he was developing the theory of general relativity, Einstein noticed that
many of the sums that occur in calculations involve terms where the summation
index appears twice. For example, i appears twice in the single sums in (67), i
and j appear twice in the double sum in (68) and i, j and k each appear twice in
the triple sum in (69). To facilitate such manipulations he dropped the Σ signs
and adopted the summation convention that a repeated index implicitly
denotes a sum over all values of that index. In a letter to a friend he
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wrote “I have made a great discovery in mathematics; I have suppressed the
summation sign every time that the summation must be made over an index
which occurs twice”. If it had been an email, he would have punctuated it with
;-).

Thus with Einstein’s summation convention we write the sum a1e1 +a2e2 +
a3e3 simply as aiei since the index i is repeated

a = aiei ≡ a1e1 + a2e2 + a3e3. (73)

The name of the index does not matter if it is repeated – it is a dummy or
summation index, thus

aiei = ajej = akek = alel = · · ·

and any repeated index i, j, k, l, . . . implies a sum over all values of that index.
With the summation convention, the sum in (68) is written simply as

a · b = aibi (74)

where aibi = a1b1 + a2b2 + a3b3 is a sum over all values of i, while the triple
sum in (69) reduces to the very compact form

a× b = εijkaibjek, (75)

which is a sum over all values of i, j and k and would have 33 = 27 terms,
however εijk = 0 for 21 of those terms, whenever an index value is repeated in
the triplet (i, j, k). Note that these two index expressions for a · b and a × b
assume that the underlying basis {e1, e2, e3}, is a right handed orthonormal
basis.

The summation convention is a very useful and widely used notation but
you have to use it with care – not write or read an i for a j or a 1 for an l,
for examples – and there are cases where it cannot be used. Some basic rules
facilitate manipulations.

Dummy repetition rule: Indices can never appear more than twice in the
same term, if they are, that’s probably a mistake as in (72),

a · b = (aiei) · (biei) =???

where i appears 4 times in the same term.6 However

ai + bi + ci + di

≡ (a1 + b1 + c1 + d1, a2 + b2 + c2 + d2, a3 + b3 + c3 + d3)

is OK since the index i appears in different terms and is in fact the index form
for the vector sum a+ b+ c+ d. In contrast, the expression

ai + bj + ck

6Terms are elements of a sum, factors are elements of a product.
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does not make vector sense since i, j, k are free indices here and there is no
vector operation that adds components corresponding to different basis vectors
— free indices in different terms must match. Going back to that dot product
a · b in index notation, we need to change the name of one of the dummies, for
example i→ j in the b expansion, and

a · b = (aiei) · (bjej) = aibj ei · ej = aibjδij .

Substitution rule: if one of the indices of δij is involved in a sum, we substi-
tute the summation index for the other index in δij and drop δij , for example

aiδij ≡ a1δ1j + a2δ2j + a3δ3j = aj , (76)

since i is a dummy in this example and δij eliminates all terms in the sum
except that corresponding to index j, whatever its value, thus aiδij = aj . If
both indices of δij are summed over as in the double sum aibjδij , it does not
matter which index we substitute for, thus

aibjδij = aibi = ajbj

and likewise

δklδkl = δkk = δll = 3, δijεijk = εiik = 0. (77)

Note the result δkk = 3 because k is repeated, so there is a sum over all values
of k and δkk ≡ δ11 + δ22 + δ33 = 1 + 1 + 1 = 3, not 1. The last result is because
εijk vanishes whenever two indices have the same value.

Let’s compute the l component of a× b from (75) as an exercise. We pick l
because i, j and k are already taken. The l component is

el · (a× b) = εijkaibjek · el = εijkaibjδkl = εijlaibj = εlmnambn (78)

what happened on that last step? first, εijk = εkij because (i, j, k) to (k, i, j) is
a cyclic permutation which is an even permutation in 3D space and the value of
εijk does not change under even permutations. Then i and j are dummies and
we renamed them m and n respectively being careful to keep the place of the
indices. The final result is worth memorizing: if v = a× b, the l component of
v is vl = εlmnambn, or switching indices to i, j, k

v = a× b ⇐⇒ vi = εijkajbk ⇐⇒ v = ei εijkajbk. (79)

As an another example that will lead us to a fundamental identity, let’s write
the double cross product identity (a× b)× c in index notation. Let v = a× b
then the i component of the double cross product v × c is εijkvjck. Now we
need the j component of v = a× b. Since i and k are taken we use l, m as new
dummy indices, and we have vj = εjlmalbm. So the i component of the double
cross product (a× b)× c is

(a× b)× c ≡ εijkεjlm albmck. (80)
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Note that j, k, l and m are repeated, so this expression is a quadruple sum!
According to our double cross product identity it should be equal to the i
component of (a · c)b − (b · c)a for any a, b, c. We want the i component of
the latter expression since i is a free index in (80), that i component is

(a · c)b− (b · c)a ≡ (ajcj) bi − (bjcj) ai (81)

wait! isn’t j repeated 4 times? no, it’s not. It’s repeated twice in separate terms
so this is a difference of two sums over j, j is a dummy but i is free and must
match in both terms. Since (80) and (81) are equal to each other for any a,
b, c, this should be telling us something about εijk, but to extract that out we
need to rewrite (81) in the form albmck. How? by making use of our ability
to rename dummy variables and adding variables using δij and the substitution
rule. Let’s look at the first term in (81), (ajcj)bi, here’s how to write it in the
form albmck as in (80):

(ajcj)bi = (akck)bi = (δlkalck)(δimbm) = δlkδimalckbm. (82)

Do similar manipulations to the second term in (81) to obtain (bjcj)ai =
δilδkmalckbm and

εijkεjlmalbmck = (δlkδim − δilδkm)alckbm. (83)

Since this equality holds for any al, ck, bm, we must have εijkεjlm = (δlkδim −
δilδkm). That’s true but it’s not written in a nice way so let’s clean it up to
a form that’s easier to reconstruct. First note that εijk = εjki since εijk is
invariant under a cyclic permutation of its indices. So our identity becomes
εjkiεjlm = (δlkδim−δilδkm). We’ve done that flipping so the summation index j
is in first place in both ε factors. Now we prefer the lexicographic order (i, j, k)
to (j, k, i) so let’s rename all the indices being careful to rename the correct
indices on both sides. This yields

εijkεilm = δjlδkm − δjmδkl (84)

This takes some digesting but it is an excellent exercise and example of index
notation manipulations.

The identity (84) is actually pretty easy to remember and verify. First,
εijkεilm is a sum over i but there is never more than one non-zero term (why?).
Second, the only possible values for that expression are +1, 0 and −1 (why?).
The only way to get 1 is to have (j, k) = (l,m) with j = l 6= k = m (why?), but
in that case the right hand side of (84) is also 1 (why?). The only way to get −1
is to have (j, k) = (m, l) with j = m 6= k = l (why?), but in that case the right
hand side is −1 also (why?). Finally, to get 0 we need j = k or l = m and the
right-hand side again vanishes in either case. For instance, if j = k then we can
switch j and k in one of the terms and δjlδkm − δjmδkl = δjlδkm − δkmδjl = 0.

Formula (84) has a generalization that does not include summation over one
index

εijkεlmn =δilδjmδkn + δimδjnδkl + δinδjlδkm

−δimδjlδkn − δinδjmδkl − δilδjnδkm
(85)
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note that the first line correspond to (i, j, k) and (l,m, n) matching up to cyclic
rotations, while the second line corresponds to (i, j, k) matching with an odd
(acyclic) rotation of (l,m, n).

Exercises

1. Explain why εijk = εjki = −εjik for any integer i, j, k.

2. Using (65) and Einstein’s notation show that (a × b) · ek = εijkaibj and
(a× b) = εijkaibj ek = εijkajbk ei.

3. Show that εijkεljk = 2δil by direct deduction and by application of (84).

4. Deduce (84) from (85).

5. Let v = (a · b)a yielding vi = Aijbj in a cartesian basis. Find Aij .

6. Let v = a× b yielding vi = Aijbj in a cartesian basis. Find Aij .

7. Let v = b − 2(â · b)â yielding vi = Aijbj in a cartesian basis. Find Aij .
What is the geometric relation between v and b?

8. Let v = (â × b) × â yielding vi = Aijbj in a cartesian basis. Find Aij .
What is the geometric relation between v and b?

11 Mixed product and Determinant

A mixed product, also called the box product or the ‘triple scalar product’,is a
combination of a cross and a dot product, (a× b) · c, the result is a scalar. We
have already encountered mixed products (e.g. eqn. (65)) but their geometric
and algebraic properties are so important that they merit their own subsection.

(a× b) · c = (b× c) · a = (c× a) · b =
signed volume of the parallelepiped a, b, c

(86)

a

b

c

a× b
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To derive the fundamental identity (86), take a and b as the base of the
parallelepiped then a×b = An̂ is perpendicular to the base and has magnitude
equal to the base area A. The height h of the parallelepiped is simply n̂ · c,
thus the volume is indeed (a × b) · c = Ah. Signwise, (a × b) · c > 0 if a, b
and c, in that order, form a right-handed basis (not orthogonal in general), and
(a × b) · c < 0 if the triplet is left-handed. Taking b and c, or c and a, as
the base, you get the same volume and sign. The dot product commutes, so
(b× c) · a = a · (b× c), yielding the identity

(a× b) · c = a · (b× c). (87)

That is nice and easy! we can switch the dot and the cross without changing
the result. In summary, the mixed product is unchanged if we perform a cyclic
permutation of the vectors: u · (v×w) = v · (w×u) or if we swap the dot and
the cross u · (v ×w) = (u× v) ·w

u · (v ×w) =

{
v · (w × u)
(u× v) ·w

We have shown (86) geometrically. The properties of the dot and cross
products yield many other results such as (a× b) · c = −(b×a) · c, etc. We can
collect all these results as follows.

A mixed product is a scalar function of three vectors called the determinant

det(a, b, c) , (a× b) · c, (88)

whose value is the signed volume of the parallelepiped with sides a, b, c. The
determinant has three fundamental properties

1. it changes sign if any two vectors are permuted, e.g.

det(a, b, c) = −det(b,a, c) = det(b, c,a), (89)

2. it is linear in any of its vectors e.g. ∀ α, d,

det(αa+ d, b, c) = α det(a, b, c) + det(d, b, c), (90)

3. if the triplet e1, e2, e3 is right-handed and orthonormal then

det(e1, e2, e3) = 1. (91)

You can deduce these from the properties of the dot and cross products as well
as geometrically. Property (90) is a combination of the distributivity properties
of the dot and cross products with respect to vector addition and multiplication
by a scalar. For example,

det(αa+ d, b, c) = (αa+ d) · (b× c) =α
(
a · (b× c)

)
+ d · (b× c)

=α det(a, b, c) + det(d, b, c).
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From these three properties, you deduce easily that the determinant is zero
if any two vectors are identical (from prop 1), or if any vector is zero (from prop
2 with α = 1 and d = 0), and that the determinant does not change if we add
a multiple of one vector to another, for example

det(a, b,a) = 0,

det(a,0, c) = 0,

det(a+ βb, b, c) = det(a, b, c).

(92)

Geometrically, this last one corresponds to a shearing of the parallelepiped, with
no change in volume or orientation.

The determinant determines whether three vectors a, b, c are linearly inde-
pendent and can be used as a basis for the vector space

det(a, b, c) 6= 0 ⇔ a, b, c form a basis. (93)

If det(a, b, c) = 0 then either one of the vectors is zero or they are co-planar and
a, b, c cannot provide a basis for vectors in E3. This is how the determinant
is introduced in elementary linear algebra, it determines whether a system of
linear equations has a solution or not. But the determinant is much more
than a number that may or may not be zero, it ‘determines’ the volume of the
parallelepiped and its orientation!

The 3 fundamental properties fully specify the determinant as explored in
exercises 5, 6 below. If the vectors are expanded in terms of a right-handed
orthonormal basis, i.e. a = aiei, b = bjej , c = ckek (summation convention),
then we obtain the following formula for the determinant in terms of the vector
components

det(a, b, c) = (a× b) · c = aibjck(ei × ej) · ek = εijk aibjck. (94)

Expanding that expression

εijk aibjck = a1b2c3 + a2b3c1 + a3b1c2 − a2b1c3 − a3b2c1 − a1b3c2, (95)

we recover the familiar algebraic determinants

det(a, b, c) = εijk aibjck ≡

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ . (96)

Note that it does not matter whether we put the vector components along rows
or columns. This is a non-trivial and important property of determinants, that
the determinant of a matrix is the determinant of its transpose (see section on
matrices).

This familiar determinant has the same three fundamental properties (89),
(90), (91) of course
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1. it changes sign if any two columns (or rows) are permuted, e.g.∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
b1 a1 c1
b2 a2 c2
b3 a3 c3

∣∣∣∣∣∣ , (97)

2. it is linear in any of its columns (or rows) e.g. ∀ α, (d1, d2, d3),∣∣∣∣∣∣
αa1 + d1 b1 c1
αa2 + d2 b2 c2
αa3 + d3 b3 c3

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣ , (98)

3. finally, the determinant of the natural basis is∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1. (99)

You can deduce from these three properties that the determinant vanishes if
any column (or row) is zero or if any two columns (or rows) is a multiple of
another, and that the determinant does not change if we add to one column
(row) a linear combination of the other columns (rows). These properties allow
us to calculate determinants by successive shearings and column-swapping.

There is another explicit formula for determinants, in addition to the εijkaibjck
formula, it is the Laplace (or Cofactor) expansion in terms of 2-by-2 determi-
nants, e.g.∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣− a2

∣∣∣∣ b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣ b1 c1
b2 c1

∣∣∣∣ , (100)

where the 2-by-2 determinants are∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ = a1b2 − a2b1. (101)

This formula is nothing but a · (b× c) expressed with respect to a right handed
basis. To verify that, compute the components of (b × c) first, then dot with
the components of a. This cofactor expansion formula can be applied to any
column or row, however there are ±1 factors that appear. We won’t go into the
straightforward details, but all that follows directly from the column swapping
property (97). That’s essentially the identities a · (b× c) = b · (c× a) = · · · .

Exercises

1. Show that the 2-by-2 determinant

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ = a1b2 − a2b1, is the signed

area of the parallelogram with sides a = a1e1 + a2e2, b = b1e1 + b2e2. It
is positive if a, b,−a,−b is a counterclockwise cycle, negative if the cycle
is clockwise. Sketch (of course).
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2. The determinant det(a, b, c) of three oriented line segments a, b, c is a
geometric quantity. Show that det(a, b, c) = |a| |b| |c| sinφ cos θ. Specify
φ and θ. Sketch.

3. Show that −|a| |b| |c| ≤ det(a, b, c) ≤ |a| |b| |c|. When do the equalities
apply? Sketch.

4. Use properties (89) and (90) to show that

det(αa+ λd, βb+ µe, c) =

αβ det(a, b, c) + αµdet(a, e, c) + βλdet(d, b, c) + λµdet(d, e, c).

5. Use properties (89) and (91) to show that det(ei, ej , ek) = εijk.

6. Use property (90) and exercise 5 above to show that if a = aiei, b = biei,
c = ciei (summation convention) then det(a, b, c) = εijkaibjck.

7. Prove the identity (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) using
both vector identities and indicial notation.

8. Express (a× b) · (a× b) in terms of dot products of a and b.

9. Show that (a·a)(b·b)−(a·b)2 is the square of the area of the parallelogram
spanned by a and b.

10. If A is the area the parallelogram with sides a and b, show that

A2 =

∣∣∣∣ a · a a · b
a · b b · b

∣∣∣∣ .
11. If det(a, b, c) 6= 0, then any vector v can be expanded as v = αa+βb+γc.

Find explicit expressions for the components α, β, γ in terms of v and the
basis vectors a, b, c in the general case when the latter are not orthogonal.
[Hint: project on cross products of the basis vectors, then collect the mixed
products into determinants and deduce Cramer’s rule].

12. Given three vectors a1, a2, a3 such that D = a1 · (a2 × a3) 6= 0, define

a′1 =
1

D
a2 × a3, a′2 =

1

D
a3 × a1, a′3 =

1

D
a1 × a2. (102)

This is the reciprocal basis of the basis a1, a2, a3.

(i) Show that ai · a′j = δij , ∀ i, j = 1, 2, 3.

(ii) Show that if v = vi ai and v = v′i a
′
i (summation convention), then

vi = v · a′i and v′i = v · ai. So the components in one basis are obtained
by projecting onto the other basis.

13. If a and b are linearly independent and c is any arbitrary vector, find α,
β and γ such that c = αa+ βb+ γ(a× b). Express α, β and γ in terms
of dot products only. [Hint: find α and β first, then use c‖ = c− c⊥.]
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14. Express (a×b) ·c in terms of dot products of a, b and c only. [Hint: solve
problem 13 first.]

15. Provide an algorithm to compute the volume of the parallelepiped (a,
b, c) by taking only dot products. [Hint: ‘rectify’ the parallelepiped
(a, b, c)→ (a, b⊥, c⊥)→ (a, b⊥, c⊥⊥) where b⊥ and c⊥ are perpendicular
to a, and c⊥⊥ is perpendicular to both a and b⊥. Explain geometrically
why these transformations do not change the volume. Explain why these
transformations do not change the determinant by using the properties of
determinants.]

16. (*) If V is the volume of the parallelepiped with sides a, b, c show that

V 2 =

∣∣∣∣∣∣
a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

∣∣∣∣∣∣ .
Do this in several ways: (i) from problem 13, (ii) using indicial notation
and the formula (85).

12 Points, Lines, Planes, etc.

We discussed points, lines and planes in section 5 and reviewed the concepts

of position vector
−−→
OP = r = rr̂ = ρρ̂ + zẑ = xx̂ + yŷ + zẑ and parametric

equations of lines and planes. Here, we briefly review implicit equations of lines
and planes and some applications of dot and cross products to points, lines and
planes.

Center of mass. The center of mass, rc, of a system of N particles of mass
mi located at position ri, i = 1, . . . , N, is the mass averaged position defined
by

M rc ,
N∑
i=1

miri (103)

where M =
∑N
i=1mi is the total mass. In particular, if all the masses are equal

then for N = 2, rc = (r1 + r2)/2, for N = 3, rc = (r1 + r2 + r3)/3. Note that
we do not use the summation convention for the sum over the N particles. This
N is not the dimension of the space in which the particles are located.

Equations of lines. The vector equation of a line parallel to a passing
through a point A is

O

r
A

r

a
A

P

−→
AP = ta, ∀t ∈ R (104)

This vector equation expresses that the vector
−→
AP is parallel to a, where t is a

real parameter. In terms of an origin O we have
−−→
OP =

−→
OA +

−→
AP and we can

write the vector (parametric) equation of that same line as

r = r
A

+ ta, (105)
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where r =
−−→
OP and r

A
=
−→
OA are the position vectors of P and A with respect

to O, respectively.

The real number t is the parameter of the line, it is the coordinate of P in
the system A, a. We can eliminate that parameter by crossing the parametric
equation with a:

r = r
A

+ ta, ∀t ∈ R ⇔ (r − r
A

)× a = 0. (106)

This is the (explicit) parametric equation r = r
A

+ ta, with parameter t, and
the implicit equation (r − r

A
)× a = 0 of a line.

Equations of planes. The equation of a plane passing through point A,
parallel to a and b (with a× b 6= 0) is

a

b

n

A
P

−→
AP = t1a+ t2b, ∀t1, t2 ∈ R

or r = r
A

+ t1a+ t2b since r =
−−→
OP =

−→
OA+

−→
AP . The parameters t1 and t2 can

be eliminated by dotting the parametric equation with n = a× b:

r = r
A

+ t1a+ t2b, ∀t1, t2 ∈ R ⇔ (r − r
A

) · n = 0. (107)

This is the parametric equation of the plane with parameters t1 and t2, and the
implicit equation of the plane passing through A and perpendicular to n.

Equations of spheres. The equation of a sphere of center rc and radius
R is

|r − rc| = R ⇔ r = rc +R â, ∀â s.t. |â| = 1, (108)

where â is any direction in 3D space. We have seen in eqn. (5) that such a
direction can be expressed as

â(θ, ϕ) = cosϕ sin θ x̂+ sinϕ sin θ ŷ + cos θ ẑ,

where x̂, ŷ, ẑ are any set of mutually orthogonal unit vectors. The angles θ and
ϕ are the 2 parameters appearing in this parametrization of a sphere.

Exercises

1. Show that the center of gravity of three points of equal mass is at the
point of intersection of the medians of the triangle formed by the three
points.

2. What are the equations of lines and planes in Cartesian coordinates?

3. Find vector equations for the line passing through the two points r1, r2

and the plane through the three points r1, r2, r3.
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4. What is the distance between the point r1 and the plane through r0

perpendicular to a?

5. What is the distance between the point r1 and the plane through r0

parallel to a and b?

6. What is the distance between the line parallel to a that passes through
point A and the line parallel to b that passes through point B?

7. A particle was at point P1 at time t1 and is moving at the constant velocity
v1. Another particle was at P2 at t2 and is moving at the constant velocity
v2. How close did the particles get to each other and at what time? What
conditions are needed for a collision?

8. Point C is obtained by rotating point B about the axis passing through
point A, with direction a, by angle α (right hand rotation by α about a).

Find an explicit vector expression for
−−→
OC in terms of

−−→
OB,

−→
OA, a and α.

Make clean sketches. Express your vector result in cartesian form.
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13 Orthogonal Transformations and Matrices

13.1 Change of cartesian basis

Consider two orthonormal bases (E1,E2,E3) and (e1, e2, e3) in 3D euclidean
space. A vector v can be expanded in terms of each bases as v = V1E1 +V2E2 +
V3E3 ≡ ViEi and v = v1e1 + v2e2 + v3e3 ≡ viei. What are the relationships
between the two sets of components (V1, V2, V3) and (v1, v2, v3)? In 2D, you can
find the relations between the components (v1, v2) and (V1, V2) directly using
geometry and trigonometry,

v

V1

V2

v1

v2

α

α

{
v1 = V1 cosα +V2 sinα,

v2 = −V1 sinα +V2 cosα.
(109)

However, it is easier and more systematic to use the basis vectors and vector
operations. The starting point is the vector identity

v = v1e1 + v2e2 = V1E1 + V2E2, (110)

then simple dot products yield{
v1 = e1 · v = V1 e1 ·E1 + V2 e1 ·E2,

v2 = e2 · v = V1 e2 ·E1 + V2 e2 ·E2.

These yield (109) since

E1

e1

E2e2

α

α

Figure 1.6: Change of cartesian
bases in 2D.

e1 ·E1 = cosα, e1 ·E2 = sinα,

e2 ·E1 =− sinα, e2 ·E2 = cosα.

In 3D, a direct geometric derivation is cumbersome but using direction vec-
tors and vector algebra is just as straightforward. The components (v1, v2, v3) 6=
(V1, V2, V3) for distinct bases, but the geometric vector v is independent of the
choice of basis, thus

v = viei = VjEj ,

using Einstein’s summation convention, and the relationships between the two
sets of coordinates are then

vi = ei · v = (ei ·Ej)Vj , Qij Vj , (111)

and, likewise,
Vi = Ei · v = (Ei · ej) vj = Qji vj , (112)
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where we defined

Qij , ei ·Ej . (113)

These 9 coefficients Qij are the elements of a 3-by-3 matrix Q, that is, a 3-by-3
table with the first index i corresponding to the row index and the second index
j to the column index

Q ≡
[
Qij
]

=

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 =

e1 ·E1 e1 ·E2 e1 ·E3

e2 ·E1 e2 ·E2 e2 ·E3

e3 ·E1 e3 ·E2 e3 ·E3

 . (114)

This is the Direction Cosine Matrix since ei and Ej are unit vectors thus
ei · Ej = cos θij where θij is the angle between ei and Ej . The coefficients
Qij = cos θij are the direction cosines.

For example, if e1, e2 are rotated about e3 = E3 by α, as in the 2D example
above in fig. 1.6, then

Q ≡
[
Qij
]

=

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (115)

As another more general example, consider an Earth basis with E3 in the
polar direction, E1,E3 in the plane of the prime meridian and a local basis at
longitude ϕ, polar angle θ (latitude λ = π/2− θ) with e1 south, e2 east and e3

up, as illustrated in the following figure.

E1

E2

E3

e1

e2

e3

ρ̂
ϕ

θ

Figure 1.7: An Earth basis and a local basis at longitude ϕ, polar angle θ.

Most of the required vector analysis has already been done in section 1.3. We
find (exercise 4)

e1 = cosϕ cos θ E1 + sinϕ cos θ E2 − sin θE3,

e2 = − sinϕ E1 + cosϕ E2,

e1 = cosϕ sin θ E1 + sinϕ sin θ E2 + cos θE3,

(116)
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thus the transformation matrix for that example is

Q =

cosϕ cos θ sinϕ cos θ − sin θ
− sinϕ cosϕ 0

cosϕ sin θ sinϕ sin θ cos θ

 . (117)

There are 9 direction cosines cos θij (in 3D space) but orthonormality of
both bases imply several constraints, so these 9 angles are not independent and
the Q matrices have very special characteristics.

These constraints follow from (111), (112) which must hold for any (v1, v2, v3)
and (V1, V2, V3). Substituting (112) into (111) (watching out for dummy in-
dices!) yields

vi = QikQjk vj , ∀vi ⇒ QikQjk = δij . (118)

This means that the rows of matrix Q (114) are orthogonal to each other and
of unit magnitude. Likewise, substituting (111) into (112) gives

Vi = QkiQkj Vj , ∀Vi ⇒ QkiQkj = δij , (119)

and the columns of matrix Q (114) are also orthogonal to each other and of unit
magnitude.

These two sets of orthogonal relationships can also be derived more geomet-
rically as follows. The coefficient Qij = ei · Ej is both the j component of ei
in the {E1,E2,E3} basis, and the i component of Ej in the {e1, e2, e3} basis.
Therefore we can write

ei = (ei ·Ej)Ej = Qij Ej , (120)

where Qij Ej ≡ Qi1E1 +Qi2E2 +Qi3E3 in the summation convention. In other
words,

ei ≡ (Qi1, Qi2, Qi3)

in the basis (E1,E2,E3), and this is the i-th row of matrix Q (114). Now the
e’s are mutually orthogonal unit vectors, ei · ej = δij but from the previous
equation

ei · ej = QikEk ·QjlEl = QikQjlEk ·El = QikQjlδkl = QikQjk. (121)

hence
ei · ej = QikQjk = δij . (122)

So the rows of Q are orthonormal because they are the components of (e1, e2, e3)
in the basis (E1,E2,E3).

Likewise,
Ej = (Ej · ek) ek = Qkj ek, (123)

where Qkj ek ≡ Q1je1 +Q2je2 +Q3je3, and

Ej ≡ (Q1j , Q2j , Q3j)
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in the basis (e1, e2, e3), this corresponds to the j-th column of matrix Q (114).
Then

Ei ·Ej = QkiQkj = δij , (124)

and the columns of Q are orthonormal because they are the components of
(E1,E2,E3) in the basis (e1, e2, e3).

A square matrix whose rows are mutually orthonormal to each other will
have mutually orthonormal columns, and vice-versa. Such a matrix is called an
orthogonal matrix.

Exercises

1. Find Q if (e1, e2, e3) is the right hand rotation of (E1,E2,E3) about E3

by angle ϕ. Verify (122) and (124) for your Q. If v = ViEi, find the
components of v in the basis (e1, e2, e3) in terms of (V1, V2, V3) and ϕ.

2. Find Q if (e1, e2, e3) is the right hand rotation of (E1,E2,E3) about E2

by angle θ. Verify (122) and (124) for your Q.

3. Find Q if e1 = −E1, e2 = E3, e3 = E2 and verify (122) and (124) for it.

4. Derive (117) (i) using meridional and equatorial projections as in section
1.3, (ii) finding e3 by projections onto E3 and ρ̂ then E1 and E2, then
calculating e2 = (E3 × e3)/|E3 × e3| and e1 = e2 × e3.

5. Verify that the rows of (115) and (117) are orthonormal, and likewise for
the columns.

6. Find Q if {E1,E2,E3} is an Earth basis as defined in the text and
{e1, e2, e3} is a local basis at longitude ϕ and latitude λ with e1 east,
e2 north and e3 up. Write Q in terms of ϕ and λ.

7. Orthogonal projection of a 3D scene. One way to make a 2D picture of a
3D scene is to plot the orthogonal projection of the 3D data onto a plane
perpendicular to the viewpoint at azimuth α and elevation λ. Find the
relevant Q in terms of α and λ and specify how to obtain the 2D plotting
data from the 3D data.

8. The velocity of a satellite is v1 east, v2 north, v3 up as measured from
a cartesian basis located at longitude ϕ, latitude λ. What are the corre-
sponding velocity components with respect to the Earth basis?

9. The velocity of a satellite is v1 east, v2 north, v3 up as measured from a
cartesian basis located at longitude ϕ1, latitude λ1. What are the corre-
sponding velocity components with respect to a local basis at longitude
ϕ2, latitude λ2? Derive and explain an algorithm to compute those com-
ponents.

10. In relation to (118), prove that if vi = Aijvj for all vi then Aij = δij .
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11. Explain why the determinant of any orthogonal matrix Q is ±1. When is
det(Q) = +1 and when is it −1, in general? Give explicit examples.

12. If a and b are two arbitrary vectors and (e1, e2, e3) and (e′1, e
′
2, e
′
3) are

two distinct orthonormal bases, we have shown that aibi = a′ib
′
i (eqn. (45),

here with summation convention). Verify this invariance directly from the
transformation rule (111), v′i = Qijvj , showing your mastery of index

notation. (Here Qij , e′i · ej).

13. If c is the rotation of b about a by α (exercise 9 in cross product section)
then ci = Aijbj in a cartesian basis. Find Aij in terms of α and the
cartesian components of a. Show that the matrix Aij is orthogonal. Note
that this is not a change of basis, it is a rotation of vectors, however
rotation of vectors and rotation of bases are closely connected.

14. Let v = b − 2(â · b)â yielding vi = Aijbj in a cartesian basis. Find Aij .
Show that Aij is an orthogonal matrix. Note that this is not a change of
basis.

13.2 Matrices

That Q was a very special matrix, an orthogonal matrix. More generally a
3-by-3 real matrix A is a table of 9 real numbers

A ≡ [Aij ] ≡

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (125)

Matrices are denoted by a capital letter, e.g. A and Q and by square brackets
[ ]. By convention, vectors in R3 are defined as 3-by-1 matrices e.g.

x =

 x1

x1

x3

 ,
although for typographical reasons we often write x = (x1, x2, x3) but not
[x1, x2, x3] which would denote a 1-by-3 matrix, or row vector. The term ma-
trix is similar to vectors in that it implies precise rules for manipulations of
these objects (for vectors these are the two fundamental addition and scalar
multiplication operations with specific properties, see Sect. 2).

Matrix-vector multiply

Equation (111) shows how matrix-vector multiplication should be defined. The
matrix vector product Ax (A 3-by-3, x 3-by-1) is a 3-by-1 vector b in R3 whose
i-th component is the dot product of row i of matrix A with the column x,

Ax = b ⇔ bi = Aijxj (126)
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where Aijxj ≡ Ai1x1+Ai2x2+Ai3x3 in the summation convention. The product
of a matrix with a (column) vector is performed row-by-column. This product
is defined only if the number of columns of A is equal to the number of rows of
x. A 2-by-1 vector cannot be multiplied by a 3-by-3 matrix.

Identity Matrix

There is a unique matrix such that Ix = x, ∀x. For x ∈ R3, show that

I =

 1 0 0
0 1 0
0 0 1

 . (127)

Matrix-Matrix multiply

Two successive linear transformation of coordinates, that is,

x′i = Aij xj , then x′′i = Bij x
′
j

(summation over repeated indices) can be combined into one transformation
from xj to x′′i

x′′i = BikAkj xj , Cij xj

where
Cij , (BA)ij = BikAkj . (128)

This defines matrix multiplication. The product of two matrices BA is a matrix,
C say, whose (i, j) element Cij is the dot product of row i of B with column j
of A. As for matrix-vector multiplication, the product of two matrices is done
row-by-column. This requires that the number of columns of the first matrix in
the product (B) equals the number of rows of the second matrix (A). Thus,
the product of a 3-by-3 matrix and a 2-by-2 matrix is not defined, for instance.
We can only multiply M-by-N by an N-by-P, that is ‘inner dimensions must
match’. In general, BA 6= AB, matrix multiplication does not commute. You
can visualize this by considering two successive rotation of axes, one by angle α
about e3, followed by one by β about e′2. This is not the same as rotating by β
about e2, then by α about e′3. You can also see it algebraically

(BA)ij = BikAkj 6= AikBkj = (AB)ij .

Matrix transpose

The transformation (112) involves the sum Ajix
′
j that is similar to the matrix

vector multiply except that the multiplication is column-by-column! To write
this as a matrix-vector multiply, we define the transpose matrix AT whose row
i correspond to column i of A. If the (i, j) element of A is Aij then the (i, j)
element of AT is Aji

(AT )ij = (A)ji.
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Then
xi = Ajix

′
j ⇔ x = ATx′. (129)

A symmetric matrix A is such that A = AT , but an anti-symmetric matrix A is
such that A = −AT .
B Show that the transpose of a product is equal to the product of the transposes
in reverse order (AB)T = BTAT .

13.3 Spherical coordinates with a twist: Euler Angles

Arbitrary matrices are typically denoted A, while orthogonal matrices are typ-
ically denoted Q in the literature. In matrix notation, the orthogonality condi-
tions (122), (124) read

QTQ = QQT = I. (130)

Such a matrix is called an orthogonal matrix (it should have been called or-
thonormal). A proper orthogonal matrix has determinant equal to 1 and cor-
responds geometrically to a pure rotation. An improper orthogonal matrix has
determinant -1. It corresponds geometrically to a combination of rotations and
an odd number of reflections. The product of orthogonal matrices is an orthog-
onal matrix but the sum (performed element by element) is not.

As we have seen at the beginning of this section, the elements Qij of an
orthogonal matrix can be interpreted as the dot products of unit vectors of
two distinct orthonormal bases, Qij = ei · Ej = cos θij , where θij is the angle
between ei and Ej . In 3D, there are 9 such angles but these angles are not
independent since both bases (e1, e2, e3) and (E1,E2,E3) consist of mutually
orthogonal unit vectors. If both bases are right handed (or both are left handed),
each can be transformed into the other through only three elementary rigid body
rotations, in general. Therefore, any 3 by 3 proper orthogonal matrix can be
decomposed into the product of three elementary orthogonal matrices. The 3
angles corresponding to those 3 elementary rotations are called Euler angles.

That only 3 angles are needed should not be a surprise since we learned early
in this chapter that an arbitrary direction â in 3D space can be specified by
2 angles. Thus, 2 angles ϕ and θ are sufficient to specify e3, say, in terms of
(E1,E2,E3) and we only need one extra angle, call it ζ, to specify the orienta-
tion of (e1, e2) about the direction e3. That’s spherical coordinates ϕ, θ plus a
twist ζ. Thus we can construct, or represent, the matrix Q corresponding to the
transformation from (E1,E2,E3) to (e1, e2, e3) in the following 3 elementary
rotations.

1. Rotation about E3 by ϕ to obtain the intermediate basis

e′1 = cosϕE1 +sinϕE2, e′2 = − sinϕE1 +cosϕE2, e′3 = E3, (131)

defining Q′ij = e′i ·Ej , yields the rotation matrix

Q′ =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (132)
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for the rotation from (E1,E2,E3) to (e′1, e
′
2, e
′
3). This rotation about E3

by ϕ is such that e′2 is in the direction of E3 × e3, or in other words so
that the target e3 is in the plane of e′1 and E3 = e′3.

2. Rotation about e′2 by angle θ to obtain the basis

e′′1 = cos θ e′1 − sin θ e′3, e′′2 = e′2, e′′3 = sin θ e′1 + cos θ e′3 (133)

with Q′′ij = e′′i · e′j this corresponds to the rotation matrix

Q′′ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (134)

for the rotation from (e′1, e
′
2, e
′
3) to (e′′1 , e

′′
2 , e
′′
3). These 2 rotations achieve

e′′3 = e3, the target e3 but the vectors (e′′1 , e
′′
2) do not necessarily match

the target (e1, e2).

3. To match those vectors in general requires another elementary rotation
about e′′3 = e3 to align (e′′1 , e

′′
2) with the target basis (e1, e2)

e1 = cos ζ e′′1 + sin ζ e′′2 , e2 = − sin ζ e′′1 + cos ζ e′′2 , e3 = e′′3 (135)

defining Q′′′ij = e′′′i · e′′j , this corresponds to the rotation matrix

Q′′′ =

 cos ζ sin ζ 0
− sin ζ cos ζ 0

0 0 1

 . (136)

The orthogonal transformation Q from (E1,E2,E3) to (e1, e2, e3) is then ob-
tained by taking the matrix product

Q = Q′′′Q′′Q′

=

 cos ζ sin ζ 0
− sin ζ cos ζ 0

0 0 1

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 . (137)

Watch out for the order! The first transformation is the rightmost matrix Q′.
Any 3 by 3 proper orthogonal matrix Q can thus be represented with only

three angles, (ϕ, θ, ζ), for example. There are many ways to choose those angles
however. The choice made above is consistent with spherical coordinates and
would be labelled a z-y-z representation in the literature since we rotated about
the original z axis, then the new y, then the new z again. A z-x-z definition
would perform a rotation about the original z so that e′1 is in the E3 × e3

direction, instead of e′2 as we chose above. Then a rotation about e′1 would be
performed to align e′′3 = e3, followed by a rotation about e′′3 to align (e′′1 , e

′′
2).

There are 4 other possible choices of Euler angles: x-y-z, x-z-x, y-x-y, y-z-y. In
all cases, the 1st and 3rd rotation are about the same relative direction.
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Euler angles inherit a singularity from spherical coordinates where the az-
imuth ϕ is undetermined when the polar angle θ = 0 or π. Likewise in (137)
when θ = 0 or π, the first and 3rd rotation are about the same actual direction,
hence ϕ and ζ are not uniquely determined. When θ is near 0 or π, the decom-
position (137) may lead to large angles ϕ, ζ that almost cancel each other to
yield a small net effect. This may lead to computational inaccuracies, or wild
motions if the angles are used to control a 3D body. This singularity issue is
known as ‘Gimbal lock’ in mechanical engineering. 9/1/14 5:12 PM

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/c/c1/Yaw_Axis_Corrected.svg

Yaw Axis
Roll Axis

Pitch Axis

Figure 1.8: Airplane attitude, yaw, pitch and roll, from wikipedia.

In aircraft dynamics and control, 3 angles about 3 distinct axes are used as
illustrated in fig. 1.8. Imagine a frame x̂, ŷ, ẑ attached to an airplane, with x̂
pointing from tail to nose, ẑ perpendicular to the plane of the airplane and ŷ
pointing from one wingtip to the other. The orientation of the airplane with
respect to a fixed reference frame can be specified by the heading (or yaw) —
the angle around ẑ to align x̂ with the desired horizontal direction, the elevation
(or pitch) — the angle about ŷ to pitch the nose up or down to align x̂ with the
desired direction in the vertical plane, and the bank (or roll) – the angle about
x̂ to rotate the wings around the axis of the airplane to achieve the desired bank
angle.

Gram-Schmidt

To define an arbitrary orthogonal matrix, we can then simply pick any three ar-
bitrary (Euler) angles ϕ, θ, ζ and construct an orthonormal matrix using (137).
Another important procedure to do this is the Gram-Schmidt procedure: pick
any three a1, a2, a3 and orthonormalize them, i.e.

(1) First, define q1 = a1/‖a1‖ and a′2 = a2−(a2 ·q1)q1, a′3 = a3−(a3 ·q1)q1,

(2) next, define q2 = a′2/‖a′2‖ and a′′3 = a′3 − (a′3 · q2)q2,

(3) finally, define q3 = a′′3/‖a′′3‖.
The vectors q1, q2, q3 form an orthonormal basis. This procedure generalizes
not only to any dimension but also to other vector spaces, e.g. to construct
orthogonal polynomials.
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Exercises

1. Give explicit examples of 2-by-2 and 3-by-3 symmetric and antisymmetric
matrices.

2. If xT = [x1, x2, x3], calculate xTx and xxT .

3. For x ∈ Rn, show that xTx and xxT are symmetric ((i) explicitly using
indices, (ii) by matrix manipulations).

4. Let v = a × b in E3 yielding vi = Aijbj in a cartesian basis. Find Aij .
Show that Aij is not an orthogonal matrix but that it is anti-symmetric.

5. If A is a square matrix of appropriate size, what is xTAx?

6. Show that the product of two orthogonal matrices is an orthogonal matrix.
Interpret geometrically.

7. What is the general form of a 3-by-3 orthogonal and symmetric matrix?

8. What is the orthogonal matrix corresponding to a reflection about the
x− z plane? What is its determinant?

9. What is the most general form of a 2-by-2 orthogonal matrix?

10. We want to rotate an object (i.e. a set of points) by an angle γ about
an axis passing through the origin. Provide an algorithm (or a Matlab or
Python code) to calculate the cartesian coordinates of the rotated points.
Compare (1) the vector approach of exercise 9 in the cross-product section
and (2) the elementary rotation matrix approach. The latter performs two
elementary rotation of bases to obtain the coordinates in a basis whose e3

is the rotation direction, rotates in that basis, then returns to the original
basis. How many elementary rotation matrices are involved? Compare
the computational complexity of both approaches.

11. What are Euler angles? Are they unique (modulo 2π)?

12. Let Q be any orthogonal matrix. What is the form of its ZYZ Euler angle
decomposition? What is the form of its ZXZ Euler angle decomposition?
What is the form of its ZYX decomposition?

13. Find the ZYZ, ZXZ and ZYX factorizations of (117).

14. The othonormal basis {e′1, e′2, e′3} is the rotation of {e1, e2, e3} by ζ about
e3. The transformation from {E1,E2,E3} to {e1, e2, e3} is given in
(117). What is the matrix corresponding to the transformation from
{E1,E2,E3} to {e′1, e′2, e′3} ? Find an elementary rotation factorization
of that matrix.

15. Prove that the product of two orthogonal matrices is an orthogonal matrix
but that their sum is not, in general.
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16. What are the Euler angles and the transformation matrixQ from {E1,E2,E3}
to {e1, e2, e3} when the latter is the (right-handed) rotation of the former
by angle α about the direction E1 +E2 +E3?

17. The basis {e1, e2, e3} is the rotation of {E1,E2,E3} by α about â. What
is the ZYZ Euler factorization of the matrix Q corresponding to the trans-
formation {E1,E2,E3} → {e1, e2, e3}?

18. The basis {e1, e2, e3} is the rotation of {E1,E2,E3} by ε � 1 about
E1 − E2. What is the matrix Q corresponding to the transformation
{E1,E2,E3} → {e1, e2, e3}? What is its ZYZ factorization? Discuss and
visualize the elementary rotations when ε� 1. Imagine that you are con-
trolling a drone and {e1, e2, e3} is fixed in the drone while {E1,E2,E3}
is your fixed frame.

19. Derive an algorithm to find the ZYZ Euler angle representation of the
general orthogonal matrix

Q =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .
20. Pick three non-trivial but arbitrary vectors in R3 (e.g. using Matlab’s

randn(3,3) for instance), then construct an orthonormal basis q1, q2,
q3 using the Gram-Schmidt procedure. Verify that the matrix Q =
[q1, q2, q3] is orthogonal. Note in particular that the rows are orthogonal
eventhough you orthogonalized the columns only.

21. Pick two arbitrary vectors a1, a2 in R3 and orthogonalize them to con-
struct q1, q2. Consider the 3-by-2 matrix Q = [q1, q2] and compute QQT

and QTQ. Explain.

13.4 Determinant of a matrix (Optional)

See earlier discussion of determinants (section on mixed product). The deter-
minant of a matrix has the explicit formula det(A) = εijkAi1Aj2Ak3, the only
non-zero terms are for (i, j, k) equal to a permutation of (1, 2, 3). We can de-
duce several fundamental properties of determinants from that formula. We
can reorder Ai1Aj2Ak3 into A1lA2mA3n using an even number of permutations
if (i, j, k) is an even perm of (1,2,3) and an odd number for odd permutations.
So

det(A) = εijkAi1Aj2Ak3 = εlmnA1lA2mA3n = det(AT ). (138)

Another useful result is that

εijkAilAjmAkn = εijkεlmnAi1Aj2Ak3. (139)
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We can then prove that det(AB) = det(A) det(B) by a direct calculation in
compact index notation:

det(AB) = εijkAilBl1AjmBm2AknBn3 = εijkεlmnAi1Aj2Ak3Bl1Bm2Bn3

= det(A) det(B)
(140)

These results and manipulations generalize straightforwardly to any dimension.

13.5 Three views of Ax = b (Optional)

Column View

I View b as a linear combination of the columns of A.

Write A as a row of columns, A = [a1,a2,a3], where aT1 = [a11, a21, a31]
etc., then

b = Ax = x1a1 + x2a2 + x3a3

and b is a linear combination of the columns a1, a2, a3. If x is unknown, the
linear system of equations Ax = b will have a solution for any b if and only if the
columns form a basis, i.e. iff det(a1,a2,a3) ≡ det(A) 6= 0. If the determinant
is zero, then the 3 columns are in the same plane and the system will have a
solution only if b is also in that plane.

As seen in earlier exercises, we can find the components (x1, x2, x3) by think-
ing geometrically and projecting on the reciprocal basis e.g.

x1 =
b · (a2 × a3)

a1 · (a2 × a3)
≡ det(b,a2,a3)

det(a1,a2,a3)
. (141)

Likewise

x2 =
det(a1, b,a3)

det(a1,a2,a3)
, x3 =

det(a1,a2, b)

det(a1,a2,a3)
.

This is a nifty formula. Component xi equals the determinant where vector
i is replaced by b divided by the determinant of the basis vectors. You can
deduce this directly from the algebraic properties of determinants, for example,

det(b,a2,a3) = det(x1a1 + x2a2 + x3a3,a2,a3) = x1 det(a1,a2,a3).

This is Cramer’s rule and it generalizes to any dimension, however computing
determinants in higher dimensions can be very costly and the next approach is
computationally much more efficient.

Row View:

I View x as the intersection of planes perpendicular to the rows of A.

View A as a column of rows, A = [n1,n2,n3]T , where nT1 = [a11, a12, a13] is
the first row of A, etc., then

b = Ax =

 nT1
nT2
nT3

x ⇔

 n1 · x = b1
n2 · x = b2
n3 · x = b3
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and x is seen as the position vector of the intersection of three planes. Recall
that n ·x = C is the equation of a plane perpendicular to n and passing through
a point x0 such that n · x0 = C, for instance the point x0 = Cn/‖n‖.

To find x such that Ax = b, for given b and A, we can combine the equations
in order to eliminate unknowns, i.e. n1 · x = b1

n2 · x = b2
n3 · x = b3

⇔

 n1 · x = b1
(n2 − α2n1) · x = b2 − α2b1
(n3 − α3n1) · x = b3 − α3b1

where we pick α2 and α3 such that the new normal vectors n′2 = n2 − α2n1

and n′3 = n3 − α3n1 have a zero 1st component i.e. n′2 = (0, a′22, a
′
23), n′3 =

(0, a′32, a
′
33). At the next step, one defines a n′′3 = n′3 − β3n

′
2 picking β3 so that

the 1st and 2nd components of n′′3 are zero, i.e. n′′3 = (0, 0, a′′33). And the re-
sulting system of equations is then easy to solve by backward substitution. This
is Gaussian Elimination which in general requires swapping of equations to
avoid dividing by small numbers. We could also pick the α’s and β’s to orthog-
onalize the n’s, just as in the Gram-Schmidt procedure. That is better in terms
of roundoff error and does not require equation swapping but is computationally
twice as expensive as Gaussian elimination.

Linear Transformation of vectors into vectors

I View b as a linear transformation of x.

Here A is a ‘black box’ that transforms the vector input x into the vector
output b. This is the most general view of Ax = b. The transformation is
linear, this means that

A(αx+ βy) = α(Ax) + β(Ay), ∀ α, β ∈ R,x,y ∈ Rn (142)

This can be checked directly from the explicit definition of matrix-vector mul-
tiply: ∑

k

Aik(αxk + βyk) =
∑
k

αAikxk +
∑
k

βAikyk.

This linearity property is a key property because if A is really a black box (e.g.
the “matrix” is not actually known, it’s just a machine that takes a vector and
spits out another vector) we can figure out the effect of A onto any vector x
once we know Ae1, Ae2, . . . , Aen.

This transformation view of matrices leads to the following extra rules of
matrix manipulations.

Matrix-Matrix addition

Ax+Bx = (A+B)x ⇔
∑
k

Aikxk+
∑
k

Bikxk =
∑
k

(Aik+Bik)xk, ∀xk (143)

so matrices are added components by components and A + B = B + A, (A +
B)+C = A+(B+C). The zero matrix is the matrix whose entries are all zero.
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Matrix-scalar multiply

A(αx) = (αA)x⇔
∑
k

Aik(αxk) =
∑
k

(αAik)xk, ∀α, xk (144)

so multiplication by a scalar is also done component by component and α(βA) =
(αβ)A = β(αA).

In other words, matrices can be seen as elements of a vector space! This
point of view is also useful in some instances (in fact, computer languages like
C and Fortran typically store matrices as long vectors. Fortran stores it column
by column, and C row by row). The set of orthogonal matrices does NOT
form a vector space because the sum of two orthogonal matrices is not, in
general, an orthogonal matrix. The set of orthogonal matrices is a group, the
orthogonal group O(3) (for 3-by-3 matrices). The special orthogonal group SO(3)
is the set of all 3-by-3 proper orthogonal matrices, i.e. orthogonal matrices with
determinant =+1 that correspond to pure rotation, not reflections. The motion
of a rigid body about its center of inertia is a motion in SO(3), not R3. SO(3)
is the configuration space of a rigid body.

Exercises

B Pick a random 3-by-3 matrix A and a vector b, ideally in matlab using its
A=randn(3,3), b=randn(3,1). Solve Ax = b using Cramer’s rule and Gaus-
sian Elimination. Ideally again in matlab, unless punching numbers into your
calculator really turns you on. Matlab knows all about matrices and vectors.
To compute det(a1,a2,a3) = det(A) and det(b,a2,a3) in matlab, simply use
det(A), det(b,A(:,2),A(:,3)). Type help matfun, or help elmat, and or
demos for a peek at all the goodies in matlab.

13.6 Eigenvalues and Eigenvectors (Math 320 not 321)

Problem: Given a matrix A, find x 6= 0 and λ such that

Ax = λx. (145)

These special vectors are eigenvectors for A. They are simply shrunk or elon-
gated by the transformation A. The scalar λ is the eigenvalue. The eigenvalue
problem can be rewritten

(A− λI)x = 0

where I is the identity matrix of the same size as A. This will have a non-zero
solution iff

det(A− λI) = 0. (146)

This is the characteristic equation for λ. If A is n-by-n, it is a polynomial of
degree n in λ called the characteristic polynomial.

[Future version of these notes will discuss the important connection between
symmetric and orthogonal matrices]
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Chapter 2

Vector Calculus

1 Vector function of a scalar variable

P

r0 r(t)

v0

O

The position vector of a moving particle is a vector function r(t) of the scalar
time t. For instance, a particle moving a constant velocity v0 has position vector
r = r0 + tv0 = r(t) where r0 is the position at t = 0. The derivative of a vector
function r(t) is defined as usual as the limit of a ratio

dr

dt
= lim

∆t→0

r(t+ ∆t)− r(t)

∆t
. (1)

The derivative of the position vector is of course the instantaneous velocity ∆r

dr/dt

r(t)

r(t+ ∆t)

O

C

vector v(t) = dr/dt, and for the simple motion r = r0 + tv0, dr/dt = v0. In
general, a position vector function r(t) describes a curve C in three-dimensional
space, the particle trajectory, and v(t) is tangent to that curve as we will dis-
cuss further in section 5.1 below. The derivative of the velocity vector is the
acceleration vector a(t) = dv/dt. We sometime use Newton’s dot notation for
time derivatives: ṙ = dr/dt, r̈ = d2r/dt2,etc.

Rules for derivatives of vector functions are similar to those of simple func-
tions. The derivative of a sum of vector functions is the sum of the derivatives,

d

dt
(a+ b) =

da

dt
+
db

dt
. (2)

We can prove as in calc 1 the various product rules:

d

dt
(αa) =

dα

dt
a+ α

da

dt
,

d

dt
(a · b) =

da

dt
· b+ a · db

dt
, (3)

d

dt
(a× b) =

da

dt
× b+ a× db

dt
, (4)

d

dt
[(a× b) · c] = (

da

dt
× b) · c+ (a× db

dt
) · c+ (a× b) · dc

dt
, (5)
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therefore

d

dt
det(a, b, c) = det(

da

dt
, b, c) + det(a,

db

dt
, c) + det(a, b,

dc

dt
). (6)

All of these are as expected but the formula for the derivative of a determinant
is worth noting because it generalizes to any dimension.1

Exercises

1. Show that if u(t) is any vector with constant length, then

u · du
dt

= 0, ∀t. (7)

The derivative of a vector of constant magnitude is orthogonal to the
vector. [Hint: u · u = u2

0 ]

2. If r(t) is not of constant magnitude, what is the geometric meaning of
points where r · dr/dt = 0? Make sketches to illustrate such r(t) and
points.

3. Consider r(t) = a cos t+ b sin t where a, b are arbitrary constant vectors
in 3D space. Sketch r(t) and indicate all points where r · dr/dt = 0.

4. Show that d|a|/dt = â ·da/dt for any vector function a(t). Make a sketch
to illustrate.

5. If v(t) = dr/dt show that d(r×v)/dt = r×dv/dt. In mechanics, r×mv ,
L is the angular momentum of the particle of mass m and velocity v with
respect to the origin.

6. The position of a particle at time t is given by r(t) = x̂ a cos θ(t) +
ŷ a sin θ(t), with θ(t) = π cos t and x̂, ŷ orthonormal. What are the ve-
locity and the acceleration? Describe the particle motion.

7. A particle is rotating a constant angular velocity ω about a circular hoop
that rotates about a fixed diameter at angular velocity Ω. What are
the particle velocity and acceleration? What are the velocity and the
acceleration if the angular velocity around the hoop is not constant?

We now illustrate all these concepts and results by considering the basic
problems of classical mechanics: motion of a particle and motion of a rigid
body.

1For determinants in R3 it reads

d

dt

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ȧ1 b1 c1
ȧ2 b2 c2
ȧ3 b3 c3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a1 ḃ1 c1
a2 ḃ2 c2
a3 ḃ3 c3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a1 b1 ċ1
a2 b2 ċ2
a3 b3 ċ3

∣∣∣∣∣∣
and of course we could also take the derivatives along rows instead of columns.
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2 Motion of a particle

In classical mechanics, the motion of a particle of constant mass m is governed
by Newton’s law

F = ma, (8)

where F is the resultant of the forces acting on the particle and a(t) = dv/dt =
d2r/dt2 is its acceleration, with r(t) its position vector. Newton’s law is a vector
equation.

I Deduce the angular momentum law dL/dt = T where L , r × mv is the
angular momentum and T , r × F is the torque (see exercise 5 above).

Free motion

O

r
0

r

v0
P0

P

If F = 0 then a = dv/dt = 0 so the velocity of the particle is constant, v(t) = v0

say, and its position is given by the vector differential equation dr/dt = v0

whose solution is r(t) = r0 + tv0 where r0 is a constant of integration which
corresponds to the position of the particle at time t = 0. The particle moves in
a straight line through r0 parallel to v0.

Constant acceleration

d2r

dt2
=
dv

dt
= a(t) = a0 (9)

where a0 is a time-independent vector. Integrating we find

v(t) = a0t+ v0, r(t) = a0
t2

2
+ v0t+ r0 (10)

where v0 and r0 are vector constants of integration. They are easily interpreted r
0

r

a
0

O

v
0

P
0

P

as the velocity and position at t = 0. The trajectory is a parabola passing
through r0 parallel to v0 at t = 0. The parabolic motion is in the plane through
r0 that is parallel to v0 and a0 but the origin O may not be in that plane.

We can write this parabola in standard form by selecting cartesian axes such
that a0 = −gŷ, v0 = u0x̂+ v0ŷ and r0 = 0 then

r = xx̂+ yŷ + zẑ = −g t
2

2
ŷ + (u0x̂+ v0ŷ)t

yielding x = u0t, y = v0t− gt2/2. Eliminating t when u0 6= 0 yields

y =
v0

u0
x− g

2u2
0

x2.

Uniform rotation

v
0

v

A0

A

ω

P

P0

If a particle rotates with angular velocity ω about an axis (A, ω̂) that passes
through point A and is parallel to unit vector ω̂, then its velocity v = dr/dt is

v = ω × (r − r
A

) (11)
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where ω = ωω̂ is the rotation vector and r
A

=
−→
OA is the position vector of A.

If ω and A are constants, this is circular motion about the axis (A, ω̂). Let

s(t) = r(t) − r
A

=
−→
AP and s(0) = r(0) − r

A
, s0, then use the intrinsic

orthogonal basis

s
‖
0 = ω̂(ω̂ · s0), s⊥0 = s0 − s‖0, ω̂ × s⊥0

and the solution is

r
0

s⊥0

ω̂ × s⊥0

r

v v0

O

A
0

P

P
0

r(t) = rA + s
‖
0 + s⊥0 cosωt+ (ω̂ × s⊥0 ) sinωt, (12)

where rA + s
‖
0 =
−−→
OA

0
is the position vector of the circle center A

0
.

Motion under a central force

A force F = −F (r) r̂ where r = |r| that always points toward the origin (if
F (r) > 0, away if F (r) < 0 ) and depends only on the distance to the origin
is called a central force. The gravitational force for planetary motion and the
Coulomb force in electromagnetism are of that kind. Newton’s law for a particle
submitted to such a force is

m
dv

dt
= −F (r) r̂ (13)

where v = dr/dt and r(t) = rr̂ is the position vector of the particle, hence both
r and r̂ are functions of time t, in general. Motion due to such a force has two
conserved quantities, angular momentum and energy.

1. Conservation of angular momentum ∀ F (r)
The cross product of (13) with r yields

r × dv

dt
= 0⇔ d

dt
(r × v) = 0⇔ r × v = r0 × v0 ,

L0

m
(14)

where L0 = L0 L̂0 is a constant vector (exercise 5 in the previous section).

r0

r1r2

O

v0

v1

v2

Figure 2.1: Kepler’s law: The radius vector sweeps equal areas in equal times.
Here for the classic F (r) = 1/r2 in which case the trajectories are ellipses with
the origin as a focus.
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The vector L = r ×mv is called angular momentum in physics. The fact
that r×v is constant implies that the motion is in the plane that passes through
the origin O and is orthogonal to L0 (why?) and that ‘the radius vector sweeps
equal areas in equal times’. Indeed vdt = dr is the displacement during the
infinitesimal time span dt thus

r × vdt = r × dr =
L0

m
dt

but

dA(t) =
1

2
|r(t)× dr(t)| = L0

2m
dt

is the infinitesimal triangular area swept by r(t) in time dt. This yields Kepler’s
law of areas that the area swept by r(t) in time T is independent of the start
time t1

A =

∫ t1+T

t1

dA(t) =

∫ t1+T

t1

L0

2m
dt =

L0

2m
T.

2. Conservation of energy: kinetic + potential
The dot product of (13) with v yields

m
dv

dt
· v + F (r) r̂ · v = 0⇔ d

dt

(
m
v · v

2
+ V (r)

)
= 0, (15)

where V (r) is an antiderivative of F (r), dV (r)/dr = F (r). This follows from
the chain rule

dV (r)

dt
=
dV

dr

dr

dt
=
dV

dr
r̂ · v = F (r)r̂ · v

(exercise 4 in the previous section applied to r instead of a). This implies that(
m
|v|2

2
+ V (r)

)
(16)

is a constant, say E0. The first term, m|v|2/2, is the kinetic energy and the
second term, V (r), is the potential energy which is defined up to an arbitrary
constant. The constant E0 is the total conserved energy. Note that V (r) and
E0 can be negative but m|v|2/2 ≥ 0, so the physically admissible r domain is
that were V (r) is less or equal to E0. For the classic F (r) = 1/r2, the potential
V (r) = 1/r (up to constant physical factors).

Exercises:

1. Show that |r(t) − r
A
| remains constant if r(t) evolves according to (11)

even when ω is not constant. If ω and r
A

are constants, show that
ω̂ · (r − r

A
) and |v| are also constants. Given all those constants of mo-

tion, what type of particle motion is that? Find the force F required to
sustain this motion for a particle of mass m according to Newton’s law.
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2. Verify that (12) yields the correct initial condition at t = 0 and satisfies
the vector differential equation (11).

3. If dr/dt = ω × r with ω constant, show that d2r⊥/dt
2 = −ω2r⊥ where

r⊥ is the component of r perpendicular to ω and ω = |ω|.

4. Find r(t) if d2r/dt2 = −ω2r with ω constant. How does this differ from
the previous problem?

5. Find r(t) if mdv/dt = −k(r − r0)r̂ for constant m and arbitrary initial
conditions r(0) = r0 and v(0) = v0, where v = dr/dt, r = rr̂, with k, r0

a constant (modeling a spring of stiffness k and rest length r0). What is
the potential V (r) for this problem?

6. Find r(t) if d2r/dt2 = −r/r3 with r(0) = r0 and dr/dt(0) = v0.

3 Motion of a system of particles (optional)

Consider N particles of mass mi at positions ri, i = 1, . . . , N . The net force
acting on particle number i is F i and Newton’s law for each particle reads
mir̈i = F i. Summing over all i’s yields

N∑
i=1

mir̈i =

N∑
i=1

F i.

Great cancellations occur on both sides. On the left side, let ri = rc+si, where
rc is the center of mass and si is the position vector of particle i with respect
to the center of mass, then∑

i

miri =
∑
i

mi (rc + si) = Mrc +
∑
i

misi ⇒
∑
i

misi = 0,

as, by definition of the center of mass
∑
imiri = Mrc, where M =

∑
imi is the

total mass. If the masses mi are constants then
∑
imisi = 0 ⇒

∑
imiṡi = 0

⇒
∑
imis̈i = 0. In that case,

∑
imir̈i =

∑
imi (r̈c + s̈i) =

∑
imir̈c = M r̈c.

On the right-hand side, by action-reaction, all internal forces cancel out and the

resultant is therefore the sum of all external forces only
∑
i F i =

∑
i F

(e)
i =

F (e).
Therefore,

M r̈c = F (e) (17)

where M is the total mass and F (e) is the resultant of all external forces acting
on all the particles. The motion of the center of mass of a system of particles is
that of a single particle of mass M with position vector rc under the action of
the sum of all external forces. This is a fundamental theorem of mechanics.

There are also nice cancellations occurring for the motion about the center
of mass. This involves considering angular momentum and torques about the
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center of mass. Taking the cross-product of Newton’s law, mir̈i = F i, with si
for each particle and summing over all particles gives∑

i

si ×mir̈i =
∑
i

si × F i.

On the left hand side, ri ≡ rc + si and the definition of center of mass implies∑
imisi = 0. Therefore

∑
i

si ×mir̈i =
∑
i

si ×mi(r̈c + s̈i) =
∑
i

si ×mis̈i =
d

dt

(∑
i

si ×miṡi

)
.

This last expression is the rate of change of the total angular momentum about
the center of mass

Lc ≡
N∑
i=1

(si ×miṡi) .

On the right hand side, one can argue that the (internal) force exerted by particle
j on particle i is in the direction of the relative position of j with respect to i,
f ij ≡ αij(ri − rj). By action-reaction the force from i onto j is f ji = −f ij =
−αij(ri − rj), and the net contribution to the torque from the internal forces
will cancel out: ri × f ij + rj × f ji = 0. This is true with respect to any point
and in particular, with respect to the center of mass si × f ij + sj × f ji = 0.
Hence, for the motion about the center of mass we have

dLc
dt

= T (e)
c (18)

where T (e) =
∑
i si × F i is the net torque about the center of mass due to

external forces only. This is another fundamental theorem, that the rate of
change of the total angular momentum about the center of mass is equal to the
total torque due to the external forces only.

B If f ij = α (ri − rj) and f ji = α (rj − ri), show algebraically and geo-
metrically that si × f ij + sj × f ji = 0, where s is the position vector from the
center of mass.

4 Motion of a rigid body (optional)

The two vector differential equations for motion of the center of mass and evo-
lution of the angular momentum about the center of mass are sufficient to fully
determine the motion of a rigid body.

A rigid body is such that all lengths and angles are preserved within the rigid

body. If A, B and C are any three points of the rigid body, then
−−→
AB ·

−→
AC =

constant.
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Kinematics of a rigid body

Consider a right-handed orthonormal basis, e1(t), e2(t), e3(t) tied to the body.
These vectors are functions of time t because they are frozen into the body
so they rotate with it. However the basis remains orthonormal as all lengths
and angles are preserved. Hence ei(t) · ej(t) = δij ∀ i, j = 1, 2, 3, and ∀t and
differentiating with respect to time

dei
dt
· ej + ei ·

dej
dt

= 0. (19)

In particular, as seen in an earlier exercise, the derivative of a unit vector is
orthogonal to the vector: el · del/dt = 0, ∀l = 1, 2, 3. So we can write

del
dt
≡ ωl × el, ∀ l = 1, 2, 3 (20)

as this guarantees that el · del/dt = 0 for any ωl. Substituting this expression
into (19) yields

(ωi × ei) · ej + ei · (ωj × ej) = 0,

and rewriting the mixed products

(ei × ej) · ωi = (ei × ej) · ωj . (21)

Now let

ωl ≡
∑
k

ωklek = ω1le1 + ω2le2 + ω3le3,

so ωkl is the k component of vector ωl. Substituting in (21) gives∑
k

εijkωki =
∑
k

εijkωkj (22)

where as before εijk ≡ (ei×ej) ·ek. The sums over k have at most one non-zero
term. This yields the three equations

(i, j, k) = (1, 2, 3) −→ ω31 = ω32

(i, j, k) = (2, 3, 1) −→ ω12 = ω13

(i, j, k) = (3, 1, 2) −→ ω23 = ω21.
(23)

The second equation, for instance, says that the first component of ω2 is equal
to the first component of ω3. Now ωll is arbitrary according to (20) (why?), so
we can choose to define ω11, the first component of ω1, for instance, equal to
the first components of the other two vectors that are equal to each other, i.e.
ω11 = ω12 = ω13. Likewise, pick ω22 = ω23 = ω21 and ω33 = ω31 = ω32. This
choice implies that

ω1 = ω2 = ω3 ≡ ω (24)

The vector ω(t) is the Poisson vector of the rigid body.
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The Poisson vector ω(t) gives the rate of change of any vector tied to the

body. Indeed, if A and B are any two points of the body then the vector c ≡
−−→
AB

can be expanded with respect to the body basis e1(t), e2(t), e3(t)

c(t) = c1e1(t) + c2e2(t) + c3e3(t),

but the components ci ≡ c(t) ·ei(t) are constants because all lengths and angles,
and therefore all dot products, are time-invariant. Thus

dc

dt
=

3∑
i=1

ci
dei
dt

=

3∑
i=1

ci (ω × ei) = ω × c.

This is true for any vector tied to the body (material vectors), implying that
the Poisson vector is unique for the body.

Dynamics of rigid body

The center of mass of a rigid body moves according to the sum of the external
forces as for a system of particles. A continuous rigid body can be considered
as a continuous distribution of ‘infinitesimal’ masses dm

N∑
i=1

misi −→
∫
V

s dm

where the three-dimensional integral is over all points s in the domain V of the
body (dm is the ‘measure’ of the infinitesimal volume element dV , or in other
words dm = ρdV , where ρ(s) is the mass density at point s).

For the motion about the center of mass, the position vectors si are frozen
into the body hence ṡi = ω × si for any point of the body. The total angular
momentum for a rigid system of particles then reads

L =
∑
i

misi × ṡi =
∑
i

misi × (ω × si) =
∑
i

mi

(
|si|2ω − si (si · ω)

)
. (25)

and for a continuous rigid body

L =

∫
V

(
|s|2ω − s (s · ω)

)
dm. (26)

The Poisson vector is unique for the body, so it does not depend on s and
we should be able to take it out of the sum, or integral. That’s easy for the
‖s‖2ω term, but how can we get ω out of the

∫
s (s · ω) dm term?! We need

to introduce the concepts of tensor product and tensors to do this, but we can
give a hint by switching to index notation L → Li, s → si, |s| = s, ω → ωi,
with i = 1, 2, 3 and writing

Li =

∫
V

(
s2ωi − si (sjωj)

)
dm =

(∫
V

(
s2δij − sisj

)
dm

)
ωj , Jij ωj (27)

where J is the tensor of inertia of the rigid body, independent of the rotation
vector ω.
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5 Curves

5.1 Elementary curves

Recall the parametric equation of a line: r(t) = r0 + tv0, where r(t) =
−−→
OP is

the position vector of a point P on the line with respect to some ‘origin’ O, r0

is the position vector of a reference point on the line and v0 is a vector parallel
to the line. Note that this can be interpreted as the linear motion of a particle

P

r0 r(t)

v0

O

with constant velocity v0 that was at the point r0 at time t = 0 and r(t) is the
position at time t.

More generally, a vector function r(t) of a real variable t defines a curve
C. The vector function r(t) is the parametric representation of that curve and
t is the parameter. It is useful to think of t as time and r(t) as the position
of a particle at time t. The collection of all the positions for a range of t is
the particle trajectory. The vector ∆r = r(t + ∆t) − r(t) is a secant vector

∆r

dr/dt

r(t)

r(t+ ∆t)

O

C

connecting two points on the curve, if we divide ∆r by ∆t and take the limit
as ∆t→ 0 we obtain the vector dr/dt which is tangent to the curve at r(t). If
t is time, then dr/dt = v is the velocity.

θ

dr/dθ

r(θ)

Figure 2.2: r(θ) = a cos θ x̂ + a sin θ ŷ is a circle of radius a centered at O and
dr/dθ = −a sin θ x̂+ a cos θ ŷ is the tangent vector to the circle at r(θ).

The parameter can have any name and does not need to correspond to time.
For instance the circle of radius a centered at O can be parameterized by

r(θ) = x̂ a cos θ + ŷ a sin θ, (28)

where θ is a real parameter that can be interpreted as the angle between the
position vector and the x̂ basis vector.

The circle parameterization is easily extended to an arbitrary ellipse with
major radius a and minor radius b ⊥ a centered at C

r(θ) = r
C

+ a cos θ + b sin θ. (29)

Likewise,
r(t) = r

C
+ a cosh t+ b sinh t (30)
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r

r
C

abO

C

P
P

0

Figure 2.3: r(t) = r
C

+ a cos t+ b sin t, ellipse centered at C with major radius
a and minor radius b.

r

r
C

a
b

O

C

P

P
0

Figure 2.4: r(t) = r
C

+ a cosh t+ b sinh t, hyperbolic branch centered at C.

is a hyperbolic branch in the C,a, b plane, where the hyperbolic cosine and sine

cosh t ,
et + e−t

2
, sinh t ,

et − e−t

2

satisfy
cosh2 t− sinh2 t = 1

for any real t.

5.2 Speeding through Curves

Consider a point P (or a Particle, or a Plane, or a Planet) at position or radius

vector r =
−−→
OP at time t, thus r = r(t). In cartesian coordinates

r(t) = x(t)x̂+ y(t)ŷ + z(t)ẑ (31)

with fixed basis vector x̂, ŷ, ẑ, while in spherical coordinates

r(t) = r(t)r̂(t) (32)

where the magnitude r(t) and the direction r̂(t) are functions of t in general.
The radial direction r̂ is a function of the azimuthal angle ϕ and the polar
angle θ, r̂(ϕ, θ) as seen in Chapter 1, section 5. Thus the time dependence of r̂
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would specified by r̂(ϕ(t), θ(t)). Whatever those functions, we know well that
r̂ · dr̂/dt = 0.

The velocity v = dr/dt contains geometric information about the curve
C traced by P (t). Imagine for instance a car on highway 90, or a car on a
rollercoaster track. The position of the car defines the curve (road, track) but
also contains speed information about how fast the car is going along that track.
The concept of arclength – the distance along the curve – allows us to separate
speed information from trajectory information.

Arclength s is specified in differential form as

ds = |dr| =
√
dr · dr =

√
dx2 + dy2 + dz2, (33)

it should not be confused with the differential of distance to the origin r which
is

dr = d|r| = d(
√
x2 + y2 + z2) =

xdx+ ydy + zdz√
x2 + y2 + z2

= r̂ · dr (34)

The arclength s can be defined in terms of the speed v(t) = |v(t)| by the scalar
differential equation

ds

dt
= v =

∣∣∣∣drdt
∣∣∣∣ ≥ 0 (35)

the latter definition picks the direction of increasing s as the direction of travel
as t increases. Thus arclength s is a monotonically increasing function of t and
there is a one-to-one correspondence between s and t (but watch out if the
particle stops and backtracks.2).

Velocity v is

v =
dr

dt
=
dr

ds

ds

dt
= v t̂ (36)

where

t̂ =
dr

ds
=

dr/dt

|dr/dt|
=
v

v
(37)

is the unit tangent vector to the curve at point r. Here we think of r as r(s(t)),
that is, position r is given as a function of distance along a known track r(s) (for
instance, 42 miles from Madison westbound on highway 90 specifies a point in 3D
space) and s(t) as a function of time t obtained by integrating ds/dt = v(t) with
respect to time (for instance, given the speed v(t) of a car traveling westbound
on highway 90). In general, we write v = v v̂ for a velocity vector v of magnitude
v and direction v̂, however here we are separating geometric track information
t̂ from speed v along that track and the velocity direction v̂ is the same as the
track direction, v̂ = t̂, with the direction of t̂ given as the direction of increasing
time. So t̂ is the unit tangent to the curve at r and also the direction of motion
as t increases, v̂.

2That is dangerous and illegal when traveling westbound on Highway 90, but that might
happen on a roller coaster where the point is to jerk you around!
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Acceleration a is

a =
d2r

dt2
=
dv

dt
=
dv

ds

ds

dt
=
d(v t̂)

ds
v = v

dv

ds
t̂+ v2 dt̂

ds

=
d

ds

(
1

2
v2

)
t̂+ κv2 n̂

(38)

where
dt̂

ds
, κ n̂ =

1

R
n̂ (39)

is the rate of change of the curve direction t̂ with respect to distance along the
curve s. Since t̂ · t̂ = 1, we have t̂ ·dt̂/ds = 0 and n̂ is perpendicular to t̂. Indeed
n̂ points in the direction of the turn and is a unit vector that is normal (that
is orthogonal or perpendicular) to the curve at r. The curvature

κ =

∣∣∣∣dt̂ds
∣∣∣∣ =

1

R
(40)

has units of inverse length and can thus be written as 1/R where R = R(s) is the
local radius of curvature. Thus (38) yields a decomposition of the acceleration
a in terms of a component in the curve direction t̂ and a component in the turn
direction n̂. The n̂ component κv = v2/R is the centripetal acceleration of the
particle. This result is completely general, holding for any curve, not just for
circles, and in general κ = κ(s), v = v(s) vary along the curve.

Jerk j is

j =
d3r

dt3
=
da

dt
=
da

ds

ds

dt

=v
d2

ds2

(
1

2
v2

)
t̂+ v2 dv

ds

dt̂

ds
+ v

d

ds
(κv2)n̂+ κv3 dn̂

ds

=v
d2

ds2

(
1

2
v2

)
t̂+

d

ds

(
κv3
)
n̂+ κv3 dn̂

ds

=

(
v
d2

ds2

(
1

2
v2

)
− κ2v3

)
t̂+

d

ds

(
κv3
)
n̂+ κτv3 b̂

(41)

where
dn̂

ds
= τ b̂− κ t̂ (42)

in terms of the binormal
b̂ , t̂× n̂ (43)

and the torsion

τ(s) , b̂ · dn̂
ds

= −n̂ · db̂
ds

(44)

since n̂ · b̂ = 0 and t̂ · n̂ = 0 with dt̂/ds , κ n̂. The binormal b̂ will be constant
and the torsion τ will be 0 for a planar curve.
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The cross product of (36) with (38)

v × a = ṙ × r̈ = κ v3 b̂ (45)

provides another way to obtain the curvature κ and binormal b̂ directly from
the velocity and acceleration without passing through arclength, where v = ṙ =
dr/dt, a = r̈ = d2r/dt2 and v = |ṙ|. The dot product of (45) with (41),

(v × a) · j = (ṙ × r̈) · ...r = (κv3)2 τ (46)

yields an expression for the torsion τ once v and κ are known.

5.3 Integrals along curves, or ‘line integrals’

Line element: Given a curve C, the line element denoted dr is an ‘infinitesimal’
secant vector. This is a useful shortcut for the procedure of approximating the
curve by a succession of secant vectors ∆rn = rn−rn−1 where rn−1 and rn are
two consecutive points on the curve, with n = 1, 2, . . . , N integer, then taking
the limit max |∆rn| → 0 (so N →∞). In that limit, the direction of the secant
vector ∆rn becomes identical with that of the tangent vector at that point. If
an explicit parametric representation r(t) is known for the curve then

dr =
dr(t)

dt
dt (47)

rn−1
rn

∆rn C dr

r

C

The typical ‘line’ integral along a curve C has the form
∫
C F ·dr where F (r)

is a vector field, i.e. a vector function of position. If F (r) is a force, this integral
represent the net work done by the force on a particle as the latter moves along
the curve. We can make sense of this integral as the limit of a sum, namely
breaking up the curve into a chain of N secant vectors ∆rn as above then

∫
C
F · dr = lim

max |∆rn|→0

N∑
n=1

F n ·∆rn (48)

where F n is an estimate of the average value of F along the segments rn−1 →
rn. A simple choice is F n = F (rn) but better choices are the trapezoidal
rule F n = 1

2 (F (rn) + F (rn−1)), or the midpoint rule F n = F
(

1
2 (rn + rn−1)

)
.
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These different choices for F n give finite sums that converge to the same limit,∫
C F · dr, but the trapezoidal and midpoint rules will converge faster for nice

functions, and give more accurate finite sum approximations.
If an explicit representation r(t) is known then we can reduce the line integral

to a regular Calc I integral:∫
C
F · dr =

∫ tb

ta

(
F (r(t)) · dr(t)

dt

)
dt, (49)

where r(ta) is the starting point of curve C and r(tb) is its end point. These
may be the same point even if ta 6= tb (e.g. integral once around a circle from
θ = 0 to θ = 2π).

Likewise, we can use the limit-of-a-sum definition to make sense of many
other types of line integrals such as∫

C
f(r) |dr|,

∫
C
F |dr|,

∫
C
f(r) dr,

∫
C
F × dr.

The first one gives a scalar result and the latter three give vector results. Recall
from the previous section that ds = |dr| is differential arclength, not to be
confused with dr = d|r|, the differential of distance to the origin.
I One important example is∫

C
ds =

∫
C
|dr| = lim

|∆rn|→0

N∑
n=1

|∆rn| (50)

which is the length of the curve C from its starting point ra = r0 to its end
point rb = rN . If a parametrization r = r(t) is known then∫

C
|dr| =

∫ tb

ta

∣∣∣∣dr(t)

dt

∣∣∣∣ |dt| (51)

where ra = r(ta) and rb = r(tb). That’s almost a Calc I integral, except for
that |dt|, what does that mean?! Again you can understand that from the limit-
of-a-sum definition with t0 = ta, tN = tb and ∆tn = tn − tn−1. If ta < tb then
∆tn > 0 and dt > 0, so |dt| = dt and we’re blissfully happy. But if tb < ta then
∆tn < 0 and dt < 0, so |dt| = −dt and∫ tb

ta

(· · · )|dt| =
∫ ta

tb

(· · · )dt, if ta > tb. (52)

I A special example of a
∫
C F × dr integral is∫

C
r × dr = lim

|∆rn|→0

N∑
n=1

rn ×∆rn =

∫ tb

ta

(
r(t)× dr(t)

dt

)
dt (53)

This integral yields a vector 2Aẑ whose magnitude is twice the area A swept
by the position vector r(t) when the curve C lies in a plane perpendicular to ẑ
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and O is in that plane (recall Kepler’s law that ‘the radius vector sweeps equal
areas in equal times’ ). This follows from the fact that

1

2
rn ×∆rn = ∆A ẑ

is the area ∆A of the triangle with sides rn and ∆rn.

rn−1

rn

∆rn

∆A

C

ẑ

If C and O are not coplanar then the vectors rn ×∆rn are not necessarily
in the same direction and their vector sum is not the area swept by r. In that
more general case, the surface is conical and to calculate its area S we would
need to calculate S = 1

2

∫
C |r × dr|.

Exercises:

1. Show that (29) and (30) can be reduced to the standard equations for an
ellipse and a hyperbola, respectively, by choosing an appropriate basis and
eliminating the parameter.

2. What is the geometric interpretation for the angle θ in (29)? Is it the
same as the polar angle? [Hint: consider the circles of radius a and b]

3. Show that r(t) = a cos θ + b sin θ is an ellipse even if a and b are not
orthogonal. How do you find the major and minor radii vectors?

4. What is a curve with constant jerk? Find r(t) for such a curve.

5. Consider the curve r(t) = r0(1 − t)2 + 2t(1 − t)a + t2r1. Show that the
curve is planar. Show that the curve passes through the points r0 and
r1 and that v(0.5) is parallel to r1 − r0. What are v(0) and v(1) where
v = dr/dt? Sketch the curve in a generic case.

6. What is the curve described by r(t) = a cosωt x̂+ a sinωt ŷ + bt ẑ, where
a, b and ω are constant real numbers and x̂, ŷ, ẑ are a cartesian basis?
Sketch the curve. What are the velocity, acceleration and jerk for this
curve? Find t̂, n̂ and b̂ for this curve. What are the curvature and torsion
for this curve?
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7. (i) Show that the tangent, normal and binormal unit vectors each satisfy
the vector differential equation

dv

ds
= ω(s)× v

with ω = τ t̂+κb̂. Interpret geometrically. (ii) Write each equation in the
intrinsic (Frenet) frame t̂, n̂, b̂.

8. Consider the vector function r(θ) = rc + a cos θ e1 + b sin θ e2, where rc,
e1, e2, a and b are constants, with ei · ej = δij . What kind of curve is
this? Next, assume that rc, e1 and e2 are in the same plane. Consider
cartesian coordinates (x, y) in that plane such that r = xx̂+ yŷ. Assume
that the angle between e1 and x̂ is α. Derive the equation of the curve
in terms of the cartesian coordinates (x, y) (i) in parametric form, (ii) in
implicit form f(x, y) = 0. Simplify your equations as much as possible.

9. Generalize the previous exercise to the case where rc is not in the same
plane as e1 and e2. Consider general cartesian coordinates (x, y, z) such
that r = xx̂+yŷ+zẑ. Assume that all the angles between e1 and e2 and
the basis vectors {x̂, ŷ, ẑ} are known. How many independent angles is
that? Specify those angles. Derive the parametric equations of the curve
for the cartesian coordinates (x, y, z) in terms of the parameter θ.

10. Derive integrals for the length and area of the planar curve in the previous
exercise. Clean up your integrals and compute them – if possible (one is
trivial, the other is not).

11. Calculate
∫
C dr and

∫
C r ·dr along the curve of the preceding exercise from

r(0) to r(−3π/2). What are these integrals if C is an arbitrary curve from
point A to point B?

12. Calculate
∫
CB · dr and

∫
CB × dr with B = (ẑ × r)/|ẑ × r|2 when C is

the circle of radius R in the x, y plane centered at the origin. How do the
integrals depend on R? [Hint: visualize B and the curve]

13. If F (t) = mdv/dt with v = dr/dt, show that
∫
C F · dr = 1

2m
(
v2
B
− v2

A

)
for any curve C from A to B parameterized by r(t), where m is a constant
and v

A
= |v| at A, v

B
= |v| at B.

14. Show that
∮
C r × dr = 2A n̂ where C is a closed curve in a plane perpen-

dicular to n̂ and A is the area enclosed by the curve, even if O is not in
the plane of the curve.

6 Surfaces

6.1 Parameterizations

Surfaces can be specified in implicit form as

F (r) = 0 (54)
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where F is a scalar function of position, F : E3 → R, with r the position vector
in 3D Euclidean space E3. For example, a sphere of radius R centered at the
origin:

F (r) = r · r −R2 = 0 = x2 + y2 + z2 −R2,

or a plane perpendicular to a = a1x̂+ a2ŷ + a3ẑ,

F (r) = a · r − α = 0 = a1x+ a2y + a3z − α.

Surfaces can also be specified in explicit or parametric form as

r = r(u, v) (55)

where r(u, v) is a vector function of two real parameters u and v, r(u, v) : R2 →
E3. Those parameters are coordinates for points on the surface.

Example: If b and c are any two non-parallel vectors that are both perpen-
dicular to a, then any point on the plane a ·r−α = 0 can be specified explicitly
by

r =
α

a
â+ u b+ v c = r(u, v)

for any real u and v.

�

Figure 2.5: Conceptual example of a vector function r(u, v) providing a mapping
from the triangle with vertices (0, 0), (1, 0), (1, 1) in the (u, v) plane to the curvy
triangular surface S in the 3D (x, y, z) Euclidean space.

Example: If A,B,C are the three vertices of any triangle then any point P

on that triangle is such that its position vector
−−→
OP = r satisfies

r =
−→
OA+ u

−−→
AB + v

−−→
BC = r(u, v)

for any (u, v) in the domain 0 ≤ u ≤ 1, 0 ≤ v ≤ u.

�
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Example: For the sphere of radius R centered at O, we can solve x2 +
y2 + z2 − R2 = 0 for z as a function of x, y to obtain the parameterization
z = ±

√
R2 − x2 − y2 and

r(x, y) = x x̂+ y ŷ ±
√
R2 − x2 − y2 ẑ, (56)

which is defined for all (x, y) in the disk x2 + y2 ≤ R2. There are two vector
functions r(x, y) needed to describe the spherical surface, one for the upper or

northern hemisphere with z =
√
R2 − x2 − y2 and one for the lower or southern

hemisphere with z = −
√
R2 − x2 − y2.

�
Example: Spherical coordinates. The same sphere surface x2 +y2 + z2 = R2

can be parametrized as

r(θ, ϕ) = R cosϕ sin θ x̂+R sinϕ sin θ ŷ +R cos θ ẑ, (57)

where r · ẑ = cos θ so θ is the polar angle, while ϕ is the azimuthal (or longitude)
angle, the angle between x̂ and ρ = r − zẑ = xx̂ + yŷ, the projection of r in
the (x, y) plane.

�

Figure 2.6: Spherical coordinates r, θ, ϕ and direction vectors r̂, θ̂, ϕ̂.

Coordinate curves and Tangent vectors. If one of the parameters is
held fixed, v = v0 say, we obtain a curve r(u, v0). There is one such curve for
every value of v. For the sphere parameterized as in (57), r(u, v0) is the v0-
parallel, the circle at polar angle v0. Likewise r(u0, v) describes another curve.
This would be a longitude circle, or meridian, for the sphere. The set of all
such curves generates the surface. These two families of curves are parametric
curves or coordinate curves for the surface. The vectors ∂r/∂u and ∂r/∂v are
tangent to their respective parametric curves and hence to the surface. These
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two vectors taken at the same point r(u, v) define the tangent plane at that
point.

The coordinates are orthogonal if the tangent vectors ∂r/∂u and ∂r/∂v at
each point r(u, v) are orthogonal to each other (except perhaps at some singular
points where one or both tangent vectors vanish),

∂r

∂u
· ∂r
∂v

= 0. (58)

The coordinates are conformal if they are orthogonal and∣∣∣∣∂r∂u
∣∣∣∣ =

∣∣∣∣∂r∂v
∣∣∣∣ 6= 0. (59)

Conformal coordinates preserve angles between curves in the (u, v) and their
images on the surface r(u, v). This is a very important property for navigation,
for example, since angles measured on the map ((u, v) plane) are the same as
angles ‘in the real world’ (the earth’s spherical surface say).

Normal to the surface at a point. At any point r(u, v) on a surface,
there is an infinity of tangent directions but there is only one normal direction.
The normal to the surface at a point r(u, v) is given by

N =
∂r

∂u
× ∂r

∂v
. (60)

Note that the ordering (u, v) specifies an orientation for the surface, i.e. an ‘up’
and ‘down’ side, and that N is not a unit vector, in general.

Surface element. The surface element dS = n̂ dS at a point r on a surface
S is a vector of infinitesimal magnitude dS and direction n̂ which is the unit
normal to the surface at that point. Imagine one of the small triangles that
make up the surface of the skull. At different points on the skull we have a
little triangular patch with small surface element ∆S equal to 1/2 of the cross
product of two small edges. If a parametric representation r(u, v) for the surface
is known then

dS =

(
∂r

∂u
× ∂r

∂v

)
dudv, (61)

since the right hand side represents the area of the parallelogram formed by the
line elements (∂r/∂u) du and (∂r/∂v) dv. Note that n̂ 6= N but n̂ = N/|N |
since n̂ is a unit vector. Although we often need to refer to the unit normal n̂,
it is usually not needed to compute it explicitly since in practice it is the area
element dS that is needed.

Example: For the triangle r(u, v) = rA + u
−−→
AB + v

−−→
BC we have

dS = (
−−→
AB ×

−−→
BC) du dv.

�
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Figure 2.7: The skull surface is modeled by a large collection of small trian-
gles. Every small triangular patch provides a small but finite approximation
∆S , 1

2 (∆r1 × ∆r2) to the vector surface element dS, where ∆r1 and ∆r2

are two vector edges of the triangle oriented such that the cross-product points
everywhere outward.

Figure 2.8: Spherical surface element dS(θ, ϕ) =
∂r

∂θ
× ∂r

∂ϕ
dθdϕ.

Example: For spherical coordinates, we have

dS =
∂r

∂θ
dθ × ∂r

∂ϕ
dϕ.

We can calculate ∂r/∂θ and ∂r/∂ϕ from the hybrid representation (57)

r(θ, ϕ) = r cosϕ sin θ x̂+ r sinϕ sin θ ŷ + r cos θ ẑ,

where r is fixed but arbitrary, yielding

∂r

∂θ
= r cosϕ cos θ x̂+ r sinϕ cos θ ŷ − r sin θ ẑ,

∂r

∂ϕ
=− r sinϕ sin θ x̂+ r cosϕ sin θ ŷ,

(62)
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then compute their cross product to obtain dS(θ, ϕ). We can also obtain those
partials from direct geometric reasoning as illustrated in the following figures

where

r̂ =
r

r
, ϕ̂ =

ẑ × r
|ẑ × r|

, θ̂ = ϕ̂× r̂,

and ρ = r sin θ =
√
x2 + y2. Either approach yields

∂r

∂θ
= r θ̂,

∂r

∂ϕ
= r sin θ ϕ̂, (63)

and the surface element for a sphere of radius r as

dS =
∂r

∂θ
× ∂r

∂ϕ
dθdϕ = rθ̂ × r sin θ ϕ̂ dθdϕ = r̂ r2 sin θ dθdϕ, (64)

for a sphere of radius r fixed.
�

Exercises:

1. Consider the sphere x2 + y2 + z2 = R2. Parametrize the northern hemi-
sphere z ≥ 0 using both (56) and (57). Make 3D perspective sketches of
the coordinate curves for both parameterizations. What happens at the
pole and at the equator? Calculate ∂r/∂u and ∂r/∂v for both parame-
terizations. Are the coordinates orthogonal?

2. Compute tangent vectors and the normal to the surface z = h(x, y). Show
that ∂r/∂x and ∂r/∂y are not orthogonal to each other in general. De-
termine the class of functions h(x, y) for which (x, y) are orthogonal coor-
dinates on the surface z = h(x, y) and interpret geometrically. Derive an
explicit formula for the area element dS = |dS| in terms of h(x, y).

3. Deduce from the implicit equation |r − rc| = R for a sphere of radius R
centered at rc that (r − rc) · ∂r/∂u = (r − rc) · ∂r/∂v = 0 for any u
and v, where r(u, v) is any parameterization of a point on that sphere.
Find a r(u, v) for that sphere and compute ∂r/∂u and ∂r/∂v. Are your
coordinates orthogonal? Compute the surface element dS for that sphere.
Do your surface elements point toward or away from the center of the
sphere?
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4. Show that spherical coordinates (57) are orthogonal but not conformal.
What happens on the polar axis?

5. Stereographic coordinates map a point (x, y, z) on the sphere x2+y2+z2 =
R2 to the point (u, v) that is the intersection of the z = 0 plane and the
line passing through the pole (0, 0, R) and the point (x, y, z). Sketch. Find
r(u, v) and show that these coordinates are conformal.

6. Explain why the surface of a torus (i.e. ‘donut’ or tire) can be parameter-
ized as x = (R+a cos θ) cosϕ, y = (R+a cos θ) sinϕ, z = a sin θ. Interpret
the geometric meaning of the parameters R, a, ϕ and θ. What are the
ranges of ϕ and θ needed to cover the entire torus? Do these parame-
ters provide orthogonal coordinates for the torus? Calculate the surface
element dS.

7. Describe the surface r(u, v) = R cosu x̂+R sinu ŷ+v ẑ where 0 ≤ u < 2π
and 0 ≤ v ≤ H, and R and H are positive constants. What is the surface
element and what is the total surface area? Show that ∂r/∂u, ∂r/∂v are
continuous across the angle cut u = 2π and unique for u modulo 2π.

8. The Möbius strip can be parameterized as

r(u, v) =
(
R+ v sin

u

2

)
cosu x̂+

(
R+ v sin

u

2

)
sinu ŷ + v cos

u

2
ẑ

where 0 ≤ u < 2π and −h ≤ v ≤ h. Sketch this surface. Show that ∂r/∂u
is continuous across the angle cut u = 2π, v = 0, but ∂r/∂v is not. Show
that ∂r/∂u is unique but ∂r/∂v is double-valued at any u modulo 2π with
v = 0.

9. Explain why the surface described by

r(u, v) = x̂ a cosu cos v + ŷ b sinu cos v + ẑ c sin v

where a, b and c are real constants is the surface of an ellipsoid. Are u
and v orthogonal coordinates for that surface? Consider cartesian coordi-
nates (x, y, z) such that r = xx̂ + yŷ + zẑ. Derive the implicit equation
f(x, y, z) = 0 satisfied by all such r(u, v)’s.

10. Consider the vector function r(u, v) = rc+e1 a cosu cos v+e2 b sinu cos v+
e3 c sin v, where rc, e1, e2, e3, a, b and c are constants with ei · ej = δij .
What does the set of all such r(u, v)’s represent? Consider cartesian co-
ordinates (x, y, z) such that r = xx̂ + yŷ + zẑ. Assume that all the
angles between e1, e2, e3 and the basis vectors {x̂, ŷ, ẑ} are known. How
many independent angles is that? Specify which angles. Can you as-
sume {e1, e2, e3} is right handed? Explain. Derive the implicit equation
f(x, y, z) = 0 satisfied by all such r(u, v)’s. Express your answer in terms
of the minimum independent angles that you specified earlier.
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6.2 Surface integrals

The typical surface integral is of the form
∫
S
v ·dS. This represents the flux of v

through the surface S. If v(r) is the velocity of a fluid, water or air, at point r,
then

∫
S
v · dS is the time-rate at which volume of fluid is flowing through that

surface per unit time. Indeed, v · dS = (v · n̂) dS where n̂ is the unit normal
to the surface and v · n̂ is the component of fluid velocity that is perpendicular
to the surface. If that component is zero, the fluid moves tangentially to the
surface, not through the surface. Speed × area = volume per unit time, so v ·dS
is the volume of fluid passing through the surface element dS per unit time at
that point at that time. The total volume passing through the entire surface S
per unit time is

∫
S
v · dS. Such integrals are often called flux integrals.

We can make sense of such integrals as limits of sums, for instance,

∫
S

v · dS = lim
∆Sn→0

N∑
n=1

vn ·∆Sn (65)

where the sum is over, say, a triangular partition of the surface (such as the skull
surface) with N triangles and vn is for instance v at the center of area of triangle
n whose area vector ∆Sn. Another good choice is to define vn as the average
of v at the vertices of triangle n. Here ∆Sn → 0 means that the partition is
uniformly refined with N → ∞. This is conceptually intuitive although that
limit is a bit tricky to define precisely mathematically. Roughly speaking, each
triangle should be shrinking to a point, not to a line, and of course we need
more and more of smaller and smaller triangles to cover the whole surface.

If a parametric representation r(u, v) is known for the surface then we can
also write ∫

S

v · dS =

∫
A

(
v ·
(
∂r

∂u
× ∂r

∂v

))
dudv, (66)

where A is the domain in the u, v parameter plane that corresponds to S.

As for line integrals, we can make sense of many other types of surface
integrals such as ∫

S

p dS,

which would represent the net pressure force on S if p = p(r) is the pressure at
point r. Other surface integrals could have the form

∫
S
v×dS, etc. In particular

the total area of surface S is
∫
S
|dS|.

Examples: For the triangle T : r(u, v) = rA + u
−−→
AB + v

−−→
BC, 0 ≤ u ≤ 1, 0 ≤

v ≤ 1, the surface integral
∫
T
dS , the vector sum of all surface element, is clearly

the triangle area times the unit normal to the triangle, that is (1/2)
−−→
AB ×

−−→
BC.

We can compute that integral explicitly as∫
T

dS =

∫ 1

0

du

∫ u

0

∂r

∂u
× ∂r

∂v
dv =

−−→
AB ×

−−→
BC

∫ 1

0

du

∫ u

0

dv =
1

2

−−→
AB ×

−−→
BC.
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The surface integral
∫
T
dS is clearly the triangle surface area and can be com-

puted as ∫
T

|dS| =
∫ 1

0

du

∫ u

0

dv

∣∣∣∣∂r∂u × ∂r

∂v

∣∣∣∣ =
1

2

∣∣∣−−→AB ×−−→BC∣∣∣ .
The integral ∫

T

r · dS = (rA · n̂) × area of triangle

since dS = n̂ dS and n̂ is constant for the triangle and r · n̂ = rA · n̂ for all
points in that plane, and that constant (rA · n̂) is the distance from the origin
to the plane of the triangle. �

Exercises:

1. Compute the percentage of surface area that lies north of the arctic circle
on the earth (assume it is a perfect sphere). Show your work, don’t just
google it.

2. Provide an explicit integral for the total surface area of the torus of outer
radius R and inner radius a.

3. Calculate
∫
S
r · dS where S is (i) the square 0 ≤ x, y ≤ a at z = b, (ii) the

surface of the sphere of radius R centered at (0, 0, 0), (iii) the surface of
the sphere of radius R centered at x = x0, y = z = 0.

4. Calculate
∫
S

(r/r3) · dS where S is the surface of the sphere of radius R
centered at the origin. How does the result depend on R?

5. The pressure outside the sphere of radius R centered at rc is p = p0+Ar ·â
where â is an arbitrary but fixed unit vector and p0 and A are constants.
The pressure inside the sphere is the constant p1 > p0. Calculate the
net force on the sphere. Calculate the net torque on the sphere about its
center rc and about the origin.

6.3 Curves on surfaces

[Future version of these notes will discuss curves on surface, geodesics, funda-
mental forms, surface curvature]

The line element on a surface r(u, v) is

dr =
∂r

∂u
du+

∂r

∂v
dv (67)

thus the arclength element ds = |dr| =
√

(dr) · (dr) is

ds2 =
∂r

∂u
· ∂r
∂u

du2 + 2
∂r

∂u
· ∂r
∂v

du dv +
∂r

∂v
· ∂r
∂v

dv2. (68)
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where ds2 , (ds)2 not d(s2) = 2s ds, and likewise for du2 and dv2. In differential
geometry, this is called the first fundamental form of the surface usually written

ds2 = E du2 + 2F du dv +Gdv2. (69)

The area element dS = |dS| is

dS2 =

(
∂r

∂u
× ∂r

∂v

)
·
(
∂r

∂u
× ∂r

∂v

)
du2 dv2

=(EG− F 2) dudv

(70)

using the vector identity (a× b) · (a× b) = (a · a)(b · b)− (a · b)2.

7 Volumes

We have seen that r(t) is the parametric equation of a curve, r(u, v) represents
a surface, now we discuss r(u, v, w) which is the parametric representation of a
volume. Curves r(t) are one dimensional objects so they have only one param-
eter t or each point on the known curve is determined by a single coordinate.
Surfaces are two-dimensional and require two parameters u and v, which are
coordinates for points on that surface. Volumes are three-dimensional objects
that require three parameters u, v, w say. Each point is specified by three
coordinates.

Example: Any point P inside the tetrahedron with vertices A,B,C,D has

r = rA + u
−−→
AB + v

−−→
BC + w

−−→
CD = r(u, v, w). (71)

with
0 ≤ u ≤ 1, 0 ≤ v ≤ u, 0 ≤ w ≤ v.

�
Example: A sphere of radius R centered at rc has the implicit equation

|r − rc| ≤ R, or (r − rc) · (r − rc) ≤ R2 to avoid square roots. In cartesian
coordinates this translates into the implicit equation

(x− xc)2 + (y − yc)2 + (z − zc)2 ≤ R2. (72)

An explicit parametrization for that sphere is

r(r, θ, ϕ) = rc + x̂ r sin θ cosϕ+ ŷ r sin θ sinϕ+ ẑ r cos θ, (73)

where r is distance to the origin, θ the polar angle and ϕ the azimuthal (or
longitude) angle. To describe the sphere fully but uniquely we need

0 ≤ r ≤ R, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (74)

�
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Coordinate curves
For a curve r(t), all we needed to worry about was the tangent dr/dt and the line
element dr = (dr/dt)dt. For surfaces, r(u, v) we have two sets of coordinates
curves with tangents ∂r/∂u and ∂r/∂v, a normal N = (∂r/∂u)× (∂r/∂v) and
a surface element dS = Ndudv. Now for volumes r(u, v, w), we have three sets
of coordinates curves with tangents ∂r/∂u, ∂r/∂v and ∂r/∂w. A u-coordinate
curve for instance, corresponds to r(u, v, w) with v and w fixed. There is a
double infinity of such one dimensional curves, one for each v, w pair. For the
parametrization (73), the ϕ-coordinate curves correspond to parallels, i.e. circles
of fixed radius r at fixed polar angle θ. The θ-coordinate curves are meridians,
i.e. circles of fixed radius r through the poles. The r-coordinate curves are radial
lines out of the origin.

Coordinate surfaces
For volumes r(u, v, w), we also have three sets of coordinate surfaces cor-

responding to one parameter fixed and the other two free. A w-isosurface for
instance corresponds to r(u, v, w) for a fixed w. There is a single infinity of such
two dimensional (u, v) surfaces. For the parametrization (73) such surfaces cor-
respond to spherical surfaces of radius r centered at rc. Likewise, if we fix u
but let v and w free, we get another surface, and v fixed with u and w free is
another coordinate surface.

Line Elements
Thus given a volume parametrization r(u, v, w) we can define four types of

line elements, one for each of the coordinate directions (∂r/∂u)du, (∂r/∂v)dv,
(∂r/∂w)dw and a general line element corresponding to the infinitesimal dis-
placement from coordinates (u, v, w) to the coordinates (u+du, v+dv, w+dw).
That general line element dr is given by (chain rule):

dr =
∂r

∂u
du+

∂r

∂v
dv +

∂r

∂w
dw. (75)

The arclength follows from

ds2 = dr · dr =
∂r

∂u
· ∂r
∂u
du2 +

∂r

∂v
· ∂r
∂v
dv2 +

∂r

∂w
· ∂r
∂w

dw2

+ 2
∂r

∂u
· ∂r
∂v
du dv + 2

∂r

∂v
· ∂r
∂w

dv dw + 2
∂r

∂w
· ∂r
∂u
du dw

(76)

and contains 6 terms if the coordinates are not orthogonal. Note that ds2 must
be interpreted as (ds)2 not d(s2) = 2s ds, and likewise for du2, dv2, dw2. Switch-
ing to index notation with (u, v, w) → (u1, u2, u3) and summation convention,
the arclength element is

ds2 = gij dui duj (77)

where

gij ,
∂r

∂ui
· ∂r
∂uj

= gji (78)

is the metric tensor.
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Surface Elements
Likewise, there are three basic types of surface elements, one for each coordinate
surface. The surface element on a w-isosurface, for example, is given by

dSw =

(
∂r

∂u
× ∂r

∂v

)
dudv, (79)

while the surface elements on a u-isosurface and a v-isosurface are respectively

dSu =

(
∂r

∂v
× ∂r

∂w

)
dvdw, dSv =

(
∂r

∂w
× ∂r

∂u

)
dudw. (80)

Note that surface orientations are built into the order of the coordinates.

Volume Element
Last but not least, a parametrization r(u, v, w) defines a volume element given
by the mixed (i.e. triple scalar) product

dV =

(
∂r

∂u
× ∂r

∂v

)
· ∂r
∂w

du dv dw ≡ det

(
∂r

∂u
,
∂r

∂v
,
∂r

∂w

)
du dv dw. (81)

The definition of volume integrals as limit-of-a-sum should be obvious by
now. If an explicit parametrization r(u, v, w) for the volume is known, we can
use the volume element (81) and write the volume integral in r space as an
iterated triple integral over u, v, w. Be careful that there is an orientation
implicitly built into the ordering of the parameters, as should be obvious from
the definition of the mixed product and determinants. The volume element dV
is usually meant to be positive so the sign of the mixed product and the bounds
of integrations for the parameters u, v and w must be chosen to respect that.
(Recall the definition of |dt| in the line integrals section).

Exercises

1. Calculate the line, surface and volume elements for the coordinates (73).
You need to calculate 4 line elements and 3 surfaces elements. One line
element for each coordinate curve and the general line element. Verify
that these coordinates are orthogonal.

2. Formulate integral expressions in terms of the coordinates (73) for the
surface and volume of a sphere of radius R. Calculate those integrals.

3. A curve r(t) is given in terms of the (u, v, w) coordinates, i.e. r(t) =
r(u, v, w) with (u(t), v(t), w(t)) for t = ta to t = tb. Find an explicit
expression in terms of (u(t), v(t), w(t)) as a t-integral for the length of
that curve.

4. Find suitable coordinates for a torus. Are your coordinates orthogonal?
Compute the volume of that torus.
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8 Maps, curvilinear coordinates

Parameterizations of curves, surfaces and volumes is essentially equivalent to
the concepts of ‘maps’ and curvilinear coordinates.

Maps

The parametrization (57) for the surface of a sphere of radius R provides a map
between that surface and the 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π rectangle in the (ϕ, θ) plane.
In a mapping r(u, v) a small rectangle of sides du, dv at a point (u, v) in the
(u, v) plane is mapped to a small parallelogram of sides (∂r/∂u)du, (∂r/∂v)dv
at point r(u, v) in the Euclidean space.

The parametrization (73) for the sphere of radius R centered at rc provides a
map between the sphere of radius R in Euclidean space and the box 0 ≤ r ≤ R,
0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, in the (r, θ, ϕ) space. In a mapping r(u, v, w), the
infinitesimal box of sides du, dv, dw located at point (u, v, w) in the (u, v, w)
space is mapped to a parallelepiped of sides (∂r/∂u)du, (∂r/∂v)dv, (∂r/∂w)dw
at the point r(u, v, w) in the Euclidean space.

Curvilinear coordinates, orthogonal coordinates

The parameterizations r(u, v) and r(u, v, w) define coordinates for a surface or
a volume, respectively. If the coordinate curves are not straight lines one talks
of curvilinear coordinates. These maps define good coordinates if the coordinate
curves intersect transversally, that is if the coordinate curves are not tangent to
each other, for a surface that is

∂r

∂u
× ∂r

∂v
6= 0

and for a volume (
∂r

∂u
× ∂r

∂v

)
· ∂r
∂w
6= 0.

If the coordinate curves intersect transversally at a point then the coordinates
tangent vectors at that point provide linearly independent directions in the space
of r. Tangent intersections at a point r would imply that the tangent vectors
are linearly dependent at that point. This is acceptable on a set of measure
zero, for instance at the equator for the parametrization (56) or on the polar
axis for (73).

The coordinates (u, v, w) are orthogonal if the coordinate curves in r-space
intersect at right angles. This is the best kind of ‘transversal’ intersection and
these are the most desirable type of coordinates, however non-orthogonal coor-
dinates are sometimes more convenient for some problems. Two fundamental
examples of orthogonal curvilinear coordinates are

I Cylindrical (or polar) coordinates

x = ρ cos θ, y = ρ sin θ, z = z. (82)
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I Spherical coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (83)

Changing notation from (x, y, z) to (x1, x2, x3) and from (u, v, w) to (q1, q2, q3)
a general change of coordinates from cartesian (x, y, z) ≡ (x1, x2, x3) to curvi-
linear (q1, q2, q3) coordinates is expressed succinctly by

xi = xi(q1, q2, q3), i = 1, 2, 3. (84)

The position vector r can be expressed in terms of the qj ’s through the cartesian
expression:

r(q1, q2, q3) = x̂x(q1, q2, q3)+ŷ y(q1, q2, q3)+ẑ z(q1, q2, q3) =

3∑
i=1

ei xi(q1, q2, q3),

(85)
where ei · ej = δij . The qi coordinate curve is the curve r(q1, q2, q3) where qi
is free but the other two variables are fixed. The qi isosurface is the surface
r(q1, q2, q3) where qi is fixed and the other two parameters are free.

The coordinate tangent vectors ∂r/∂qi are key to the coordinates. They
provide a natural vector basis for those coordinates. The coordinates are or-
thogonal if these tangent vectors are orthogonal to each other at each point. In
that case it is useful to define the unit vector q̂i in the qi coordinate direction
by

hi =

∣∣∣∣ ∂r∂qi
∣∣∣∣ , ∂r

∂qi
= hiq̂i, (no sum) (86)

where hi is the the magnitude of the tangent vector in the qi direction, ∂r/∂qi,
and q̂i · q̂j = δij for orthogonal coordinates. These hi’s are called the scale
factors. Note that this decomposition of ∂r/∂qi into a scale factor hi and a
direction q̂i clashes with the summation convention. The distance traveled in
x-space when changing qi by dqi, keeping the other q’s fixed, is |dr| = hidqi
(no summation). The distance ds travelled in x-space when the orthogonal
curvilinear coordinates change from (q1, q2, q3) to (q1 + dq1, q2 + dq2, q3 + dq3)
is

ds2 = dr · dr = h2
1 dq

2
1 + h2

2 dq
2
2 + h2

3 dq
2
3 . (87)

Although the cartesian unit vectors ei are independent of the coordinates, the
curvilinear unit vectors q̂i in general are functions of the coordinates, even if
the latter are orthogonal. Hence ∂q̂i/∂qj is in general non-zero. For orthogonal
coordinates, those derivatives ∂q̂i/∂qj can be expressed in terms of the scale
factors and the unit vectors.

For instance, for spherical coordinates (q1, q2, q3) ≡ (r, ϕ, θ), the unit vector
in the q1 ≡ r direction is the vector

∂r(r, ϕ, θ)

∂r
= x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ, (88)
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so the scale coefficient h1 ≡ hr = 1 and the unit vector

q̂1 ≡ r̂ ≡ er = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ. (89)

The position vector r can be expressed as

r = r r̂ = x x̂+ y ŷ + zẑ ≡
3∑
i=1

xi ei. (90)

So its expression in terms of spherical coordinates and their unit vectors, r = rr̂,
is simpler than in cartesian coordinates, r = x x̂ + y ŷ + zẑ, but there is a
catch! The radial unit vector r̂ = r̂(ϕ, θ) varies in the azimuthal and polar
angle directions, while the cartesian unit vectors x̂, ŷ, ẑ are independent of the
coordinates!

For orthogonal coordinates, the scale factors hi’s determine everything. In
particular, the surface and volume elements can be expressed in terms of the
hi’s. For instance, the surface element for a q3-isosurface is

dS3 = q̂3 h1h2 dq1dq2, (91)

and the volume element

dV = h1h2h3 dq1dq2dq3, (92)

assuming that q1, q2, q3 is right-handed. These follow directly from (79) and
(81) and (86) when the coordinates are orthogonal.

Exercises

1. Find the scale factors hi and the unit vectors q̂i for cylindrical and spheri-
cal coordinates. Express the 3 surface elements and the volume element in
terms of those scale factors and unit vectors. Sketch the unit vector q̂i in
the (x, y, z) space (use several ‘views’ rather than trying to make an ugly
3D sketch!). Express the position vector r in terms of the unit vectors q̂i.
Calculate the derivatives ∂q̂i/∂qj for all i, j and express these derivatives
in terms of the scale factors hk and the unit vectors q̂k, k = 1, 2, 3.

2. A curve in the (x, y) plane is given in terms of polar coordinates as ρ =
ρ(θ). Deduce θ-integral expressions for the length of the curve and for the
area swept by the radial vector.

3. Consider elliptical coordinates (u, v, w) defined by x = α coshu cos v, y =
α sinhu sin v , z = w for some α > 0, where x, y and z are standard carte-
sian coordinates in 3D Euclidean space. What do the coordinate curves
correspond to in the (x, y, z) space? Are these orthogonal coordinates?
What is the volume element in terms of elliptical coordinates?

4. For general curvilinear coordinates, not necessarily orthogonal, is the
qi-isosurface perpendicular to ∂r/∂qi? is it orthogonal to (∂r/∂qj) ×
(∂r/∂qk) where i, j, k are all distinct? What about for orthogonal coordi-
nates?
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9 Change of variables

Parameterizations of surfaces and volumes and curvilinear coordinates are ge-
ometric examples of a change of variables. These changes of variables and the
associated formula and geometric concepts can occur in non-geometric contexts.
The fundamental relationship is the formula for a volume element (81). In the
context of a general change of variables from (x1, x2, x3) to (q1, q2, q3) that for-
mula (81) reads

dx1dx2dx3 = dVx = J dq1dq2dq3 = J dVq (93)

where

J =

∣∣∣∣∣∣∣
∂x1/∂q1 ∂x1/∂q2 ∂x1/∂q3

∂x2/∂q1 ∂x2/∂q2 ∂x2/∂q3

∂x3/∂q1 ∂x3/∂q2 ∂x3/∂q3

∣∣∣∣∣∣∣ = det

(
∂xi
∂qj

)
(94)

is the Jacobian determinant and dVx is a volume element in the x-space while
dVq is the corresponding volume element in q-space. The Jacobian is the deter-
minant of the Jacobian matrix

J =

 ∂x1/∂q1 ∂x1/∂q2 ∂x1/∂q3

∂x2/∂q1 ∂x2/∂q2 ∂x2/∂q3

∂x3/∂q1 ∂x3/∂q2 ∂x3/∂q3

 ⇔ Jij =
∂xi
∂qj

. (95)

The vectors (dq1, 0, 0), (0, dq2, 0) and (0, 0, dq3) at point (q1, q2, q3) in q-space are
mapped to the vectors (∂r/∂q1)dq1, (∂r/∂q2)dq2, (∂r/∂q3)dq3. In component
form this is dx

(1)
1

dx
(1)
2

dx
(1)
3

 =

 ∂x1/∂q1 ∂x1/∂q2 ∂x1/∂q3

∂x2/∂q1 ∂x2/∂q2 ∂x2/∂q3

∂x3/∂q1 ∂x3/∂q2 ∂x3/∂q3


dq1

0
0

 , (96)

where (dx
(1)
1 , dx

(1)
2 , dx

(1)
3 ) are the x-components of the vector (∂r/∂q1)dq1. Sim-

ilar relations hold for the other basis vectors. Note that the rectangular box in
q-space is in general mapped to a non-rectangular parallelepiped in x-space so
the notation dx1dx2dx3 for the volume element in (93) is a (common) abuse of
notation.

The formulas (93), (94) tells us how to change variables in multiple integrals.
This formula generalizes to higher dimension, and also to lower dimension. In
the 2 variable case, we have a 2-by-2 determinant that can also be understood
as a special case of the surface element formula (61) for a mapping r(q1, q2)
from a 2D space (q1, q2) to another 2D-space (x1, x2). In that case r(q1, q2) =
e1x1(q1, q2) + e2x2(q1, q2) so (∂r/∂q1)× (∂r/∂q2)dq1dq2 = e3 dAx and

dx1dx2 = dAx = J dq1dq2 = J dAq (97)

where the Jacobian determinant is now

J =

∣∣∣∣ ∂x1/∂q1 ∂x1/∂q2

∂x2/∂q1 ∂x2/∂q2

∣∣∣∣ . (98)
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Change of variables example: Carnot cycle

Consider a Carnot cycle for a perfect gas. The equation of state is PV = nRT =
NkT , where P is pressure, V is the volume of gas and T is the temperature in
Kelvins. The volume V contains n moles of gas corresponding to N molecules,
R is the gas constant and k is Boltzmann’s constant with nR = Nk. A Carnot
cycle is an idealized thermodynamic cycle in which a gas goes through (1) a
heated isothermal expansion at temperature T1, (2) an adiabatic expansion at
constant entropy S2, (3) an isothermal compression releasing heat at temper-
ature T3 < T1 and (4) an adiabatic compression at constant entropy S4 < S2.
For a perfect monoatomic gas, constant entropy means constant PV γ where
γ = CP /CV = 5/3 with CP and CV the heat capacity at constant pressure
P or constant volume V , respectively. Thus let S = PV γ (this S is not the
physical entropy but it is constant whenever entropy is constant, we can call S
a ‘pseudo-entropy’).

V

P

T1

T3

S4

S2

S

T

T1

T3

S4 S2

Now the work done by the gas when its volume changes from Va to Vb is∫ Vb
Va
PdV (since work = Force × displacement, P = force/area and V=area ×

displacement). Thus the (yellow) area inside the cycle in the (P, V ) plane is
the net work performed by the gas during one cycle. Although we can calculate
that area by working in the (P, V ) plane, it is easier to calculate it by using a
change of variables from P , V to T , S. The area inside the cycle in the (P, V )
plane is not the same as the area inside the cycle in the (S, T ) plane. There is
a distortion. An element of area in the (P, V ) plane aligned with the T and S
coordinates (i.e. with the dashed curves in the (P, V ) plane) is

dA =

∣∣∣∣(∂P∂S eP +
∂V

∂S
e
V

)
dS ×

(
∂P

∂T
e
P

+
∂V

∂T
e
V

)
dT

∣∣∣∣ (99)

where e
P

and e
V

are the unit vectors in the P and V directions in the (P, V )
plane, respectively. This is entirely similar to the area element of surface r(u, v)
being equal to dS = ∂r

∂udu×
∂r
∂v dv (but don’t confuse the surface element dS with
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the pseudo-entropy differential dS used in the present example!). Calculating
out the cross product, we obtain

dA =

∣∣∣∣(∂P∂S ∂V∂T − ∂V

∂S

∂P

∂T

)
dSdT

∣∣∣∣ = ± J
P,V

S,T
dSdT (100)

where the ± sign will be chosen to get a positive area (this depends on the
bounds of integrations) and

J
P,V

S,T
= det(J

P,V

S,T
) =

∣∣∣∣∣∣∣∣∣
∂P

∂S

∂P

∂T

∂V

∂S

∂V

∂T

∣∣∣∣∣∣∣∣∣ (101)

is the Jacobian determinant (here the vertical bars are the common notation

for determinants). It is the determinant of the Jacobian matrix JP,VS,T that
corresponds to the mapping from (S, T ) to (P, V ). The cycle area AP,V in the
(P, V ) plane is thus

AP,V =

∫ T1

T3

∫ S2

S4

∣∣∣JP,V
S,T

∣∣∣ dSdT. (102)

Note that the vertical bars in this formula are for absolute value of JP,VS,T and
the bounds have been selected so that dS > 0 and dT > 0 (in the limit-of-a-
sum sense). This expression for the (P, V ) area expressed in terms of (S, T )

coordinates is simpler than if we used (P, V ) coordinates, except for that
∣∣∣JP,VS,T

∣∣∣
since we do not have explicit expression for P (S, T ) and V (S, T ). What we
have in fact are the inverse functions T = PV/(Nk) and S = PV γ . To find
the partial derivatives that we need we could (1) find the inverse functions by
solving for P and V in terms of T and S then compute the partial derivatives
and the Jacobian, or (2) use implicit differentiation e.g. Nk ∂T/∂T = Nk =
V ∂P/∂T + P∂V/∂T and ∂S/∂T = 0 = V γ∂P/∂T + PγV γ−1∂V/∂T etc. and
solve for the partial derivatives we need. But there is a simpler way that makes
use of an important property of Jacobians.

Geometric meaning of the Jacobian determinant and its inverse

The Jacobian J
P,V

S,T
represents the stretching factor of area elements when moving

from the (S, T ) plane to the (P, V ) plane. If dAS,T is an area element centered
at point (S, T ) in the (S, T ) plane then that area element gets mapped to an area
element dAP,V centered at the corresponding point in the (P, V ) plane. That’s
what equation (100) represents. In that equation we have in mind the mapping
of a rectangular element of area dSdT in the (S, T ) plane to a parallelogram

element in the (P, V ) plane. The stretching factor is |JP,V
S,T
| (as we saw earlier,

the meaning of the sign is related to orientation, but here we are worrying only
about areas, so we take absolute values). That relationship is valid for area
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elements of any shape, not just rectangles to parallelogram since the differential
relationships implies an implicit limit-of-a-sum and in that limit, the ‘pointwise’
area stretching is independent of the shape of the area elements. A disk element
in the (S, T ) plane would be mapped to an ellipse element in the (P, V ) plane
but the pointwise area stretching would be the same as for a rectangular element
(this is not true for finite size areas). So equation (100) can be written in the
more general form

dA
P,V

= |J
P,V

S,T
| dA

S,T
(103)

which is locally valid for area elements of any shape. The key point is that if
we consider the inverse map, back from (P, V ) to (S, T ) then there is an are

stretching give by the Jacobian J
S,T

P,V
= (∂S/∂P )(∂T/∂V ) − (∂S/∂V )(∂T/∂P )

such that
dA

S,T
= |J

S,T

P,V
| dA

P,V
(104)

but since we are coming back to the original dA
S,T

element we must have

J
P,V

S,T
J
S,T

P,V
= 1, (105)

so the Jacobian determinant are inverses of one another. This inverse relation-
ship actually holds for the Jacobian matrices also

J
P,V

S,T
J
S,T

P,V
=

(
1 0
0 1

)
. (106)

The latter can be derived from the chain rule since (note the consistent ordering
of the partials)

J
P,V

S,T
=

(
∂P/∂S ∂P/∂T
∂V/∂S ∂V/∂T

)
, J

S,T

P,V
=

(
∂S/∂P ∂S/∂V
∂T/∂P ∂T/∂V

)
(107)

and the matrix product of those two Jacobian matrices yields the identity ma-
trix. For instance, the first row times the first column gives(

∂P

∂S

)
T

(
∂S

∂P

)
V

+

(
∂P

∂T

)
S

(
∂T

∂P

)
V

=

(
∂P

∂P

)
V

= 1.

A subscript has been added to remind which other variable is held fixed during
the partial differentiation. The inverse relationship between the Jacobian deter-
minants (105) then follows from the inverse relationship between the Jacobian
matrices (106) since the determinant of a product is the product of the deter-
minants. This important property of determinants can be verified directly by
explicit calculation for this 2-by-2 case.

So what is the work done by the gas during one Carnot cycle? Well,

J
P,V

S,T
=
(
J
S,T

P,V

)−1

=

(
∂S

∂P

∂T

∂V
− ∂S

∂V

∂T

∂P

)−1

=Nk
(
V γP − γV γ−1PV

)−1
=

Nk

(1− γ)S

(108)
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so

AP,V =

∫ T1

T3

∫ S2

S4

∣∣∣JP,V
S,T

∣∣∣ dSdT
=

∫ T1

T3

∫ S2

S4

Nk

(γ − 1)S
dSdT =

Nk(T1 − T3)

(γ − 1)
ln
S2

S4
,

(109)

since γ > 1 and other quantities are positive.

Exercises

1. Calculate the area between the curves xy = α1, xy = α2 and y = β1x,
y = β2x in the (x, y) plane. Sketch the area. (α1, α2, β1, β2 > 0.)

2. Calculate the area between the curves xy = α1, xy = α2 and y2 = 2β1x,
y2 = 2β2x in the (x, y) plane. Sketch the area. (α1, α2, β1, β2 > 0.)

3. Calculate the area between the curves x2 + y2 = 2α1x, x2 + y2 = 2α2x
and x2 +y2 = 2β1y, x2 +y2 = 2β2y. Sketch the area. (α1, α2, β1, β2 > 0.)

4. Calculate the area of the ellipse x2/a2 + y2/b2 = 1 and the volume of the
ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 by transforming them to a disk and
a sphere, respectively, using a change of variables. [Hint: consider the
change of variables x = au, y = bv, z = cw.]

5. Calculate the integral
∫∞
−∞

∫∞
−∞ e−(x2+y2)dxdy. Deduce the value of the

Poisson integral
∫∞
−∞ e−x

2

dx. [Hint: switch to polar coordinates].

6. Calculate
∫∞
−∞

∫∞
−∞(a2 + x2 + y2)αdxdy. Where a 6= 0 and α is real.

Discuss the values of α for which the integral exists.
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10 Grad, div, curl

10.1 Scalar fields and iso-contours

Consider a scalar function of a vector variable: f(r), for instance the pressure
p(r) as a function of position, or the temperature T (r) at point r, etc. One way
to visualize such functions is to consider isosurfaces or level sets, these are the
sets of all r’s for which f(r) = f0, for some constant f0. In cartesian coordinates
r = x x̂ + y ŷ + z ẑ and the scalar function of position, that is the scalar field,
is a function of the three coordinates f(r) ≡ f(x, y, z).

Example: The isosurfaces of f(r) = r · r = x2 + y2 + z2 are determined by
the equation f(r) = f0. These are spheres or radius

√
f0, if f0 ≥ 0.

Example: The isosurfaces of f(r) = a · r = a1x + a2y + a3z where a =
a1x̂ + a2ŷ + a3ẑ is constant, are determined by the equation f(r) = f0 =
a1x+a2y+a3z. These are planes perpendicular to a at a signed distance f0/|a|
from the origin.

10.2 Geometric concept of the Gradient

The gradient of a scalar field f(r) denoted ∇f is a vector that points in the
direction of greatest increase of f and whose magnitude equals the rate of change
of f with distance in that direction. Let Ĝ be the direction of greatest increase
of f at point r and s the distance in that Ĝ direction, then

∇f = Ĝ
∂f

∂s
. (110)

The gradient of a scalar field is a vector field, it is a function of position and
varies from point to point, in general.

Fundamental Examples:

1. The gradient of f(r) = |r| = r, the distance to the origin, is

∇r = r̂ (111)

since the direction of greatest increase of r is r̂ and the rate of increase of
r with distance in the r̂ direction is dr/dr = 1.

2. The gradient of f(r) = |r − r
A
| = |

−→
AP |, the distance from point A to

point P , is

∇|r − r
A
| = r − r

A

|r − r
A
|

(112)

since the direction Ĝ of greatest increase of |r − r
A
| is in the direction of

r − r
A

, that is the unit vector (r − r
A

)/|r − r
A
|, and the rate of change

of that distance |r − r
A
| in that direction is obviously 1.
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3. The gradient of f(r) = a · r is

∇(a · r) = a (113)

since a · r = |a|s where s = â · r is the (signed) distance from the origin
in the direction â, thus Ĝ = â for this scalar field and the rate of change
of that distance s in that direction is again 1. In particular

∇(x̂ · r) = ∇x = x̂,

∇(ŷ · r) = ∇y = ŷ,

∇(ẑ · r) = ∇z = ẑ.

(114)

4. The gradient of f(r) = θ where θ is the polar angle between the fixed
direction ẑ and r is

∇θ = θ̂
∂θ

∂s
=

1

r
θ̂ (115)

since θ̂ is the direction (south) of greatest increase of θ (the angle from
the North pole) and an infinitesimal step ds in that direction yields an
increment dθ such that ds = rdθ.

5. The gradient of f(r) = ϕ where ϕ is the azimuthal angle between the
planes ẑ, x̂ and ẑ, r

∇ϕ = ϕ̂
∂ϕ

∂s
=

1

r sin θ
ϕ̂ (116)

since ϕ̂ is the direction (east) of greatest increase of ϕ (longitude) and an
infinitesimal step ds in that direction yields an increment dϕ such that
ds = ρ dϕ = r sin θ dϕ since ρ = r sin θ is the distance to the ẑ axis.
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6. The gradient of f(r) = F (r), a function that depends only on distance to
the origin r = |r| is

∇F (r) = r̂
dF

dr
(117)

since the direction of greatest increase Ĝ = ±r̂ and the rate of change of
F (r) in that direction is |dF/dr| with Ĝ = r̂ if dF/dr = |dF/dr| > 0 and
Ĝ = −r̂ if dF/dr = −|dF/dr| < 0. In particular

∇
(
r2
)

= 2rr̂ = 2r,

∇
(

1

r

)
= − r̂

r2
= − r

r3
.

(118)

Note that the gradient ∇f is perpendicular to level sets of f(r).

10.3 Directional derivative, gradient and the ∇ operator

The rate of change of f(r) with respect to t along the curve r(t) is

df

dt
= lim

∆t→0

f(r + ∆r)− f(r)

∆t
(119)

where ∆r = r(t+ ∆t)− r(t) and r = r(t).
In Cartesian coordinates, f(r) ≡ f(x, y, z) and f(r(t)) ≡ f (x(t), y(t), z(t))

then, by the chain rule, we obtain

df

dt
=
dx

dt

∂f

∂x
+
dy

dt

∂f

∂y
+
dz

dt

∂f

∂z
,

=
dr

dt
·
(
x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

)
. (120)

If t is time then dr/dt = v is the local velocity. If t is arclength s along the
curve, then dr/ds = t̂ = ŝ is the unit tangent to the curve at that point, that
is the direction of increasing arclength s. Then (120) reads

∂f

∂s
= ŝ ·

(
x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

)
(121)
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and this is the directional derivative, the rate of change of f(r) with respect to
distance s in some arbitrary direction ŝ, whose fundamental definition is

∂f

∂s
= lim

∆s→0

f(r + ŝ∆s)− f(r)

∆s
, (122)

now written as a partial derivative since the function varies in all directions but
we are looking at its rate of change in a particular direction ŝ. This fits with
our earlier notions of partial derivatives ∂f/∂x, ∂f/∂y and ∂f/∂z that indeed
corresponds to rates of change in directions x̂, ŷ and ẑ, respectively.

Inspection of (121) shows that the directional derivative ∂f/∂s will be largest
when ŝ is in the direction of the vector x̂∂f/∂x+ ŷ∂f/∂y+ ẑ∂f/∂z, thus that
vector must be the gradient of f

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z
, (123)

in cartesian coordinates x, y, z. The directional derivative (122) in arbitrary
direction ŝ can then be written as

∂f

∂s
= ŝ ·∇f. (124)

This provides the cartesian coordinates expression for the del operator

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (125)

= e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
(126)

≡ ei∂i (127)

where ∂i is short for ∂/∂xi and we have used the convention of summation over
all values of the repeated index i.

Del is a vector differential operator, it yields a vector field ∇f when we
operate with it on a scalar field f(r). From the rules of multivariable calculus
we obtain the following fundamental properties of ∇, where f = f(r) and
g = g(r) are arbitrary scalar fields.

Gradient of a sum:
∇(f + g) = ∇f + ∇g, (128)

Product rule for ∇:
∇(fg) = (∇f)g + f(∇g), (129)

Chain rule for ∇:

∇f(u1, u2, u3, · · · ) =
∂f

∂u1
∇u1 +

∂f

∂u2
∇u2 +

∂f

∂u3
∇u3 + · · · (130)

In particular, the chain rule yields expressions for ∇ in other coordinates sys-
tems, for instance

∇f(r, θ, ϕ) =
∂f

∂r
∇r +

∂f

∂θ
∇θ +

∂f

∂ϕ
∇ϕ,



c©F. Waleffe, Math 321, 2016/1/18 97

which combined with our earlier direct geometric results that ∇r = r̂, ∇θ =
θ̂/r, ∇ϕ = ϕ̂/(r sin θ) gives

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

ϕ̂

r sin θ

∂

∂ϕ
. (131)

10.4 Div and Curl

We’ll depart from our geometric point of view to first define divergence and
curl computationally based on their cartesian representation. Here we consider
vector fields v(r) which are vector functions of a vector variable, for example
the velocity v(r) of a fluid at point r, or the electric field E(r) at point r, etc.
For the geometric meaning of divergence and curl, see the sections on divergence
and Stokes’ theorems.

The divergence of a vector field v(r) is defined as the dot product ∇ · v.
Now since the unit vectors ei are constant for cartesian coordinates, ∇ · v =(
ei∂i

)
·
(
ejvj

)
= (ei · ej) ∂ivj = δij∂ivj hence

∇ · v = ∂ivi = ∂1v1 + ∂2v2 + ∂3v3. (132)

Likewise, the curl of a vector field v(r) is the cross product ∇ × v. In
cartesian coordinates, ∇ × v = (ej∂j) × (ekvk) = (ej × ek) ∂jvk. Recall that
εijk = ei · (ej × ek), or in other words εijk is the i component of the vector
ej × ek, thus ej × ek = ei εijk and

∇× v = ei εijk ∂jvk. (133)

(Recall that a × b = eiεijkajbk.) The right hand side is a triple sum over all
values of the repeated indices i, j and k! But that triple sum is not too bad
since εijk = ±1 depending on whether (i, j, k) is a cyclic (=even) permutation
or an acyclic (=odd) permutation of (1, 2, 3) and vanishes in all other instances.
Thus (133) expands to

∇× v = e1 (∂2v3 − ∂3v2) + e2 (∂3v1 − ∂1v3) + e3 (∂1v2 − ∂2v1) . (134)

We can also write that the i-th cartesian component of the curl is

ei ·
(
∇× v

)
=
(
∇× v

)
i

= εijk ∂jvk. (135)

Note that the divergence is a scalar but the curl is a vector.

10.5 Vector identities

In the following f = f(r) is an arbitrary scalar field while v(r) and w(r)
are vector fields. Two fundamental identities that can be remembered from
a · (a× b) = 0 and a× (αa) = 0 are

∇ · (∇× v) = 0, (136)
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and
∇× (∇f) = 0. (137)

The divergence of a curl and the curl of a gradient vanish identically (assuming
all those derivatives exist). These can be proved using index notation. Other
useful identities are

∇ · (fv) = (∇f) · v + f(∇ · v), (138)

∇× (fv) = (∇f)× v + f(∇× v), (139)

∇× (∇× v) = ∇(∇ · v)−∇2v, (140)

where ∇2 = ∇ ·∇ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplacian operator.

The identity (138) is verified easily using indicial notation

∇ · (fv) = ∂i(fvi) = (∂if)vi + f(∂ivi) = (∇f) · v + f(∇ · v).

Likewise the second identity (139) follows from εijk∂j(fvk) = εijk(∂jf)vk +
fεijk(∂jvk). The identity (140) is easily remembered from the double cross
product formula a× (b× c) = b(a · c)− c(a · b) but note that the ∇ in the first
term must appear first since ∇(∇ ·v) 6= (∇ ·v)∇. That identity can be verified
using indicial notation if one knows the double cross product identity in terms
of the permutation tensor (see earlier notes on εijk and index notation) namely

εijkεklm = εkijεklm = δilδjm − δimδjl. (141)

A slightly trickier identity is

∇× (v ×w) = (w ·∇)v − (∇ · v)w + (∇ ·w)v − (v ·∇)w, (142)

where (w · ∇)v = (wj∂j)vi in indicial notation. This can be verified using
(141) and can be remembered from the double cross-product identity with the
additional input that ∇ is a vector operator, not just a regular vector, hence
∇ × (v × w) represents derivatives of a product and this doubles the number
of terms of the resulting expression. The first two terms are the double cross
product a× (b× c) = (a · c)b− (a · b)c for derivatives of v while the last two
terms are the double cross product for derivatives of w.

Another similar identity is

v × (∇×w) = (∇w) · v − (v ·∇)w. (143)

In indicial notation this reads

εijkvj (εklm∂lwm) = (∂iwj)vj − (vj∂j)wi. (144)

Note that this last identity involves the gradient of a vector field ∇w. This
makes sense and is a tensor, i.e. a geometric object whose components with
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respect to a basis form a matrix. In indicial notation, the components of ∇w
are ∂iwj and there are 9 of them. This is very different from ∇ ·w = ∂iwi which
is a scalar.

The bottom line is that these identities can be reconstructed relatively easily
from our knowledge of regular vector identities for dot, cross and double cross
products, however ∇ is a vector of derivatives and one needs to watch out more
carefully for the order and the product rules. If in doubt, jump to indicial
notation.

10.6 Grad, Div, Curl in cylindrical and spherical coordi-
nates

Although the del operator is ∇ = x̂∂x+ ŷ∂y + ẑ∂z in cartesian coordinates it is

not simply r̂∂r + θ̂∂θ + ϕ̂∂ϕ in spherical coordinates! In fact that expression is
not even dimensionally correct sine ∂r has units of inverse length but ∂θ and ∂ϕ
have no units! To obtain the correct expression for ∇ in more general curvilinear
coordinates u, v, w, we can start from the chain rule

∇f(u, v, w) =
∂f

∂u
∇u+

∂f

∂v
∇v +

∂f

∂w
∇w (145)

and in particular for cylindrical coordinates

∇f(ρ, ϕ, z) =
∂f

∂ρ
∇ρ+

∂f

∂ϕ
∇ϕ+

∂f

∂z
∇z

= ρ̂
∂f

∂ρ
+ ϕ̂

1

ρ

∂f

∂ϕ
+ ẑ

∂f

∂z

(146)

since we figured out earlier that

∇ρ = ρ̂, ∇ϕ =
1

ρ
ϕ̂, ∇z = ẑ. (147)

Likewise for spherical coordinates,

∇f(r, θ, ϕ) =
∂f

∂r
∇r +

∂f

∂θ
∇θ +

∂f

∂ϕ
∇ϕ

= r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ ϕ̂

1

r sin θ

∂f

∂ϕ

(148)

since we figured out earlier that

∇r = r̂, ∇θ =
1

r
θ̂, ∇ϕ =

1

r sin θ
ϕ̂. (149)

These yield the following expressions for the del operator ∇ in cartesian, cylin-
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drical and spherical coordinates, respectively,

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

= ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ ẑ

∂

∂z

= r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

(150)

where

• (x̂, ŷ, ẑ) are fixed mutually orthogonal cartesian unit vectors,

• (ρ̂, ϕ̂, ẑ) are mutually orthogonal cylindrical unit vectors but ρ̂ and ϕ̂
depend on ϕ,

• (r̂, θ̂, ϕ̂) are mutually orthogonal spherical unit vectors but r̂ and θ̂ depend
on both θ and ϕ.

Note also that this is why we write the direction vectors r̂, θ̂, ρ̂, ϕ̂ in front of
the partials in the del operator (150) since they vary with the coordinates. The
cylindrical and spherical direction vectors obey the following relations

∂

∂ϕ
ρ̂ = ϕ̂,

∂

∂ϕ
ϕ̂ = −ρ̂

∂

∂ϕ
r̂ = sin θ ϕ̂,

∂

∂ϕ
θ̂ = cos θ ϕ̂

∂

∂θ
r̂ = θ̂,

∂

∂θ
θ̂ = −r̂

(151)

See Chapter 1, section 1.3 to verify these using the hybrid formulation, for
example {

ρ̂ = cosϕ x̂+ sinϕ ŷ
ϕ̂ = − sinϕ x̂+ cosϕ ŷ

⇒ ∂ρ̂

∂ϕ
= ϕ̂,

but learn also to re-derive these relationships geometrically as all mathematical
physicists know how to do from the following figures:
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With these relations for the rates of change of the direction vectors with
the coordinates, one can derive the expression for div, curl, Laplacian, etc in
cylindrical and spherical coordinates.

Example: ∇ · (vθ̂) using (150) and (151)

∇ · (vθ̂) = (∇v) · θ̂ + v (∇ · θ̂)

=
1

r

∂v

∂θ
+ v

(
θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

)
· θ̂

=
1

r

∂v

∂θ
+
v

r
θ̂ · ∂θ̂

∂θ
+

v

r sin θ
ϕ̂ · ∂θ̂

∂ϕ

=
1

r

∂v

∂θ
+

v

r tan θ
=

1

r sin θ

∂

∂θ
(v sin θ)

(152)

�

Example: ∇ · (vθ̂) using θ̂ = ϕ̂× r̂ = r sin θ∇ϕ×∇r and vector identies:

∇ · (vθ̂) = ∇ · (rv sin θ∇ϕ×∇r)

= ∇(rv sin θ) · (∇ϕ×∇r) + rv sin θ∇ · (∇ϕ×∇r)

= ∇(rv sin θ) · 1

r sin θ
θ̂ =

1

r sin θ

∂

∂θ
(v sin θ)

(153)

since ∇ · (∇ϕ×∇r) = ∇r · (∇×∇ϕ)−∇ϕ · (∇×∇r) = 0− 0. �

Example: ∇× (vθ̂) using θ̂ = r∇θ and vector identities:

∇× (vθ̂) = ∇× (rv∇θ)

= ∇(rv)×∇θ + rv∇×∇θ

=
1

r

∂(rv)

∂r
(r̂ × θ̂) +

1

r2 sin θ

∂(rv)

∂ϕ
ϕ̂× θ̂

= ϕ̂
1

r

∂

∂r
(rv)− r̂ 1

r sin θ

∂v

∂ϕ
.

(154)

�

In that second approach, we use θ̂ = r sin θ∇ϕ × ∇r when computing a
divergence, but θ̂ = r∇θ when computing a curl since that allows useful vector
identities.

Proceeding with either method, one can labor to derive the general formula
for divergence in cylindrical coordinates

∇ · (uρ̂+ vϕ̂+ wẑ) =
1

ρ

∂

∂ρ
(ρu) +

1

ρ

∂

∂ϕ
v +

∂

∂z
w (155)
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and in spherical coordinates

∇ · (ur̂ + vθ̂ + wϕ̂) =
1

r2

∂

∂r
(r2u) +

1

r sin θ

∂

∂θ
(v sin θ) +

1

r sin θ

∂

∂ϕ
w, (156)

and similarly for the curl. Note that the meaning of (u, v, w) changes with
the coordinates. We could use the notation v = vρρ̂ + vϕϕ̂ + vzẑ and v =

vrr̂ + vθθ̂ + vϕϕ̂ but using (u, v, w) for the components in the corresponding
directions is lighter if there is no confusion.

The divergence of a gradient is the Laplacian, ∇ ·∇ = ∇2, applying (155) to
the gradient in cylindrical coordinates (150) yields the Laplacian in cylindrical
coordinates

∇2f = ∇ ·∇f =
1

ρ

∂

∂ρ
(ρ
∂f

∂ρ
) +

1

ρ2

∂2f

∂ϕ2
+
∂2f

∂z2
. (157)

Likewise, applying (156) to the gradient in spherical coordinates (150) yields
the Laplacian in spherical coordinates

∇2f = ∇ ·∇f =

1

r2

∂

∂r
(r2 ∂f

∂r
) +

1

r sin θ

∂

∂θ

(
sin θ

1

r

∂f

∂θ

)
+

1

r sin θ

∂

∂ϕ

(
1

r sin θ

∂f

∂ϕ

)
(158)

For further formulae, the following wikipedia page is quite complete
https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates

Exercises

1. ∇f is the gradient of f at point P with r =
−−→
OP , calculate ∇f briefly

justifying your work, for (i) f(P ) = r sin θ where r is distance to the origin
and θ is the angle between r and ẑ (think geometrically); (ii) f(P ) is the
sum of the distances from point P to two fixed points F1 and F2. Prove

that the angle between ∇f and
−−→
F1P is the same as the angle between ∇f

and
−−→
F2P , for any P . What are the isosurfaces of f?

2. Calculate ∇f for f(r) =
A

|r − a|
+

B

|r − b|
where A,B,a, b are constants.

(i) Using vector identities and the geometric concept of gradient, (ii) in
cartesian x, y, z notation.

3. For the regionR in a plane that is defined in cartesian coordinates (x, y) by
0 < u1 ≤ xy ≤ u2 and 0 < v1 ≤ y/x ≤ v2, consider the coordinates u = xy
and v = y/x. (i) Sketch the u and v coordinate curves. Highlight R.
(ii) Find and sketch ∂r/∂u, ∂r/∂v, ∇u and ∇v. Are these orthogonal
coordinates? (iii) Calculate

∂r

∂u
·∇u,

∂r

∂u
·∇v,

∂r

∂v
·∇u,

∂r

∂v
·∇v.

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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4. Verify (136) and (137).

5. Digest and verify the identity (141) ab initio.

6. Verify the double cross product identities a× (b× c) = b(a · c)− c(a · b)
and (a× b)× c = b(a · c)− a(b · c) in index notation using (141).

7. Verify (142) and (143) using index notation and (141).

8. Use (141) to derive vector identities for (a×b)·(c×d) and (∇×v)·(∇×w).

9. Show that ∇ · (v ×w) = w · (∇ × v) − v · (∇ ×w) and explain how to
reconstruct this from the rules for the mixed (or box) product a · (b× c)
of three regular vectors.

10. Find the fastest way to show that ∇ · r = 3 and ∇× r = 0.

11. Find the fastest way to show that ∇ · (r̂/r2) = 0 and ∇× (r̂/r2) = 0 for
all r 6= 0.

12. Swiftly calculate ∇ · B and ∇ × B when B = (ẑ × r)/|ẑ × r|2 (cf.
Biot-Savart law for a line current) [Hint: use both vector identities and
cartesian coordinates where convenient].

13. Calculate ∇ · (∇u×∇v) using vector identities.

14. Calculate ∇ ·v and ∇×v for v = A
r − a
|r − a|3

+B
r − b
|r − b|3

where A,B,a, b

are constants using vector identities.

15. Calculate ∇ · (vϕ̂) and ∇× (vϕ̂) in cylindrical and spherical coordinates
using methods illustrated in sect. 10.6.

11 Fundamental examples of vector fields

Discussed in lecture and/or discussion: v = αr + ω × r, v = Syx̂, E = r̂/r2,
B = (ẑ × r)/|ẑ × r|2, . . .
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12 Fundamental theorems of vector calculus

12.1 Integration in R2 and R3

The integral of a function of two variables f(x, y) over a domain A of R2 denoted∫
A
f(x, y)dA can be defined as a the limit of a

∑
n f(xn, yn)∆An where the An’s,

n = 1, . . . , N provide an (approximate) partition of A that breaks up A into a
set of small area elements, squares or triangles for instance. ∆An is the area
of those element n and (xn, yn) is a point inside that element, for instance the
center of area of the triangle. The integral would be the limit of such sums
when the area of the triangles goes to zero and their number N must then go to
infinity. This limit should be such that the aspect ratios of the triangles remain
bounded away from 0 so we get a finer and finer sampling of A. This definition
also provides a way to approximate the integral by such a finite sum.

A

yB

yT

y

x`(y) xr(y)

If we imagine breaking up A into small squares aligned with the x and y
axes then the sum over all squares inside A can be performed row by row. Each
row-sum then tends to an integral in the x-direction, this leads to the conclusion
that the integral can be calculated as iterated integrals∫

A

f(x, y)dA =

∫ yT

yB

dy

∫ xr(y)

x`(y)

f(x, y)dx (159)

We can also imagine summing up column by column instead and each
column-sum then tends to an integral in the y-direction, this leads to the iterated
integrals ∫

A

f(x, y)dA =

∫ xR

xL

dx

∫ yt(x)

yb(x)

f(x, y)dy. (160)

Note of course that the limits of integrations differ from those of the previous
iterated integrals.

This iterated integral approach readily extends to integrals over three-dimensional
domains in R3 and more generally to integrals in Rn.
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A

xL xRx

yb(x)

yt(x)

12.2 Fundamental theorem of Calculus

The fundamental theorem of calculus can be written∫ b

a

dF

dx
dx = F (b)− F (a). (161)

Once again we can interpret this in terms of limits of finite differences. The
derivative is defined as

dF

dx
= lim

∆x→0

∆F

∆x
(162)

where ∆F = F (x+ ∆x)− F (x), while the integral∫ b

a

f(x)dx = lim
∆xn→0

N∑
n=1

f(x̃n)∆xn (163)

where ∆xn = xn − xn−1 and xn−1 ≤ x̃n ≤ xn, with n = 1, . . . , N and x0 = a,
xN = b, so the set of xn’s provides a partition of the interval [a, b]. The best
choice for x̃n is the midpoint x̃n = (xn + xn−1)/2. This is the midpoint scheme
in numerical integration methods. Putting these two limits together and setting
∆Fn = F (xn)− F (xn−1) we can write∫ b

a

dF

dx
dx = lim

∆xn→0

N∑
n=1

∆Fn
∆xn

∆xn = lim
∆xn→0

N∑
n=1

∆Fn = F (b)− F (a). (164)

We can also write this in the integral form∫ b

a

dF

dx
dx =

∫ F (b)

F (a)

dF = F (b)− F (a). (165)

12.3 Fundamental theorem in R2

From the fundamental theorem of calculus and the reduction of integrals on a
domain A of R2 to iterated integrals on intervals in R we obtain for a function
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G(x, y)∫
A

∂G

∂x
dA =

∫ yT

yB

dy

∫ xr(y)

x`(y)

∂G

∂x
dx =

∫ yT

yB

[
G(xr(y), y)−G(x`(y), y)

]
dy. (166)

This looks nice enough but we can rewrite the integral on the right-hand side as
a line integral over the boundary of A. The boundary of A is a closed curve C
often denoted ∂A (not to be confused with a partial derivative). The boundary
C has two parts C1 and C2.

A

C1
C2

yB

yT

y

x`(y) xr(y)

The curve C1 can be parametrized in terms of y as r(y) = x̂xr(y) + ŷy with
y = yB → yT , hence∫

C1
G(x, y)ŷ · dr =

∫ yT

yB

G(xr(y), y)dy.

Likewise, the curve C2 can be parametrized using y as r(y) = x̂x`(y) + ŷy with
y = yT → yB , hence∫

C2
G(x, y)ŷ · dr =

∫ yB

yT

G(x`(y), y)dy.

Putting these two results together the right hand side of (166) becomes∫ yT

yB

[
G(xr(y), y)−G(x`(y), y)

]
dy =

∫
C1
G ŷ · dr +

∫
C2
G ŷ · dr =

∮
C
G ŷ · dr,

where C = C1 + C2 is the closed curve bounding A. Then (166) becomes∫
A

∂G

∂x
dA =

∮
C
G ŷ · dr. (167)

The symbol
∮

is used to emphasize that the integral is over a closed curve. Note
that the curve C has been oriented counter-clockwise such that the interior is to
the left of the curve.
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Similarly the fundamental theorem of calculus and iterated integrals lead to
the result that∫

A

∂F

∂y
dA =

∫ xR

xL

dx

∫ yt(x)

yb(x)

∂F

∂y
dy =

∫ xR

xL

[
F (x, yt(x))− F (x, yb(x))

]
dx, (168)

and the integral on the right hand side can be rewritten as a line integral around
the boundary curve C = C3 + C4.

A

xL xRx

yb(x)

yt(x)
C4

C3

The curve C3 can be parametrized in terms of x as r(x) = x̂x+ ŷ yb(x) with
x = xL → xR, hence∫

C3
F (x, y)x̂ · dr =

∫ xR

xL

F (x, yb(x))dx.

Likewise, the curve C4 can be parametrized using x as r(x) = x̂x+ ŷ yt(x) with
x = xR → xL, hence∫

C4
F (x, y)x̂ · dr =

∫ xL

xR

F (x, yt(x))dx.

The right hand side of (168) becomes∫ xR

xL

[
F (x, yt(x))−F (x, yb(x))

]
dx = −

∫
C4
F x̂ ·dr−

∫
C3
F x̂ ·dr = −

∮
C
F x̂ ·dr,

where C = C3 + C4 is the closed curve bounding A oriented counter-clockwise as
before. Then (168) becomes∫

A

∂F

∂y
dA = −

∮
C
F x̂ · dr. (169)

12.4 Green and Stokes’ theorems

The two results (167) and (169) can be combined into a single important formula.
Subtract (169) from (167) to deduce the curl form of Green’s theorem∫

A

(
∂G

∂x
− ∂F

∂y

)
dA =

∮
C
(F x̂+Gŷ) · dr =

∮
C
(Fdx+Gdy). (170)
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Note that dx and dy in the last integral are not independent quantities, they are
the projection of the line element dr onto the basis vectors x̂ and ŷ as written
in the middle line integral. If (x(t), y(t)) is a parametrization for the curve then
dx = (dx/dt)dt and dy = (dy/dt)dt and the t-bounds of integration should be
picked to correspond to counter-clockwise orientation. Note also that Green’s
theorem (170) is the formula to remember since it includes both (167) when
F = 0 and (169) when G = 0.

Green’s theorem can be written in several equivalent forms. Define the vector
field v = F (x, y)x̂+G(x, y)ŷ. A simple calculation verifies that its curl is purely
in the ẑ direction indeed (134) gives ∇ × v = ẑ (∂G/∂x − ∂F/∂y) thus (170)
can be rewritten in the form∫

A

(∇× v) · ẑ dA =

∮
C
v · dr, (171)

This result also applies to any 3D vector field v(x, y, z) = F (x, y, z)x̂+G(x, y, z)ŷ+
H(x, y, z)ẑ and any planar surface A perpendicular to ẑ since ẑ · (∇× v) still
equals ∂G/∂x− ∂F/∂y for such 3D vector fields and the line element dr of the
boundary curve C of such planar area is perpendicular to ẑ so v ·dr is still equal
to F (x, y, z)dx + G(x, y, z)dy. The extra z coordinate is a mere parameter for
the integrals and (171) applies equally well to 3D vector field v(x, y, z) provided
A is a planar area perpendicular to ẑ.

Figure 2.9: Surface S with boundary C and right hand rule orientations for
Stokes’ Theorem.

In fact that last restriction on A itself can be removed. This is Stokes’
theorem which reads ∫

S

(∇× v) · dS =

∮
C
v · dr, (172)

where S is a bounded orientable surface in 3D space, not necessarily planar,
and C is its closed curve boundary. The orientation of the surface as determined
by the direction of its normal n̂, where dS = n̂dS, and the orientation of the
boundary curve C must obey the right-hand rule. Thus a corkscrew turning in
the direction of C would go through S in the direction of its normal n̂. That
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restriction is a direct consequence of the fact that the right hand rule enters the
definition of the curl as the cross product ∇× v.

Stokes’ theorem (172) provides a geometric interpretation for the curl. At
any point r, consider a small disk of area A perpendicular to an arbitrary unit
vector n̂, then Stokes’ theorem states that

(∇× v) · n̂ = lim
A→0

1

A

∮
C
v · dr (173)

where C is the circle bounding the disk A oriented with n̂. The line integral∮
v · dr is called the circulation of the vector field v around the closed curve C.

Proof of Stokes’ theorem
Index notation enables a fairly straightforward proof of Stokes’ theorem for
the more general case of a surface S in 3D space that can be parametrized
by a ‘good’ function r(s, t) (differentiable and integrability as needed). Such
a surface S can fold and twist (it could even intersect itself!) and is therefore
of a more general kind than those that can be parametrized by the cartesian
coordinates x and y. The main restriction on S is that it must be ‘orientable’.
This means that it must have an ‘up’ and a ‘down’ as defined by the direction
of the normal ∂r/∂s×∂r/∂t. The famous Möbius strip only has one side and is
the classical example of a non-orientable surface. The boundary of the Möbius
strip forms a knot.
I Let xi(s, t) represent the i component of the position vector r(s, t) in the

surface S with i = 1, 2, 3. Then

(∇× v) ·
(
∂r

∂s
× ∂r

∂t

)
=εijk

∂vk
∂xj

εilm
∂xl
∂s

∂xm
∂t

= εijkεilm
∂vk
∂xj

∂xl
∂s

∂xm
∂t

= (δjlδkm − δjmδkl)
∂vk
∂xj

∂xl
∂s

∂xm
∂t

=
∂vk
∂xj

∂xj
∂s

∂xk
∂t
− ∂vk
∂xj

∂xk
∂s

∂xj
∂t

=
∂v̄k
∂s

∂xk
∂t
− ∂v̄k

∂t

∂xk
∂s

=
∂

∂s

(
v̄k
∂xk
∂t

)
− ∂

∂t

(
v̄k
∂xk
∂s

)
=

∂G(s, t)

∂s
− ∂F (s, t)

∂t
, (174)

where we have used (141), then the chain rule

∂vk
∂xj

∂xj
∂s

=
∂vk
∂x1

∂x1

∂s
+
∂vk
∂x2

∂x2

∂s
+
∂vk
∂x3

∂x3

∂s
=
∂v̄k
∂s

,

with
v̄k(s, t) , vk

(
x1(s, t), x2(s, t), x3(s, t)

)
,
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and equality of mixed partials

∂2xk
∂s∂t

=
∂2xk
∂t∂s

.

This proof demonstrates the power of index notation with the summation con-
vention. The first line of (174) is a quintuple sum over all values of the indices
i, j, k, l and m! This would be unmanageable without the compact notation.

Now for any point on the surface S with position vector r(s, t)

v·dr = v̄i

(
∂xi
∂s

ds+
∂xi
∂t

dt

)
=

(
v̄i
∂xi
∂s

)
ds+

(
v̄i
∂xi
∂t

)
dt = F (s, t)ds+G(s, t)dt,

(175)
and we have again reduced Stokes’ theorem to Green’s theorem (170) but ex-
pressed in terms of s and t instead of x and y. In details we have shown that

∫
S

(∇×v)·dS =

∫
A

(∇×v)·
(
∂r

∂s
× ∂r

∂t

)
dsdt =

∫
A

(
∂G(s, t)

∂s
− ∂F (s, t)

∂t

)
dsdt,

(176)∮
C
v · dr =

∮
CA
F (s, t)ds+G(s, t)dt. (177)

The right hand sides of (176) and (177) are equal by Green’s theorem (170). �

12.5 Divergence form of Green’s theorem

The fundamental theorems (167) and (169) in R2 can be rewritten in a more
palatable form.

The line element dr at a point on the curve C is in the direction of the unit
tangent t̂ at that point, so dr = t̂ ds, where t̂ points in the counterclockwise
direction of the curve. Then t̂ × ẑ = n̂ is the unit outward normal n̂ to the
curve at that point and ẑ × n̂ = t̂ so

x̂ · n̂ = ŷ · t̂,
x̂ · t̂ = −ŷ · n̂.

(178)

Hence since dr = t̂ ds, the fundamental theorems (167) and (169) can be

t̂ n̂

x̂

ŷ

ẑ

rewritten ∫
A

∂F

∂x
dA =

∮
C
F ŷ · dr =

∮
C
F x̂ · n̂ ds, (179)∫

A

∂F

∂y
dA = −

∮
C
F x̂ · dr =

∮
C
F ŷ · n̂ ds. (180)

The right hand side of these equations is easier to remember since they have
x̂ going with ∂/∂x and ŷ with ∂/∂y and both equations have positive signs.
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But there are hidden subtleties. The arclength element ds = |dr| is positive
by definition and n̂ must be the unit outward normal to the boundary, so if
an explicit parametrization of the boundary curve is known, the bounds of
integration should be picked so that

∮
C ds =

∮
C |dr| > 0 would be the length of

the curve with a positive sign. For the dr line integrals, the bounds of integration
must correspond to counter-clockwise orientation of C.

Formulas (179) and (180) can be combined in more useful forms. First, if u
is the signed distance in the direction of the unit vector û, then the (directional)
derivative in the direction û is ∂F/∂u = û ·∇F ≡ ux∂F/∂x+ uy∂F/∂y, where
û = uxx̂+ uyŷ, therefore combining (179) and (180) accordingly we obtain∫

A

∂F

∂u
dA =

∮
C
F û · n̂ ds. (181)

This result is written in a coordinate-free form. It applies to any direction û in
the x,y plane.

Another useful combination is to add (179) to (180), the latter written for
an arbitrary function G(x, y) in place of F (x, y), yielding the divergence-form
of Green’s theorem ∫

A

∇ · v dA =

∮
C
v · n̂ ds. (182)

for the arbitrary vector field v = F x̂+Gŷ and arbitrary area A with boundary
C, where n̂ is the local unit outward normal and ds = |dr| is the arclength
element along the curve.

12.6 Gauss’ theorem

Gauss’ theorem is the 3D version of the divergence form of Green’s theorem. It
is proved by first extending the fundamental theorem of calculus to 3D.

If V is a bounded volume in 3D space and F (x, y, z) is a scalar function of
the cartesian coordinates (x, y, z), then we have∫

V

∂F

∂z
dV =

∮
S

F ẑ · n̂dS, (183)

where S is the closed surface enclosing V and n̂ is the unit outward normal to
S.

The proof of this result is similar to that for (167). Assume that the surface
can be parametrized using x and y in two pieces: an upper ‘hemisphere’ at
z = zu(x, y) and a lower ‘hemisphere’ at z = zl(x, y) with x, y in a domain A,
the projection of S onto the x, y plane, that is the same domain for both the
upper and lower surfaces. The closed surface S is not a sphere in general but
we used the word ‘hemisphere’ to help visualize the problem. For a sphere, A
is the equatorial disk, z = zu(x, y) is the northern hemisphere and z = zl(x, y)
is the southern hemisphere.
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Iterated integrals with dV = dAdz and the fundamental theorem of calculus
give∫
V

∂F

∂z
dV =

∫
A

dA

∫ zu(x,y)

zl(x,y)

∂F

∂z
dz =

∫
A

[
F (x, y, zu(x, y))−F (x, y, zl(x, y))

]
dA.

(184)

dA

dS

n̂
ẑ

α

α

We can interpret that integral over A as an integral over the entire closed
surface S that bounds V . All we need for that is a bit of geometry. If dA is the
projection of the surface element dS = n̂dS onto the x, y plane then we have
dA = cosαdS = ±ẑ · n̂ dS. The + sign applies to the upper surface for which
n̂ is pointing up (i.e. in the direction of ẑ) and the - sign for the bottom surface
where n̂ points down (and would be opposite to the n̂ on the side figure). Thus
we obtain ∫

V

∂F

∂z
dV =

∮
S

F ẑ · n̂ dS, (185)

where n̂ is the unit outward normal to S.

We can obtain similar results for the volume integrals of ∂F/∂x and ∂F/∂y
and combine those to obtain∫

V

∂F

∂u
dV =

∮
S

F û · n̂ dS, (186)

for arbitrary but fixed direction û. This is the 3D version of (181) and of the
fundamental theorem of calculus.

We can combine this theorem into many useful forms. Writing it for F (x, y, z)
in the x̂ direction, with the ŷ version for a function G(x, y, z) and the ẑ version
for a function H(x, y, z) we obtain Gauss’s theorem∫

V

∇ · v dV =

∮
S

v · n̂ dS, (187)

where v = F x̂+Gŷ+Hẑ. This is the 3D version of (182). Note that both (186)
and (187) are expressed in coordinate-free forms. These are general results. The
integral

∮
S
v · n̂dS is the flux of v through the surface S. If v(r) is the velocity

of a fluid at point r then that integral represents the time-rate at which volume
of fluid flows through the surface S.

Gauss’ theorem provides a coordinate-free interpretation for the divergence.
Consider a small sphere of volume V and surface S centered at a point r, then
Gauss’ theorem states that

∇ · v = lim
V→0

1

V

∮
S

v · n̂ dS. (188)

Note that (186) and (187) are equivalent. We deduced (187) from (186),
but we can also deduce (186) from (187) by considering the special v = F û
where û is a unit vector independent of r. Then from our vector identities
∇ · (F û) = û ·∇F = ∂F/∂u.
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Figure 2.10: Gauss’ theorem, eqns. (182) and (187), applies to a flat area A
with boundary curve C and to a volume V with boundary surface S and surface
element dS = n̂ dS, where n̂ is the local unit outward normal.

12.7 Other forms of the fundamental theorem in 3D

A useful form of (186) is to write it in indicial form as∫
V

∂F

∂xj
dV =

∮
S

njF dS. (189)

Then with f(r) in place of F (r) we deduce that∫
V

ej
∂f

∂xj
dV =

∮
S

ejnjf dS (190)

since the cartesian unit vectors ej are independent of position. With the summa-
tion convention, this is a sum of all three partial derivatives in (189), multiplied
by their respective direction vector. This result can be written in coordinate-free
form as ∫

V

∇f dV =

∮
S

f n̂ dS. (191)

One application of this form of the fundamental theorem is to prove Archimedes’
principle.

Next, writing (189) for vk in place of F yields∫
V

∂vk
∂xj

dV =

∮
S

nj vk dS, (192)

that represents 9 different integrals since j and k are free indices. Multiplying
(192) by the position-independent εijk and summing over all j and k gives∫

V

εijk
∂vk
∂xj

dV =

∮
S

εijknj vk dS. (193)
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The coordinate-free form of this is∫
V

∇× v dV =

∮
S

n̂× v dS. (194)

The integral theorems (191) and (194) provide yet other geometric interpreta-
tions for the gradient

∇f = lim
V→0

1

V

∮
S

f n̂ dS, (195)

and the curl

∇× v = lim
V→0

1

V

∮
S

n̂× v dS. (196)

These are similar to the result (188) for the divergence. Recall the other geo-
metric interpretations for the gradient and the curl – the gradient as the vector
pointing in the direction of greatest rate of change (sect. 10.2), and of the n̂
component of the curl, as the limit of the local circulation per unit area as given
by Stokes’ theorem (173).

In applications, we use the fundamental theorem as we do in 1D, namely to
reduce a 3D integral to a 2D integral, for instance. However we also use them
the other way, to evaluate a complicated surface integral as a simpler volume
integral, for instance when ∇f or ∇ · v or ∇× v are constants and the volume
integral is then trivial.

Exercises

1. Calculate
∮
C y dx where C : r(θ) = r

C
+ a cos θ + b sin θ with r

C
,a, b

constants.

2. Let A be the area of the triangle with vertices P1 ≡ (x1, y1), P2 ≡
(x2, y2), P3 ≡ (x3, y3) in the cartesian x, y plane and C ≡ ∂A denotes the
boundary of that area, oriented counterclockwise. (i) Calculate

∫
A
x2 dA.

Show/explain your work. (ii) Calculate
∮
∂A
v · dr where (1) v = xx̂+ yŷ,

(2) v = yx̂− xŷ. Sketch v.

3. If C is any closed curve in 3D space (i) calculate
∮
C r · dr in two ways, (ii)

calculate
∮
C∇f · dr in two ways, where f(r) is a scalar function. [Hint:

by direct calculation and by Stokes theorem].

4. If C is any closed curve in 3D space not passing through the origin calculate∮
C r
−3r · dr in two ways.

5. Calculate the circulation of the vector field B = (ẑ×r)/|ẑ×r|2 (i) about
a circle of radius R centered at the origin in a plane perpendicular to ẑ;
(ii) about any closed curve C in 3D that does not go around the z-axis; (ii)
about any closed curve C0 that does go around the ẑ axis. What’s wrong
with the z-axis anyway?
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6. Consider v = ω × r where ω is a constant vector, independent of r. (i)
Evaluate the circulation of v about the circle of radius R centered at the
origin in the plane perpendicular to the direction n̂ by direct calculation
of the line integral; (ii) Calculate the curl of v using vector identities; (iii)
calculate the circulation of v about a circle of radius R centered at r0 in
the plane perpendicular to n̂.

7. If C is any closed curve in 2D, calculate
∮
C n̂ dr where n̂(r) is the unit

outside normal to C at the point r of C.

8. If S is any closed surface in 3D, calculate
∮
n̂dS where n̂(r) is the unit

outside normal to S at a point r on S.

9. If S is any closed surface in 3D, calculate
∮
p n̂ dS where n̂ is the unit

outside normal to S and p(r) = (p0 − ρgẑ · r) where p0, ρ and g are
constants (This is Archimedes’ principle with ρ as fluid density and g as
the acceleration of gravity.) Calculate the torque,

∮
S
r× (−pn̂) dS for the

same pressure field p.

10. Calculate the flux of r through (i) the surface of a sphere of radius R
centered at the origin in two ways; (ii) through the surface of the sphere
of radius R centered at r0; (iii) through the surface of a cube of side L
with one corner at the origin in two ways.

11. (i) Calculate the flux of v = r/r3 through the surface of a sphere of radius
ε centered at the origin. (ii) Calculate the flux of that vector field through
a closed surface that does not enclose the origin [Hint: use the divergence
theorem] (iii) Calculate the flux through an arbitrary closed surface that
encloses the origin [Hint: use divergence theorem and (i) to isolate the
origin. What’s wrong with the origin anyway?]

12. Calculate ∇|r − r0|−1 and ∇ · v with v = (r − r0)/|r − r0|3 where r0 is
a constant vector.

13. What are all the possible values of∮
S

v · dS for v = A
r − a
|r − a|3

+B
r − b
|r − b|3

,

where A,B,a, b constants and S is any closed surface that does not pass
through a or b? Explain/justify carefully.

14. Calculate the flux of v through the surface of a sphere of radius R centered
at the origin when v = α1(r− r1)/|r− r1|3 + α2(r− r2)/|r− r2|3 where
α1 and α2 are scalar constants and (i) |r1| and |r2| are both less than R;

(ii) |r1| < R < |r2|. Generalize to v =
∑N
i=1 αi(r − ri)/|r − ri|3.

15. Calculate F (r) =
∫
V0
fdV0 where V0 is the inside of a sphere of radius R

centered at O, f = (r−r0)/|r−r0|3 with |r| > R and the integral is over
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r0. This is essentially the gravity field or force at r due to a sphere of
uniform mass density. The integral can be cranked out if you’re good at
analytic integration. But the smart solution is to realize that the integral
over r0 is essentially a sum over ri as in the previous exercise so we can
figure out the flux of F through any closed surface enclosing all of V0.
Now by symmetry F (r) = F (r)r̂, so knowing the flux is enough to figure
out F (r).

16. Suppose you have all the data to plot the skull surface, how do you com-
pute its volume? Provide an explicit formula or algorithm and specify
what data is needed and in what form.



Chapter 3

Complex Calculus

1 Complex Numbers and Elementary functions

1.1 Complex Algebra and Geometry

Imaginary and complex numbers were introduced by Italian mathematicians
in the early 1500’s as a result of algorithms to find the solutions of the cubic
equation ax3 + bx2 + cx+ d = 0. The formula they derived sometimes involved
square roots of negative numbers when the cubic polynomial ax3 + bx2 + cx+ d
was known to have three real roots. If they carried through their calculations,
imagining that

√
−1 existed, they obtained the correct real roots. Following

Euler, we define
i ,
√
−1 such that i2 = −1, (1)

and a complex number z
z = x+ i y (2)

consists of a real part Re(z) = x and an imaginary part Im(z) = y, both of
which are real numbers. For example

z = 2 + 3i ⇔ Re(z) = 2, Im(z) = 3.

Note that the imaginary part of a complex number is real, Im(2 + 3i) = 3, not
3i and more generally Im(z) = y not i y.

In the early 1800’s, the French amateur mathematician Jean-Robert Argand
introduced the geometric interpretation of complex numbers as vectors in the
(x, y) plane with multiplication by i corresponding to counterclockwise rotation
by π/2

z = x+ iy ≡ (x, y)⇒ iz = i(x+ iy) = −y + ix ≡ (−y, x).

A second multiplication by i corresponds to another π/2 rotation (−y, x) →
(−x,−y) resulting in a sign change after 2 successive rotations by π/2, (x, y)→
(−x,−y) = −(x, y) and indeed i2 = −1. That (x, y) plane is called the complex

117
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ϕ
r

z ≡ (x, y)

z∗ ≡ (x,−y)

x

y

iz ≡ (−y, x)

i2z ≡ (−y,−x)

Figure 3.1: The complex plane C, also known as the Argand plane, interprets
complex numbers z = x + iy as vectors (x, y) in R2 with additional alge-

braic/geometric operations. The magnitude of z is |z| = r =
√
x2 + y2, its

argument arg(z) = ϕ with x = r cosϕ, y = r sinϕ.

plane, historically known also as the Argand plane and illustrated in figure 3.1.
Argand introduced the term vector as well as the geometric concepts of modulus
|z| and argument arg(z).

Modulus (or Norm or Magnitude)

The modulus of z = x+ iy is

|z| ,
√
x2 + y2 = r. (3)

This modulus is equivalent to the euclidean norm of the 2D vector (x, y).

Argument (or angle)

The ‘argument’ of z = x+ iy is

arg(z) ≡ angle(z) = ϕ such that

{
x = r cosϕ

y = r sinϕ
(4)

is the angle between the vector (x, y) and the real direction (1, 0). The notation
arg(z) is classic but angle(z) is clearer since the word ‘argument’ is commonly
used to denote an input variable to a function. The standard unique definition
specifies the angle in (−π, π]

−π < angle(z) ≤ π (5)

thus angle(z) = atan2(y, x). The function atan2(y, x) was introduced in the
Fortran computer language and is now common in all computer languages. The
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atan2(y, x) function is the arctangent function but returns an angle in (−π, π],
in contrast to arctan(y/x) that loses sign information and returns an angle in
[−π/2, π/2].

Complex conjugate

The reflection of z = x+ iy about the real axis is called the complex conjugate
of z

z∗ , x− iy, (6)

written z̄ by some authors.

Addition

z1 + z2 , (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).

That is (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) so complex numbers add like 2D
cartesian vectors, by adding the corresponding real and imaginary components.
Thus complex addition satisfies the triangle inequality

|z1 + z2| ≤ |z1|+ |z2|. (7)

Multiplication

From usual algebra but with the additional rule i2 = −1, we obtain

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i (x1y2 + x2y1).

It is a straightforward exercise to show that the magnitude of a product is the
product of the magnitudes

|z1z2| = |z1| |z2| (8)

and the angle of a product is the sum of the angles modulo 2π

arg(z1z2) = arg(z1) + arg(z2) modulo 2π. (9)

For instance, arg((−2)(−3)) = arg(6) = 0 but arg(−2) = π and arg(−3) = π
so arg(−2) + arg(−3) = 2π which is equal to 0 up to a multiple of 2π, that is
modulo 2π.

The complex product is an operation that does not exist for 2D real cartesian
vectors. However, note that

z∗1z2 = (x1 − iy1)(x2 + iy2) = (x1x2 + y1y2) + i(x1y2 − x2y1)

has a real part that equals the dot product of the real vectors

r1 · r2 = (x1, y1) · (x2, y2) = x1x2 + y1y2 ≡ Re(z∗1z2)
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and an imaginary part that equals the e3 component of the cross product

(x1, y1, 0)× (x2, y2, 0) = (0, 0, x1y2 − x2y1).

Note in particular that

z∗z = zz∗ = x2 + y2 = r2 = |z|2, (10)

and this relation is often useful to compute complex magnitudes just as the dot
product is useful to compute vector magnitudes. For instance

|a+ b| =
√

(a+ b)(a+ b)∗ =
√
aa∗ + ab∗ + a∗b+ a∗b∗

is the complex equivalent of

|a+ b| =
√

(a+ b) · (a+ b) =
√
a · a+ 2a · b+ b · b

for real vectors.
However, while the dot product of two vectors is not a vector, and the cross

product of horizontal vectors is not a horizontal vector, the product of complex
numbers is a complex number. This allows definition of complex division as the
opposite of multiplication.

Division

Given z1 and z2 6= 0 we can find a unique z such that zz2 = z1. That z is
denoted z1/z2 and equal to

z1

z2
=
z1z
∗
2

z2z∗2
=

(x1 + iy1)(x2 − iy2)

x2
2 + y2

2

=

(
x1x2 + y1y2

x2
2 + y2

2

)
+ i

(
x2y1 − x1y2

x2
2 + y2

2

)
. (11)

Thus while division of vectors by vectors is not defined (what is North divided
by Northwest?!), we can divide complex numbers by complex numbers and the
complex interpretation of ‘North/Northwest’ is

i
−1+i√

2

=

√
2 i(−1− i)

(−1 + i)(−1− i)
=

1− i√
2
,

which is “Southeast”! But we won’t use that confusing language and will not
divide directions by directions. However we will divide unit complex numbers
by unit complex numbers, especially after we have (re)viewed Euler’s fabulous
formula eiθ = cos θ + i sin θ.

It is left as an exercise to show that the magnitude of a ratio is the ratio of
the magnitudes ∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

and the angle of a ratio is the difference of the angles, modulo 2π

arg

(
z1

z2

)
= arg(z1)− arg(z2) modulo 2π.
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For example, arg(−2/i) = arg(2i) = π/2 but arg(−2) = −π and arg(i) = π/2 so
arg(−2)−arg(i) = −3π/2 which is π/2−(2π), so arg(z1/z2) = arg(z1)−arg(z2)
up to a multiple of 2π.

All the algebraic formula that should be well known for real numbers hold
for complex numbers as well, for instance

z2 − a2 = (z − a)(z + a)

z3 − a3 = (z − a)(z2 + az + a2)

and for any positive integer n

zn+1 − an+1 = (z − a)

n∑
k=0

zn−kak. (12)

Also,

(z + a)2 = z2 + 2za+ a2

(z + a)3 = z3 + 3z2a+ 3za2 + a3

and for any positive integer n we have the binomial formula (defining 0! = 1)

(z + a)n =

n∑
k=0

(
n

k

)
zn−kak =

n∑
k=0

n!

k!(n− k)!
zn−kak. (13)

These classic algebraic formula will be useful to prove that dzn/dz = nzn−1 and
that exp(z + a) = exp(z) exp(a).

Exercises:

1. Express the following expressions in the form a+ ib with a and b real, and
i2 = −1:

(2 + 3i)∗, |2 + 3i|, Im(2 + 3i),
1

2 + 3i
, arg(2 + 3i). Show your work.

2. Calculate (1 + i)/(2 + 3i). Find its magnitude and its angle.

3. Consider two arbitrary complex numbers z1 and z2. Sketch z1, z2, z1 +z2,
z1 − z2, z1 + z∗1 and z1 − z∗1 in the complex plane.

4. Consider z1 = −1 + i 10−17 and z2 = −1 − i 10−17. Calculate |z1 − z2|
and arg(z1)− arg(z2). Are z1 and z2 close to each other? Are arg(z1) and
arg(z2) close to each other? Show your work.

5. Prove that (z1 + z2)∗ = z∗1 + z∗2 and (z1z2)∗ = z∗1z
∗
2 for any complex

numbers z1 and z2.

6. Prove that |z1z2| = |z1||z2| but |z1 + z2| ≤ |z1| + |z2| for any complex
numbers z1 and z2. When is |z1 + z2| = |z1|+ |z2|?
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7. Show that |z1z2| = |z1||z2| and angle(z1z2) = angle(z1)+angle(z2) modulo
2π, (1) using trigonometry with z = r(cosϕ + i sinϕ) and angle sum
identities, and (2) geometrically by distributing one of the factors, for
instance z1z2 = x1z2 + y1(iz2) and interpreting the result as the linear
combination of two orthogonal vectors of same magnitude z2 = (x2, y2) ≡
r2 and iz2 = (−y2, x2) ≡ r⊥2 .

8. Show that |z1/z2| = |z1|/|z2| and angle(z1/z2) = angle(z1) − angle(z2)
modulo 2π. (Hint: use the corresponding results for product and z1/z2 =
z1z
∗
2/|z2|2.)

9. If a and b are arbitrary complex numbers, prove that ab∗+a∗b is real and
ab∗ − a∗b is imaginary.

10. True or false: (iz)∗z = 0 since i z is perpendicular to z. Explain.

11. For vectors a and b, the dot product a · b = 0 when the vectors are
perpendicular and the cross product a × b = 0 when they are parallel.
Show that two complex numbers a and b are parallel when ab∗ = a∗b and
perpendicular when ab∗ = −a∗b.

12. Show that the final formula (11) for division follows from the definition of
multiplication (as it should), that is, if z = z1/z2 then zz2 = z1, solve for
Re(z) and Im(z) to find z.

13. Prove (12) and the binomial formula (13) as you (should have) learned in
high school algebra.

1.2 Limits and Derivatives

The modulus allows the definition of distance and limit. The distance between
two complex numbers z1 and z2 is the modulus of their difference |z1 − z2|. A
complex number z1 tends to a complex number z if |z1 − z| → 0, where |z1 − z|
is the euclidean distance between the complex numbers z1 and z in the complex
plane.

Continuity

A function f(z) is continuous at z if

lim
z1→z

f(z1) = f(z), (14)

which means that f(z1) can be as close as we want to f(z) by taking z1 close
enough to z. In mathematical notation, that is

∀ε > 0 ∃δ > 0 s.t. |z1 − z| < δ ⇒ |f(z1)− f(z)| < ε.



c©F. Waleffe, Math 321, 2016/1/18 123

For example f(z) = a2z
2 + a1z + a0 is continuous everywhere since

|f(z1)− f(z)| =|a2(z1 − z)2 + a1(z1 − z)|
≤|a2||z1 − z|2 + |a1||z1 − z| = |z1 − z|

(
|a2||z1 − z|+ |a1|

)
thus |f(z1) − f(z)| → 0 as |z1 − z| → 0. See the exercises for (ε, δ) for this
example.

Differentiability

The derivative of a function f(z) at z is

df(z)

dz
= lim
a→0

f(z + a)− f(z)

a
(15)

where a is a complex number and a→ 0 means |a| → 0. This limit must be the
same no matter how a→ 0.

We can use the binomial formula (13) as done in Calc I to deduce that

dzn

dz
= nzn−1 (16)

for any integer n = 0,±1,±2, . . ., and we can define the anti-derivative of zn as
zn+1/(n + 1) + C for all integer n 6= −1. All the usual rules of differentiation:
product rule, quotient rule, chain rule,. . . , still apply for complex differentiation
and we will not bother to prove those here, the proofs are just like in Calc I.

So there is nothing special about complex derivatives, or is there? Consider
the function f(z) = Re(z) = x, the real part of z. What is its derivative?
Hmm. . . , none of the rules of differentiation help us here, so let’s go back to
first principles:

dRe(z)

dz
= lim
a→0

Re(z + a)−Re(z)

a
= lim
a→0

Re(a)

a
=?! (17)

What is that limit? If a is real, then a = Re(a) so the limit is 1, but if a is
imaginary then Re(a) = 0 and the limit is 0. So there is no limit that holds for all
a→ 0. The limit depends on how a→ 0, and we cannot define the z-derivative
of Re(z). Re(z) is continuous everywhere, but nowhere z-differentiable!

Exercises:

1. Prove that the functions f(z) = Re(z) and f(z) = z∗ are continuous
everywhere.

2. For f(z) = a2z
2 + a1z + a0 show that |f(z1)− f(z)| < ε when |z1 − z| <

δ =
−|a1|+

√
|a1|2+4ε|a2|

2|a2| . Does this hold also when a2 → 0? What δ(ε) do

you expect for a2 = 0?
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3. Prove formula (16) from the limit definition of the derivative (a) using
(12), (b) using (13).

4. Prove that (16) also applies to negative integer powers z−n = 1/zn from
the limit definition of the derivative.

5. Investigate the existence of df/dz from the limit definition for f(z) =
Im(z) and f(z) = |z|.

1.3 Geometric sums and series

For any complex number q 6= 1, the geometric sum

1 + q + q2 + · · ·+ qn =
1− qn+1

1− q
. (18)

To prove this, let Sn = 1 + q + · · · + qn and note that qSn = Sn + qn+1 − 1,
solving for Sn yields Sn = (1− qn+1)/(1− q).

The geometric series is the limit of the sum as n→∞. It follows from (18),
that the geometric series converges to 1/(1−q) if |q| < 1, and diverges if |q| > 1,

∞∑
n=0

qn = 1 + q + q2 + · · · = 1

1− q
, iff |q| < 1. (19)

Note that we have two different functions of q: (1) the series
∑∞
n=0 q

n which
only exists when |q| < 1, (2) the function 1/(1− q) which is defined and smooth
everywhere except at q = 1. These two expressions, the geometric series and
the function 1/(1 − q) are identical in the disk |q| < 1, but they are not at all
identical outside of that disk since the series does not make any sense (i.e. it
diverges) outside of it. What happens on the unit circle |q| = 1? (consider for
example q = 1, q = −1, q = i, . . . )

|q| = 1

Re(q)

Im(q)

diverges

converges

Figure 3.2: The geometric series (18) G(q) =
∑∞
n=0 q

n converges in the disk
|q| < 1 where it equals 1/(1 − q). The series diverges outside the unit disk
although the function 1/(1− q) exists for any q 6= 1.
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Exercises:

1. Prove formula (18). What is the sum when q = 1?

2. What is
∑∞
n=0 q

n when q = 1? q = −1? q = i?

3. Calculate 1 + z + z2 + · · · + z321 for z = i and z = 1 + i. Explain your
work.

4. Calculate 1− z+ z2− z3 + · · ·− z321 for z = i and z = 1 + i. Explain your
work.

5. Calculate qN + qN+2 + qN+4 + qN+6 + · · · with |q| < 1.

6. What is the connection between the geometric sum (18) and the classic
algebraic formula (12)?

1.4 Ratio test

The geometric series leads to a useful test for convergence of the general series

∞∑
n=0

an = a0 + a1 + a2 + · · · (20)

We can make sense of this series again as the limit of the partial sums Sn =
a0 + a1 + · · · + an as n → ∞. Any one of these finite partial sums exists but
the infinite sum does not necessarily converge. Example: take an = 1 ∀n, then
Sn = n+ 1 and Sn →∞ as n→∞.

A necessary condition for convergence is that an → 0 as n → ∞ as you
learned in Calculus and can explain why, but that is not sufficient. A sufficient
condition for convergence is obtained by comparison to a geometric series. This
leads to the Ratio Test : the series (20) converges if

lim
n→∞

|an+1|
|an|

= L < 1 (21)

Why does the ratio test work? If L < 1, then pick any q such that L < q < 1
and one can find a (sufficiently large) N such that |an+1|/|an| < q for all n ≥ N
so we can write

|aN |+ |aN+1|+ |aN+2|+ |aN+3|+ · · · = |aN |
(

1 +
|aN+1|
|aN |

+
|aN+2|
|aN+1|

|aN+1|
|aN |

+ · · ·
)

< |aN |
(
1 + q + q2 + · · ·

)
=
|aN |
1− q

<∞.

(22)

If L > 1, then we can reverse the proof (i.e. pick q with 1 < q < L and N such
that |an+1|/|an| > q ∀n ≥ N) to show that the series diverges. If L = 1, the
ratio test does not determine convergence.
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1.5 Power series

A power series has the form

∞∑
n=0

cn(z − a)n = c0 + c1(z − a) + c2(z − a)2 + · · · (23)

where the cn’s are complex coefficients and z and a are complex numbers. It is
a series in powers of (z − a). By the ratio test, the power series converges if

lim
n→∞

∣∣∣∣cn+1(z − a)n+1

cn(z − a)n

∣∣∣∣ = |z − a| lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ ≡ |z − a|R
< 1, (24)

where we have defined

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ =
1

R
. (25)

The power series converges if |z − a| < R. It diverges if |z − a| > R. Since
|z − a| = R is a circle of radius R centered at a, R is called the radius of
convergence of the power series. R can be 0, ∞ or anything in between.

R

a

|z − a| < R

Re(z)

Im(z)

Figure 3.3: A power series (23) converges in a disk |z − a| < R and diverges
outside of that disk. The radius of convergence R can be 0 or ∞.

This geometric convergence inside a disk implies that power series can be
differentiated (and integrated) term-by-term inside their disk of convergence
(why?). The disk of convergence of the derivative or integral series is the same as
that of the original series. For instance, the geometric series

∑∞
n=0 z

n converges
in |z| < 1 and its term-by-term derivative

∑∞
n=0 nz

n−1 does also, as you can
verify by the ratio test. If the power series converges and we denote its limit by
f(z), that is f(z) =

∑∞
n=0 cn(z − a)n, then f(a) = c0 and it is straightforward

to verify by repeated differentiation of the series and evaluation at z = a that

dnf

dzn
(a) = n! cn.
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Taylor Series

The Taylor series of a function f(z) about z = a is its unique expansion in
powers of (z − a)

f(z) = f(a) + f ′(a)(z − a) +
1

2
f ′′(a)(z − a)2 + · · · =

∞∑
n=0

f (n)(a)

n!
(z − a)n,

(26)
where f (n)(a) = dnf/dzn(a) is the nth derivative of f(z) at a and n! = n(n −
1) · · · 1 is the factorial of n, with 0! = 1 by convenient definition. The equality
between f(z) and its Taylor series is only valid if the series converges. The
geometric series

1

1− z
= 1 + z + z2 + · · · =

∞∑
n=0

zn (27)

is the Taylor series of f(z) = 1/(1 − z) about z = 0. As mentioned earlier,
the function 1/(1 − z) exists and is infinitely differentiable everywhere except
at z = 1 while the series

∑∞
n=0 z

n only exists in the unit circle |z| < 1. The
convergence of the series about z = 0 is limited by the singularity of 1/(1 − z)
at z = 1.

Several useful Taylor series are more easily derived from the geometric series
(19), (27) than from the general formula (26) (even if you really like calculating
lots of derivatives!). For instance

1

1− z2
= 1 + z2 + z4 + · · · =

∞∑
n=0

z2n (28)

1

1 + z
= 1− z + z2 − · · · =

∞∑
n=0

(−z)n (29)

ln(1 + z) = z − z2

2
+ · · · =

∞∑
n=0

(−1)nzn+1

n+ 1
(30)

The last series is obtained by integrating both sides of the previous equation
and matching at z = 0 to determine the constant of integration. These series
converge only in |z| < 1 while the functions on the left hand side exist for (much)
larger domains of z.

Exercises:

1. Explain why the domain of convergence of a power series is always a disk
(possibly infinitely large), not an ellipse or a square or any other shape
[Hint: read the notes carefully]. (Anything can happen on the bound-
ary of the disk: weak (algebraic) divergence or convergence, perpetual
oscillations, etc., recall the geometric series).
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2. Show that if a function f(z) =
∑∞
n=0 cn(z−a)n for all z’s within the (non-

zero) disk of convergence of the power series, then the cn’s must have the
form provided by formula (26).

3. What is the Taylor series of 1/(1 − z) about z = 0? what is its radius of
convergence? does the series converge at z = −2? why not?

4. What is the Taylor series of the function 1/(1 + z2) about z = 0? what
is its radius of convergence? Use a computer or calculator to test the
convergence of the series inside and outside its disk of convergence.

5. What is the Taylor series of 1/z about z = 2? what is its radius of
convergence? [Hint: z = a+ (z − a)]

6. What is the Taylor series of 1/(1 + z)2 about z = 0?

7. Look back at all the places in these notes and exercises (including earlier
subsections) where we have used the geometric series for theoretical or
computational reasons.

1.6 Complex transcendentals

We have defined i2 = −1 and made geometric sense of it, now what is 2i? We
can make sense of such complex powers as exp(i ln 2) but we first need to define
the exponential function exp(z) and its inverse the (natural) logarithm, ln z.

The complex versions of the Taylor series definition for the exponential,
cosine and sine functions

exp(z) = 1 + z +
z2

2
+ · · · =

∞∑
n=0

zn

n!
(31)

cos z = 1− z2

2
+
z4

4!
· · · =

∞∑
n=0

(−1)n
z2n

(2n)!
(32)

sin z = z − z3

3!
+
z5

5!
· · · =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
(33)

converge in the entire complex plane for any z with |z| < ∞ as is readily
checked from the ratio test. These convergent series serve as the definition of
these functions for complex arguments. We can verify all the usual properties
of these functions from the series expansion. In general we can integrate and
differentiate series term by term inside the disk of convergence of the power
series. Doing so for exp(z) shows it is equal to its derivative

d

dz
exp(z) =

d

dz

( ∞∑
n=0

zn

n!

)
=

∞∑
n=1

zn−1

(n− 1)!
= exp(z), (34)
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meaning that exp(z) is the solution of the complex differential equation

df

dz
= f with f(0) = 1.

Likewise the series (32) for cos z and (33) for sin z imply

d

dz
cos z = − sin z,

d

dz
sin z = cos z. (35)

Taking another derivative of both sides shows that f1(z) = cos z and f2(z) =
sin z are solutions of the 2nd order differential equation

d2f

dz2
= −f,

with f1(0) = 1, f ′1(0) = 0 and f2(0) = 0, f ′2(0) = 1.
Another slight tour de force with the series for exp(z) is to use the binomial

formula (13) to obtain

exp(z + a) =

∞∑
n=0

(z + a)n

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
zkan−k

n!
=

∞∑
n=0

n∑
k=0

zkan−k

k!(n− k)!
. (36)

The double sum is over the triangular region 0 ≤ n ≤ ∞, 0 ≤ k ≤ n in n,
k space. If we interchange the order of summation, we’d have to sum over
k = 0 → ∞ and n = k → ∞ (sketch it!). Changing variables to k, m = n − k
the range of m is 0 to ∞ as that of k and the double sum reads

exp(z + a) =

∞∑
k=0

∞∑
m=0

zkam

k!m!
=

( ∞∑
k=0

zk

k!

)( ∞∑
m=0

am

m!

)
= exp(z) exp(a). (37)

This is a major property of the exponential function and we verified it from its
series expansion (31) for general complex arguments z and a. It implies that if
we define as before

e = exp(1) = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · · = 2.71828... (38)

then exp(n) = [exp(1)]n = en and exp(1) = [exp(1/2)]2 thus exp(1/2) = e1/2

etc. so we can still identify exp(z) as the number e to the complex power z and
(37) is the regular algebraic rule for exponents: ez+a = ezea. In particular

exp(z) = ez = ex+iy = exeiy, (39)

ex is our regular real exponential but eiy is the exponential of a pure imaginary
number. We can make sense of this from the series (31), (32) and (33) to obtain
the very useful formula

eiz = cos z + i sin z, e−iz = cos z − i sin z, (40)
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and the useful

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
(41)

that could serve as the complex definition of cos z and sin z. These hold for any
complex number z. For z real, this is Euler’s formula usually written in terms
of a real angle θ

eiθ = cos θ + i sin θ. (42)

This is arguably one of the most important formula in all of mathematics!
It reduces all of trigonometry to algebra among other things. For instance
ei(α+β) = eiαeiβ implies

cos(α+ β) + i sin(α+ β) =(cosα+ i sinα)(cosβ + i sinβ)

=(cosα cosβ − sinα sinβ) + i(sinα cosβ + sinβ cosα)
(43)

Equating real and imaginary parts yields two trigonometric identities in one
swoop, the angle sum formula from high school trigonometry.

Exercises:

1. Use series to compute the number e to 4 digits. How many terms do you
need?

2. Use series to compute exp(i), cos(i) and sin(i) to 4 digits.

3. Express cos(2 + 3i) in terms of cos, sin and exp of real numbers. Same
question for sin(2 + 3i).

4. Prove that cos2 z + sin2 z = 1 for any complex number z.

5. The hyperbolic cosine and sine are defined as

cosh z = 1 +
z2

2
+
z4

4!
· · · =

∞∑
n=0

z2n

(2n)!
(44)

sinh z = z +
z3

3!
+
z5

5!
· · · =

∞∑
n=0

z2n+1

(2n+ 1)!
(45)

(a) Sketch coshx and sinhx for real x. Use those sketches to sketch
d

dx
coshx and

d

dx
sinhx.

(b) Use the series definition to show that
d

dz
cosh z = sinh z and

d

dz
sinh z =

cosh z.

(c) Show that

cosh z =
ez + e−z

2
= cos(iz), sinh z =

ez − e−z

2
=

1

i
sin(iz)

(46)
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(d) Prove that cosh2 z − sinh2 z = 1 for any complex number z.

(e) Show that

cos z = cos(x+ iy) = cosx cosh y − i sinx sinh y,

sin z = sin(x+ iy) = sinx cosh y + i sinh y cosx.
(47)

6. Is e−iz the conjugate of eiz?

7. Use Euler’s formula and geometric sums to derive the following identities

1 + cosx+ cos 2x+ cos 3x+ · · ·+ cosNx =
1

2
+

sin(N + 1
2 )x

2 sin 1
2x

, (48)

sinx+ sin 2x+ sin 3x+ · · ·+ sinNx =
cos 1

2x− cos(N + 1
2 )x

2 sin 1
2x

.

(49)

These identities are important in the study of waves and Fourier series.
[Hint: derive both at once]

8. Generalize the previous results by deriving compact formulas for the geo-
metric trigonometric sums

1 + p cosx+ p2 cos 2x+ p3 cos 3x+ · · ·+ pN cosNx =? (50)

p sinx+ p2 sin 2x+ p3 sin 3x+ · · ·+ pN sinNx =? (51)

where p is an arbitrary real constant.

9. The formula (43) leads to the well-known double angle formula cos 2θ =
2 cos2 θ − 1 and sin 2θ = 2 sin θ cos θ. They also lead to the triple angle
formula cos 3θ = 4 cos3 θ − 3 cos θ and sin 3θ = sin θ(4 cos2 θ − 1). These
formula suggests that cosnθ is a polynomial of degree n in cos θ and that
sinnθ is sin θ times a polynomial of degree n− 1 in cos θ. The polynomial
for cosnθ in powers of cos θ is the Chebyshev polynomial Tn(x) of degree
n in x such that cosnθ = Tn(cos θ), with T1(x) = x, T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x, etc. Derive explicit formulas for those polynomials for
any n. [Hint: use Euler’s formula einθ = cosnθ + i sinnθ = (eiθ)n =
(cos θ+ i sin θ)n and the binomial formula]. These Chebyshev polynomials
are very important in numerical calculations, your calculator uses them
to evaluate all the ‘elementary’ functions such as ex, cosx, sinx, etc.

1.7 Polar representation

Introducing polar coordinates in the complex plane such that x = r cos θ and
y = r sin θ, then using Euler’s formula (42), any complex number can be written

z = x+ iy = reiθ = |z|ei arg(z). (52)
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This is the polar form of the complex number z. Its modulus is |z| = r and
the angle θ = arg(z) + 2kπ is called the phase of z, where k = 0,±1,±2, . . .
is an integer. A key issue is that for a given z, its phase θ is only defined up
to an arbitrary multiple of 2π since replacing θ by θ ± 2π does not change z.
However the argument arg(z) is a function of z and therefore we want it to be
uniquely defined for every z. For instance we can define 0 ≤ arg(z) < 2π, or
−π < arg(z) ≤ π. These are just two among an infinite number of possible
definitions. Although computer functions (Fortran, C, Matlab, ...) make a
specific choice (typically the 2nd one), that choice may not be suitable in some
cases. The proper choice is problem dependent. This is because while θ is
continuous, arg(z) is necessarily discontinuous. For example, if we define 0 ≤
arg(z) < 2π, then a point moving about the unit circle at angular velocity ω
will have a phase θ = ωt but arg(z) = ωt mod 2π which is discontinuous at
ωt = 2kπ.

The cartesian representation x + iy of a complex number z is perfect for
addition/subtraction but the polar representation reiθ is more convenient for
multiplication and division since

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2), (53)

z1

z2
=
r1e

iθ1

r2eiθ2
=
r1

r2
ei(θ1−θ2). (54)

1.8 Logs and complex powers

The power series expansion of functions is remarkably powerful and closely tied
to the theory of functions of a complex variable. A priori, it doesn’t seem very
general, how, for instance, could we expand f(z) = 1/z into a series in positive
powers of z

1

z
= a0 + a1z + a2z

2 + · · · ??

We cannot expand 1/z in powers of z but we can expand in powers of z − a
or any a 6= 0. That Taylor series is obtained easily using the geometric series,
again,

1

z
=

1

a+ (z − a)
=

1

a

1

1 +

(
z − a
a

) =

∞∑
n=0

(−1)n
(z − a)n

an+1
. (55)

Thus we can expand 1/z in powers of z − a for any a 6= 0. That (geometric)
series converges in the disk |z−a| < |a|. This is the disk of radius |a| centered at
a. By taking a sufficiently far away from 0, that disk where the series converges
can be made as big as one wants but it can never include the origin which of
course is the sole singular point of the function 1/z. Integrating (55) for a = 1
term by term yields

ln z =

∞∑
n=0

(−1)n
(z − 1)n+1

n+ 1
(56)
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as the antiderivative of 1/z that vanishes at z = 1. This looks nice, however
that series only converges for |z−1| < 1. We need a better definition that works
for a larger domain in the z-plane.

R

a

x

y

Figure 3.4: The disk of convergence of the Taylor series (55) for 1/z is limited
by the singularity at z = 0.

The Taylor series definition of the exponential exp(z) =
∑∞
n=0 z

n/n! is very
good. It converges for all z’s, it led us to Euler’s formula eiθ = cos θ+ i sin θ and
it allowed us to verify the key property of the exponential, namely exp(a+ b) =
exp(a) exp(b) (where a and b are any complex numbers), from which we deduced
other goodies: exp(z) ≡ ez with e = exp(1) = 2.71828 . . ., and ez = ex+iy =
exeiy.

What about ln z? As for functions of a single real variable we can introduce
ln z as the inverse of ez or as the integral of 1/z that vanishes at z = 1.

ln z as the inverse of ez

Given z we want to define the function ln z as the inverse of the exponential.
This means we want to find a complex number w such that ew = z. We can
solve this equation for w as a function of z by using the polar representation
for z, z = |z|ei arg(z), together with the cartesian form for w, w = u+ iv, where
u = Re(w) and v = Im(w) are real. We obtain

ew = z ⇔ eu+iv = |z|ei arg(z),

⇔ eu = |z|, eiv = ei arg(z), (why?)

⇔ u = ln |z|, v = arg(z) + 2kπ, (57)

where k = 0,±1,±2, · · · Note that |z| ≥ 0 is a positive real number so ln |z| is
our good old natural log of a positive real number. We have managed to find
the inverse of the exponential

ew = z ⇔ w = ln |z|+ i arg(z) + 2ikπ. (58)

The equation ew = z for w, given z, has an infinite number of solutions. This
make sense since ew = eueiv = eu(cos v + i sin v) is periodic of period 2π in v,
so if w = u+ iv is a solution, so is u+ i(v+ 2kπ) for any integer k. We can take
any one of those solutions as our definition of ln z, in particular

ln z = ln
(
|z|ei arg(z)

)
= ln |z|+ i arg(z). (59)
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This definition is unique since we assume that arg z is uniquely defined in terms
of z. However different definitions of arg z lead to different definitions of ln z.

Example: If arg(z) is defined by 0 ≤ arg(z) < 2π then ln(−3) = ln 3 + iπ,
but if we define instead −π ≤ arg(z) < π then ln(−3) = ln 3− iπ.

Note that you can now take logs of negative numbers! Note also that the
ln z definition fits with our usual manipulative rules for logs. In particular since
ln(ab) = ln a + ln b then ln z = ln(reiθ) = ln r + iθ. This is the easy way to
remember what ln z is.

Complex powers

As for functions of real variables, we can now define general complex powers
such as 2i in terms of the complex log and the complex exponential

ab = eb ln a = eb ln |a|eib arg(a), (60)

for example: 2i = ei ln 2 = cos(ln 2) + i sin(ln 2), is that what your calculator
gives you? Be careful that b is complex in general, so eb ln |a| is not necessarily
real. Once again we need to define arg(a) and different definitions can actually
lead to different values for ab.

In particular, we have the complex power functions

za = ea ln z = ea ln |z|eia arg(z) (61)

and the complex exponential functions

az = ez ln a = ez ln |a|eiz arg(a). (62)

These functions are well-defined once we have defined a range for arg(z) in the
case of za and for arg(a) in the case of az.

Note that different definitions for the arg(a) imply definitions for ab that do
not simply differ by an additive multiple of 2πi as was the case for ln z. For
example

(−1)i = ei ln(−1) = e− arg(−1) = e−π−2kπ

for some k, so the various possible definitions of (−1)i will differ by a multi-
plicative integer power of e−2π.

Roots

The fundamental theorem of algebra states that any nth order polynomial
equation of the form cnz

n + cn−1z
n−1 + · · ·+ c1z + c0 = 0 with cn 6= 0 always

has n roots in the complex plane, where n is a positive integer. This means that
there exists n complex numbers z1, . . ., zn such that

cnz
n + cn−1z

n−1 + · · ·+ c0 = cn(z − z1) · · · (z − zn). (63)

The numbers z1, . . ., zn are the roots or zeros of the polynomial. These roots
can be repeated as for the polynomial 2z2− 4z+ 2 = 2(z− 1)2. This expansion
is called factoring the polynomial.
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Examples: The equation 2z2 − 2 = 0 has two real roots z = ±1 and

2z2 − 2 = 2(z − 1)(z + 1).

The equation 3z2 + 3 = 0 has no real roots, however it has two imaginary roots
z = ±i and

3z2 + 3 = 3(z − i)(z + i).

�
Roots of a. The equation

zn − a = 0,

with a complex and integer n > 0, therefore has n roots. We might be tempted
to write the solution as

z = a1/n = e(ln a)/n = e(ln |a|)/neiα/n,

where α = arg(a), but this is only one root whose value depends on the definition
of α = arg(a). The n-th root function, a1/n, must have a unique value for a
given a but here we are looking for all the roots z such that zn = a. The
multiplicity of roots comes from the fact that the argument of zn must match
that of a only up to a multiple of 2π since eiα = ei(α+2π). Using the polar
representation z = reiθ yields

zn = rneinθ = a = |a|eiα ⇔

{
r = |a|1/n,
nθ = α+ 2kπ

where k = 0,±1,±2, . . . is any integer. Solving for θ yields n distinct values

θ =
α

n
+ k

2π

n
. (64)

When n is a positive integer, this yields n distinct values of θ modulo 2π, yielding
n distinct values for z. The roots are equispaced on the circle of radius |a|1/n
in the complex plane.

x

y

x

y

Figure 3.5: The 3 roots of z3 = 1 and the 5 roots of z5 = eiπ/3.
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For example

z3 = 1 ⇔


z = 1,

z = ei2π/3 = (−1 + i
√

3)/2,

z = ei4π/3 = (−1− i
√

3)/2 = e−i2π/3,

and
z3 − 1 = (z − 1)(z − ei2π/3)(z − e−i2π/3).

Exercises:

1. Evaluate ln(−1) and ln i without a calculator.

2. Analyze and evaluate ei and ie.

3. Find all the roots, visualize and locate them in the complex plane and
factor the corresponding polynomial (i) z3 = 1, (ii) z4 +1 = 0, (iii) z2 = i,
(iv) 2z2 + 5z + 2 = 0.

4. Investigate the solutions of the equation zb = 1 when (i) b is a rational
number, that is b = p/q with p, q integers, (ii) when b is irrational e.g.
b = π, (iii) when b is complex, e.g. b = 1 + i. Make a sketch showing the
solutions in the complex plane.

5. If a and b are complex numbers, what is wrong with saying that if w =
ea+ib = eaeib then |w| = ea and arg(w) = b+ 2kπ? Isn’t that what we did
in (57)?

6. Consider w =
√
z for z = reit with r ≥ 0 fixed and t = 0 → 4π. Sketch

u = Re(w) and v = Im(w) as a function of t from t = 0 → 4π for
(i)
√
z ,

√
r eit/2, (ii)

√
z ,

√
r ei arg(z)/2. What are the differences?

Explain.

7. Use Matlab, Python or your favorite complex calculator to evaluate
√
z2 − 1

and
√
z − 1

√
z + 1 for z = −1 + i. Since z2− 1 = (z− 1)(z+ 1), shouldn’t

these square roots equal each other? Explain.

8. Show that the inverse of the function cosh z, that is a solution w to
coshw = z is

w = ln(z +
√
z − 1

√
z + 1). (65)

9. Show that the inverse of the function sinh z, that is a solution w to sinhw =
z is

w = ln(z +
√
z2 + 1). (66)
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2 Functions of a complex variable

2.1 Visualization of complex functions

A function w = f(z) of a complex variable z = x + iy has complex values
w = u + iv, where u, v are real. The real and imaginary parts of w = f(z) are
functions of the real variables x and y

f(z) = u(x, y) + i v(x, y). (67)

For example, w = z2 = (x+ iy)2 is

z2 = (x2 − y2) + i 2xy (68)

with a real part u(x, y) = x2 − y2 and an imaginary part v(x, y) = 2xy.
How do we visualize complex functions? In calculus I, for real functions of

one real variable, y = f(x), we made an xy plot. Im complex calculus, x and
y are independent variables and w = f(z) corresponds to two real functions
of two real variables Re(f(z)) = u(x, y) and Im(f(z)) = v(x, y). One way to
visualize f(z) is to make a 3D plot with u as the height above the (x, y) plane.
We could do the same for v(x, y), however a prettier idea is to color the surface
u = u(x, y) in the 3D space (x, y, u) by the value of v(x, y) as in fig. 3.6 Note
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Figure 3.6: 3D visualization of w = z2 with u = Re(w) as the height over the
(x, y) plane and v = Im(w) as the color. Note the saddle structure.

the nice saddle-structure, u = x2− y2 is the parabola u = x2 along the real axis
y = 0, but u = −y2 along the imaginary axis, x = 0. This visualization leads to
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pretty pictures – and help convey the concept of a Riemann surface – but they
quickly become too complicated, in large part because of the 2D projection on
the screen or page. It is more useful to make 2D contour plots of u(x, y) and
v(x, y) as in fig. 3.7.
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Figure 3.7: 2D visualization of w = z2 with contour plots of u = Re(w) = x2−y2

on the left and v = Im(w) = 2xy on the right. Note the saddle structures in
both u and v.

2.2 Cauchy-Riemann equations

A function f(z) of a complex variable z = x+ iy is a special function f(x+ iy)
of two real variables (x, y), and consists of two real functions u(x, y) and v(x, y)
of two real variables

f(z) = f(x+ iy) = u(x, y) + i v(x, y). (69)

For example, z2 = (x + iy)2 = (x2 − y2) + i (2xy) and ez = ex+iy = ex cos y +
i ex sin y. Now, if f(z) is z-differentiable, then

df

dz
= lim

∆z→0

f(z + ∆z)− f(z)

∆z

= lim
∆z→0

f (x+ ∆x+ i(y + ∆y))− f(x+ iy)

∆x+ i∆y

has the same value no matter how ∆z = ∆x+ i∆y → 0. Picking ∆z = ∆x with
∆y = 0 gives

df

dz
=
∂f

∂x
,

while picking ∆z = i∆y with ∆x = 0 yields

df

dz
=

1

i

∂f

∂y
,
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thus
df

dz
=
∂f

∂x
= −i ∂f

∂y
, (70)

and since f = u+ iv this is

df

dz
=
∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+
∂v

∂y
. (71)

Equating the real and imaginary part of that last equality yields the Cauchy-
Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

(72)

relating the partial derivatives of the real and imaginary part of a differentiable
function of a complex variable f(z) = u(x, y) + i v(x, y). This derivation shows
that the Cauchy-Riemann equations are necessary conditions on u(x, y) and
v(x, y) if f(z) is differentiable in a neighborhood of z. If df/dz exists then the
Cauchy-Riemann equations (72) necessarily hold.

Example 1: The function f(z) = z2 has u = x2 − y2 and v = 2xy. Its
z-derivative dz2/dz = 2z exists everywhere and the Cauchy-Riemann equations
(72) are satisfied everywhere since ∂u/∂x = 2x = ∂v/∂y and ∂u/∂y = −2y =
−∂v/∂x. �

Example 2: The function f(z) = z∗ = x − iy has u = x, v = −y. Its
z-derivative dz∗/dz does not exist anywhere. Indeed, from the limit definition
of the derivative,

dz∗

dz
= lim
a→0

(z∗ + a∗)− z∗

a
= lim
a→0

a∗

a
= e−2iα (73)

where a = |a|eiα, so the limit is different for every α. If a is real, then α = 0
and the limit is 1, but if a is imaginary then α = π/2 and the limit is −1.
If |a| = e−α then a → 0 in a logarithmic spiral as α → ∞, but there is no
limit in that case since e−2iα keeps spinning around the unit circle without ever
converging to anything. We cannot define a unique limit as a→ 0, so z∗ is not
differentiable with respect to z. The Cauchy-Riemann equations (72) do not
hold anywhere for f(z) = z∗ = x− iy since ∂u/∂x = 1 6= ∂v/∂y = −1. �

The converse is also true, if the Cauchy-Riemann equations (72) are satisfied
in a neighborhood of a point (x, y) then the functions u(x, y) and v(x, y) are called
conjugate harmonic functions and they constitute the real and imaginary part
of a differentiable function of a complex variable f(z).

To prove this we need to show that the z-derivative of the function f(x, y) ,
u(x, y) + iv(x, y), that is

df

dz
, lim

∆z→0

f(x+ ∆x, y + ∆y)− f(x, y)

∆z
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exists independently of how the limit ∆z = ∆x + i∆y → 0 is taken. Using
differential notation to simplify the writing, we have df = du + idv with dz =
dx+ idy and

df

dz
=
du+ idv

dx+ idy
(74)

where du = u(x+ dx, y+ dy)− u(x, y) and dv = v(x+ dx, y+ dy)− v(x, y). By
the chain rule,

du =
∂u

∂x
dx+

∂u

∂y
dy, dv =

∂v

∂x
dx+

∂v

∂y
dy,

substituting those differentials in (74) and rearranging terms yields

df

dz
=

(
∂u

∂x
+ i

∂v

∂x

)
dx

dx+ idy
+

(
∂u

∂y
+ i

∂v

∂y

)
dy

dx+ idy
(75)

in the sense of limits, that is

dx

dx+ idy
≡ lim

∆z→0

∆x

∆x+ i∆y
,

dy

dx+ idy
≡ lim

∆z→0

∆y

∆x+ i∆y
.

Picking ∆z = ∆x with ∆y = 0, (75) yields

df

dz
=
∂u

∂x
+ i

∂v

∂x

while ∆z = i∆y with ∆x = 0 gives

df

dz
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)
.

These are different expressions for df/dz, for general u(x, y) and v(x, y), unless
u and v satisfy the Cauchy-Riemann equations (72). In that case, (75) becomes

df

dz
=

(
∂u

∂x
− i∂u

∂y

)
dx

dx+ idy
+

(
∂u

∂y
+ i

∂u

∂x

)
dy

dx+ idy

=

(
∂u

∂x
− i∂u

∂y

)
dx+ idy

dx+ idy
=
∂u

∂x
− i∂u

∂y
,

(76)

and the value of df/dz is independent of how ∆z → 0. �
Another important consequence of z-differentiability and the Cauchy-Riemann

equations (72) is that the real and imaginary parts of a differentiable function
f(z) = u(x, y) + i v(x, y) both satisfy Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 =

∂2v

∂x2
+
∂2v

∂y2
. (77)

Since both the real and imaginary parts of f(z) = u(x, y) + iv(x, y) satisfy
Laplace’s equation, this is also true for f(z) seen as a function of (x, y) and

∇2f =

(
∂2

∂x2
+

∂2

∂y2

)
f = 0. (78)
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Differentiability with respect to a complex variable z is a powerful prop-
erty. In fact, differentiability of f(z) in a neighborhood of z implies that f(z) is
infinitely differentiable in the neighborhood of z and that its Taylor series con-
verges in a disk in that neighborhood. This follows from Cauchy’s formula as
is shown later below. A function whose Taylor series converges in the neighbor-
hood of a point is called analytic in that neighborhood. Since z-differentiability
implies analyticity, the word analytic tends to be used interchangeably with
z-differentiable in complex function theory.

Exercises:

1. Deduce (77) from the Cauchy-Riemann equations (72). Verify these results
(72) and (77), for f(z) = z2, z3, ez, ln z, etc.

2. Is the function |z| differentiable with respect to z? Why? What about the
functions Re(z)?

3. Given u(x, y) find its conjugate harmonic function v(x, y), if possible, such
that u(x, y)+iv(x, y) ≡ f(z) is z-differentiable, for (i) u = y; (ii) u = x+y;

(iii) u = cosx cosh y, (iv) u = ln
√
x2 + y2.

4. As discussed earlier, complex numbers z = x+ iy are vectors (x, y) in R2.
The complex form of the gradients of u(x, y) and v(x, y) are thus

∇u ≡ ∂u

∂x
+ i

∂u

∂y
, ∇v ≡ ∂v

∂x
+ i

∂v

∂y
.

Show that if f(z) = u+ iv is z-differentiable then

∇u ≡
(
df

dz

)∗
, ∇v ≡ i

(
df

dz

)∗
. (79)

This is useful in 2D fluid dynamics where f(z) represents a complex po-
tential whose real part u is a velocity potential and imaginary part v is
a streamfunction. The relationships (79) yield the velocity directly from
the complex potential.

5. Show that u = cos(kx)e−ky and v = sin(kx)e−ky are solutions of Laplace’s
equation for any real k (i) by finding a function f(z) = u+ iv and (ii) by
direct calculation. These solutions occur in a variety of applications, e.g.
surface gravity waves with the surface at y = 0 here and ky < 0.

6. Show that w = z3 provides two solutions of Laplace’s equation ∇2Φ = 0 in
the polar wedge r ≥ 0, 0 < θ < π/3, one solution to the Dirchlet problem
with Φ = 0 on the boundaries θ = 0 and θ = π/3, and another solution to
the Neumann problem with ∂Φ/∂θ = 0 on θ = 0 and θ = π/3. Specify Φ
for both problems.

7. Find a solution Φ of Laplace’s equation in the wedge r ≥ 0, 0 < θ < α ≤ 2π
that vanishes on the boundaries of the wedge at θ = 0 and θ = α. What
is the behavior of the gradient of Φ as r → 0 as a function of α?
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2.3 Geometry of Cauchy-Riemann, Conformal Mapping

The Cauchy-Riemann equations connecting the real and imaginary part of a
z-differentiable function f(z) = u(x, y) + i v(x, y) have significant geometric
implications illustrated in fig. 3.8 and later figures.

x

y

Figure 3.8: For z2 = (x2 − y2) + i 2xy, the contours of u(x, y) = x2 − y2 =
0,±1,±4,±9 (blue) are hyperbolas with asymptotes y = ±x. The contours of
v(x, y) = 2xy = 0,±1,±4,±9 (red) are also hyperbolas but now with asymptotes
x = 0 and y = 0. Solid is positive, dashed is negative. The u and v contours
intersect everywhere at 90 degrees, except at z = 0 where dz2/dz = 2z = 0.

Orthogonality

The Cauchy-Riemann equations (72) imply orthogonality of the contours of
u = Re(f(z)) and v = Im(f(z)) wherever df/dz exists but does not vanish.
Indeed, consider the gradients ∇u = (∂u/∂x, ∂u/∂y) and ∇v = (∂v/∂x, ∂v/∂y)
at a point (x, y). The Cauchy-Riemann equations (72) imply that those two
gradients are perpendicular to each other

∇u ·∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0. (80)

Since gradients are always perpendicular to their respective isocontours, that
is ∇u is perpendicular to the u-contour and ∇v to the v-contour through that
point, the orthogonality of ∇u and ∇v imply orthogonality of the contours
(level curves) of u and v. Orthogonality of the u = Re(f(z)) and v = Im(f(z))
contours holds wherever df/dz exists except at critical points where df/dz = 0
and ∇u = ∇v = 0. For the example w = z2 in fig. 3.8, the contours are
orthogonal everywhere except at z = 0 where dz2/dz = 2z = 0. The gradients
vanish at that point which is a saddle point for both functions u and v.
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The real and imaginary parts, u(x, y) and v(x, y), of any z-differentiable
complex function f(z) therefore provide orthogonal coordinates in the (x, y)
plane. But the Cauchy-Riemann equations also imply that the gradients of u
and v are not only orthogonal, but also have equal magnitudes. This implies
that the coordinates are not only orthogonal but also conformal.

Conformal Mapping

We can visualize the function w = f(z) = u(x, y) + iv(x, y) as a map from the
complex plane z = x+ iy to the complex plane w = u+ iv.

w = z2

z = ±w1/2

w

z

−z
u

v

x

y

Figure 3.9: w = z2 as a mapping from the z-plane to the w-plane. There are two
possible inverse maps z = ±

√
w since there are two z’s for every w. The angles

between corresponding curves are preserved. For example, the dotted line in the
w-plane intersects the vertical and horizontal lines at π/4 and likewise for its
pre-image in the z-plane intersecting the hyperbolas corresponding to vertical
and horizontal lines in the w plane.

For example, f(z) = z2 is the mapping z → w = z2, or equivalently from
(x, y)→ (u, v) = (x2 − y2, 2xy). The vertical line u = u0 in the w-plane is the
image of the hyperbola x2 − y2 = u0 in the z-plane. The horizontal line v = v0

in the w-plane is the image of the hyperbola 2xy = v0 in the z-plane. Every
point z in the z-plane has a single image w in the w-plane, however the latter
has two pre-images z and −z in the z-plane, indeed the inverse functions are
z = ±w1/2.

In polar form z = reiθ → w = r2ei2θ. This means that every radial line from
the origin with angle θ from the x-axis in the z-plane is mapped to a radial line
from the origin with angle 2θ from the u-axis in the w-plane.

The curves corresponding to u = constant and v = constant intersect at 90
degrees in both planes, except at z = w = 0. That is the orthogonality of u and
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v contours, but the dotted radial line intersects the blue and red curves at 45
degrees in both planes, for example. In fact any angle between any two curves
in the z-plane is preserved in the w-plane except at z = w = 0 where they are
doubled from the z to the w-plane.

This is the conformal map property of z-differentiable complex functions
f(z). If f(z) is z-differentiable (analytic) then the mapping w = f(z) preserves
all angles at all z’s such that f ′(z) 6= 0 when mapping from the z-plane to the
w-plane.

To show preservation of angles in general, consider three neighboring points
in the z-plane: z, z + ∆z1 and z + ∆z2. We are interested in seeing what
happens to the angle between the two vectors ∆z1 and ∆z2. If ∆z1 = |∆z1|eiθ1
and ∆z2 = |∆z2|eiθ2 then the angle between those two vectors is α = θ2 − θ1

and this is the angle of the ratio ∆z2/∆z1 = |∆z2|/|∆z1|ei(θ2−θ1).

w = f(z)

z w
∆z1

∆z2
∆w1

∆w2α

α

The point z is mapped to the point w = f(z). The point z+ ∆z1 is mapped
to

f(z + ∆z1) ' f(z) + f ′(z)∆z1 +
1

2
f ′′(z)∆z2

1 + · · ·

and z + ∆z2 is mapped to

f(z + ∆z2) ' f(z) + f ′(z)∆z2 +
1

2
f ′′(z)∆z2

2 + · · ·

where f ′ = df/dz, f ′′ = d2f/dz2, etc. In general, a straight line segment in the
z plane is mapped to a curve in the w plane. The angle between those curves
is the angle between the tangent to those curves at their intersection point w.
Thus we are interested in the limits ∆z1 and ∆z2 → 0, with |∆z2|/|∆z1| fixed.
In that limit, the angle between the tangents in the w plane is the angle between
the secant vectors ∆w1 = f(z + ∆z1) − f(z) and ∆w2 = f(z + ∆z2) − f(z).
That angle is the angle of the ratio

∆w2

∆w1
=
f ′(z)∆z2 + 1

2f
′′(z)∆z2

2 + · · ·
f ′(z)∆z1 + 1

2f
′′(z)∆z2

1 + · · ·
→ ∆z2

∆z1

as ∆z1 and ∆z2 → 0, with |∆z2|/|∆z1| fixed, provided f ′(z) 6= 0. Hence it is
identical to the angle α between ∆z1 and ∆z2 when f ′ exists and is non-zero.

If f ′(z) = 0 and f ′′(z) 6= 0 then the limit yields

∆w2

∆w1
→
(

∆z2

∆z1

)2

that is angle(∆w2) − angle(∆w1) = 2(angle(∆z2) − angle(∆z1)) = 2α so the
angles at w are doubled compared to the corresponding angles at z. For example,
f(z) = z2 has f ′ = 2z that exists everywhere but vanishes at z = 0 but f ′′ =
2 6= 0 for all z. Thus the mapping w = z2 preserves all angles, that is the
angles between any two curves in the z-plane will be the same as the angles
between the image curves in the w-plane, except at z = 0 where the angles will
be doubled in the w-plane.
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If f ′(z) = f ′′(z) = 0 but f ′′′(z) 6= 0 then the limit gives

∆w2

∆w1
→
(

∆z2

∆z1

)3

and the angles at that w would be tripled, angle(∆w2) − angle(∆w1) = 3α.
For instance, f = z3 has f ′ = 3z2, f ′′ = 6z and f ′′′ = 6, its derivative exists
everywhere but vanishes together with its 2nd derivative at z = 0. Thus w = z3

preserves all angles except at z = 0 where the angles will be tripled in the
w-plane since the 3rd derivative does not vanish.

A mapping that preserves all angles is called conformal. Analytic functions
f(z) provide conformal mappings between z and w = f(z) at all points where
f ′(z) 6= 0. That is one application: to conformally map one 2D domain to
another.

Another application of conformal mapping is to solve Laplace’s equation
in a given z domain by conformally mapping that domain to another domain
z → Z = f(z) where the corresponding solution of Laplace’s equation is known,
say F (Z). The solution of Laplace’s equation in the original domain is then
simply F (f(z)).

Z = z2

X

Y

x

y

∇2Φ = 0Φ = 0

Φ = 0 Φ = 0 Φ = 0

∇2Φ = 0

For example, to find a solution Φ(x, y) of Laplace’s equation in the first
quadrant x ≥ 0, y ≥ 0 with Φ = 0 on x = 0 and on y = 0, we can map the
z = x + iy quadrant to the Z = X + iY upper half plane with Z = z2. The
corresponding solution Φ(X,Y ) in that upper half plane, that is a solution of(

∂2

∂X2
+

∂2

∂Y 2

)
Φ = 0

with Φ = 0 along Y = 0 is simply Φ = Y = Im(Z). The solution in the original
quadrant is then Φ = Y (x, y) = Im(z2) = 2xy.

2.4 Conformal mapping examples

There are two basic points of view when studying a mapping w = f(z). First
as in fig. 3.9, contours of u(x, y) and v(x, y) in the z ≡ (x, y) plane are mapped
to vertical and horizontal lines, respectively, in the w ≡ (u, v) plane. Second as
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in fig. 3.10, vertical lines z = x+ iy with x = x0 fixed are mapped to the curves
(u(x0, y), v(x0, y)) in the w-plane and horizontal lines z = x + iy with y = y0

fixed are mapped to the curves (u(x, y0), v(x, y0)) in the w plane. Depending
on the specific map f(z), a polar point of view with z = reiθ and/or w = ρeiϕ

may be more revealing.

Example:
w = z2 = (x2 − y2) + i(2xy),

illustrated in fig. 3.10, maps the left half z-plane to the entire w-plane. This
map provides orthogonal, confocal parabolic coordinates x, y for the (u, v) plane

u = x2 − y2, v = 2xy.

A (magenta) vertical line with x = x0 is mapped to the parabola u = x2
0 − y2,

v = 2x0y, that is

u = x2
0 −

v2

4x2
0

in the w = (u, v) plane. A (green) horizontal line y = y0 is mapped to the
(green) parabola u = x2 − y2

0 , v = 2xy0

u =
v2

4y2
0

− y2
0

in the (u, v) plane. All of those parabolas have (u, v) = (0, 0) as their focus.
The green and magenta curves intersect at 90 degrees in both planes.

w = z2

z = w1/2

w

z

u

v

x

y

Figure 3.10: w = z2 and z =
√
w with −π < arg(w) ≤ π .

Radial lines from the origin z = reiθ in the z-plane are mapped to radials
from the origin w = r2ei2θ in the w-plane. The angles between radials at the
origin are doubled in the w-plane compared to angles in the z-plane.
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Angles between the radial dotted lines and the green and magenta curves are
the same in both planes, except at z = w = 0 where the angles are doubled. The
definition of the inverse function that was selected here is w1/2 = |w|1/2ei arg(w)/2

with −π < arg(w) ≤ π and correspond to a one-to-one map between the left-
half z-plane to the entire w-plane. The inverse function w1/2 has a branch cut
along the negative real axis, u < 0, v = 0. The arg(w) jumps by 2π across
the cut and w1/2 jumps from positive to negative imaginary, or vice versa. The
definition 0 ≤ arg(w) < 2π would have a branch cut along the positive real axis
in the w-plane and map the upper half z-plane to the entire w-plane, instead of
the right half z-plane. �

Example:

w = ez = exeiy

maps the strip −∞ < x < ∞, −π < y ≤ π to the entire w-plane. Indeed
ez+2iπ = ez is periodic of complex period 2iπ in z, so ez maps an infinite
number of z’s to the same w. This map provides log-polar coordinates (x, y) for
the (u, v) plane

u = ex cos y, v = ex sin y.

The vertical lines z = x0 + iy → w = ex0eiy are mapped to circles of radius
|w| = ex0 in the w-plane (magenta). The horizontal lines z = x + iy0 →
w = exeiy0 are mapped to radial lines with polar angle arg(w) = y0 in w-plane
(green).

w = ez

z = lnw

w

z

u

v

x

y
y = π

y = −π

Figure 3.11: w = ez and z = lnw = ln |w|+ i arg(w) with −π < arg(w) ≤ π.

The radial from the origin z = x+ iax → w = exeiax, with a real and fixed,
is mapped to a logarithmic spiral in the w-plane since |w| = ex = e(arg(w))/a

(blue). The inverse function z = lnw = ln |w|+ i arg(w) showed in this picture
corresponds to the definition −π < arg(w) ≤ π. All angles are preserved e.g. the
angles between green and magenta curves, as well as between blue and colored
curves, except at w = 0. What z’s correspond to w = 0? �
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Example:

w = cosh(z) =
ez + e−z

2
=
exeiy + e−xe−iy

2
= coshx cos y + i sinhx sin y

maps the semi-infinite strip 0 ≤ x < ∞, −π < y ≤ π to the entire w-plane.
Indeed, cosh(z) = cosh(−z) and cosh(z + 2iπ) = cosh(z) so cosh z is even
in z and periodic of period 2iπ. This map gives orthogonal, confocal elliptic
coordinates (x, y) for the (u, v) plane

u = coshx cos y, v = sinhx sin y

that are the right coordinates to solve Laplace’s equation in an elliptical geom-
etry (in the u, v plane). The vertical line segments z = x0 + iy with x = x0 ≥ 0
and −π < y ≤ π are mapped to confocal ellipses in the w-plane (magenta) with

u2

cosh2 x0

+
v2

sinh2 x0

= 1.

The semi-infinite horizontal lines z = x+ iy0 are mapped to confocal hyperbolic
arcs in the w-plane (green) with

u2

cos2 y0
− v2

sin2 y0

= 1.

All of those ellipses and hyperbolas have (u, v) = (±1, 0) as their foci. The
inverse map is z = ln(w +

√
w2 − 1) where

√
w2 − 1 should be defined with a

branch cut from w = −∞ to w = 1 and the definition for ln(w +
√
w2 − 1) is

discontinuous across that line. �

w = cosh(z)

z = ln(w +
√
w2 − 1)

u

v

x

y

π

−π

0

Figure 3.12: w = cosh z and z = ln(w +
√
w2 − 1).
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2.5 Joukowski Map

The Joukowski map

w = z +
1

z
, (81)

is useful in 2D electrostatics and downright fundamental in 2D aerodynamics.
It maps the unit circle z = eiθ to the line segment w = 2 cos θ. Its real and
imaginary parts

u = x+
x

x2 + y2
=

(
r +

1

r

)
cos θ,

v = y − y

x2 + y2
=

(
r − 1

r

)
sin θ,

(82)

provide solutions to

∇2u = 0 for r > 1 with
∂u

∂r
= 0 on r = 1

and
∇2v = 0 for r > 1 with v = 0 on r = 1.

x

-3 -2 -1 0 1 2 3

y

-3

-2

-1

0

1

2

3

u

-3 -2 -1 0 1 2 3

v

-3

-2

-1

0

1

2

3

Figure 3.13: The Joukowski map w = z + 1/z maps the outside of the unit
circle |z| ≥ 1 to the entire w plane. The contours of u(x, y) = Re(w) are the
electric field lines (blue, vertical) when a perfect cylindrical conductor of radius
1 is placed in a uniform electric field. The contours of v(x, y) = Im(w) are the
streamlines (red, horizontal) for potential flow around the cylinder of radius 1.

The Joukowski map sends circles |z| = r fixed to ellipses in the w plane with

u2(
r + 1

r

)2 +
v2(

r − 1
r

)2 = 1
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and radials z = reiθ with θ fixed to hyperbolic arcs with

u2

cos2 θ
− v2

sin2 θ
= 1.

x

-3 -2 -1 0 1 2 3

y

-3

-2

-1

0

1

2

3

u

-3 -2 -1 0 1 2 3

v

-3

-2

-1

0

1

2

3

Figure 3.14: The Joukowski map w = z + 1/z maps circles centered at the
origin in the z-plane to ellipses in the w plane. Radials from the origin in z are
mapped to hyperbolic arcs in w.

[Further discussion of the Joukowski map and applications to aerodynamics will
be included in future versions of these notes.]

Exercises:

1. Consider the mapping w = z2. Determine precisely where the triangle
(i) (1, 0), (1, 1), (0, 1) in the z-plane gets mapped to in the w = u + iv
plane; (ii) same but for triangle (0, 0), (1, 0), (1, 1). Do not simply map the
vertices, determine precisely what happens to each edge of the triangles.

2. Analyze the mapping w = 1/z. Determine what isocontours of u and v
look like in the z-plane. Determine where radial lines (θ = constant) and
circles (r = constant) in the z-plane get mapped to in the w-plane.

3. Review basic analytic geometry to remind yourself about the focus of a
parabola. Where is the focus of the parabola y = ax2? What geometric
property is associated with the focus of a parabola? What is a parabolic
mirror?

4. Consider the change of variables

x = cosh ξ cos η, y = sinh ξ sin η
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from (ξ, η) → (x, y). Review basic analytic geometry from high school
and/or your first Calculus course to remind yourself of the standard equa-
tions of ellipses and hyperbolas. Show that the coordinates curves with ξ
fixed are confocal ellipses. Show that the coordinates curves with η fixed
are confocal hyperbolas with the same foci as the ellipses. Identify the
foci. Show that these coordinates are orthogonal.

5. We derived the Laplacian in cylindrical coordinates earlier in these notes.
Translating those results to polar coordinates x = r cos θ, y = r sin θ, the
2D Laplacian in polar coordinates is

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Show that the Laplacian in log-polar coordinates x = eρ cos θ, y = eρ sin θ
is

∇2 = e−2ρ

(
∂2

∂ρ2
+

∂2

∂θ2

)
.

Polar coordinates are orthogonal but not conformal. Log-polar coordinates
are orthogonal and conformal.

3 Integration of Complex Functions

3.1 Complex integrals are path integrals

What do we mean by
∫ b
a
f(z)dz when f(z) is a complex function of the complex

variable z and the bounds a and b are complex numbers in the z-plane?

In general we need to specify the path C in the complex plane to go from a
to b and we need to write the integral as

∫
C f(z)dz. Then if z0 = a, z1, z2, . . . ,

zN = b are successive points on the path from a to b we can define the integral
as usual as ∫

C
f(z) dz , lim

∆zn→0

N∑
n=1

fn ∆zn (83)

where ∆zn = zn − zn−1 and fn is an approximation of f(z) on the segment
(zn−1, zn). The first order Euler approximation selects fn = f(zn−1) or fn =
f(zn) while the second order trapezoidal rule picks the average between those
two values, that is fn = 1

2 (f(zn−1) + f(zn)). This definition also provides a
practical way to estimate the integral. In particular if |f(z)| ≤ M along the
curve then |

∫
C f(z)dz| ≤ ML where L ≥ 0 is the length of the curve from a

to b. Note also that the integral from a to b along C is minus that from b to a
along the same curve since all the ∆zn change sign for that ‘return’ curve. If
C is from a to b, we sometimes use −C to denote the same path but with the
opposite orientation, from b to a. If we have a parametrization for the curve,
say z(t) with t real and z(ta) = a, z(tb) = b then the partition z0, . . . , zN can
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be obtained from a partition of the real t interval t0 = ta, . . . , tN = tb, and in
the limit the integral can be expressed as∫

C
f(z)dz =

∫ tb

ta

f
(
z(t)

) dz
dt
dt (84)

that can be separated into real and imaginary parts to end up with a complex
combination of real integrals over the real variable t.

Examples: To compute the integral of 1/z along the path C1 that consists
of the unit circle counterclockwise from a = 1 to b = i, we can parametrize the
circle using the polar angle θ as z(θ) = eiθ then dz = ieiθdθ and

1

i C1

∫
C1

1

z
dz =

∫ π/2

0

1

eiθ
ieiθdθ = i

π

2
,

but along the path C2 which consists of the unit circle clockwise between the
same endpoints a = 1 to b = i

1

i

C2

∫
C2

1

z
dz =

∫ −3π/2

0

1

eiθ
ieiθdθ = −i3π

2
.

Clearly the integral of 1/z from a = 1 to b = i depends on the path.
However for the function z2 over the same two paths with z = eiθ, z2 = ei2θ

and dz = ieiθdθ, we find∫
C1
z2dz =

∫ π/2

0

iei3θdθ =
1

3

(
ei3π/2 − 1

)
=
−i− 1

3
=
b3 − a3

3
,

and ∫
C2
z2dz =

∫ −3π/2

0

iei3θdθ =
1

3

(
e−i9π/2 − 1

)
=
−i− 1

3
=
b3 − a3

3
.

Thus for z2 it appears that we obtain the expected result
∫ b
a
z2dz = (b3−a3)/3,

independently of the path. We’ve only checked two special paths, so we do not
know for sure but, clearly, a key issue is to determine when an integral depends
on the path of integration or not.

3.2 Cauchy’s theorem

The integral of a complex function is independent of the path of integration if
and only if the integral over a closed contour always vanishes. Indeed if C1 and
C2 are two distinct paths from a to b then the curve C = C1 − C2 which goes
from a to b along C1 then back from b to a along −C2, is closed. The integral
along that closed curve is zero if and only if the integral along C1 and C2 are
equal.
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Writing z = x+ iy and f(z) = u(x, y)+ iv(x, y) the complex integral around
a closed curve C can be written as∮

C
f(z)dz =

∮
C
(u+ iv)(dx+ idy) =

∮
C
(udx− vdy) + i

∮
C
(vdx+ udy) (85)

hence the real and imaginary parts of the integral are real line integrals. These
line integrals can be turned into area integrals using the curl form of Green’s
theorem: ∮

C
f(z)dz =

∮
C
(udx− vdy) + i

∮
C
(vdx+ udy)

=

∫
A

(
−∂v
∂x
− ∂u

∂y

)
dA+ i

∫
A

(
∂u

∂x
− ∂v

∂y

)
dA, (86)

where A is the interior domain bounded by the closed curve C. But the Cauchy-
Riemann equations (72) give

∂u

∂x
− ∂v

∂y
= 0,

∂v

∂x
+
∂u

∂y
= 0 (87)

whenever the function f(z) is differentiable in the neighborhood of the point
z = x + iy. Thus both integrals vanish if f(z) is analytic at all points of A.
This is Cauchy’s theorem, ∮

C
f(z)dz = 0 (88)

if df/dz exists everywhere inside (and on) the closed curve C.
Functions like ez, cos z, sin z and zn with n ≥ 0 are entire functions —

functions that are complex differentiable in the entire complex plane, hence the
integral of such functions around any closed contour C vanishes.

3.3 Poles and Residues

What about the integral of simple functions such as (z− a)−n with n a positive
integer? Those functions are analytic everywhere except at the isolated singular
point z = a, called a pole of order n, so the integral of 1/(z − a)n around any
closed contour that does not include the origin will still vanish.

We can figure out the integral about any closed curve C enclosing the pole
by considering a small circle Ca centered at a and of radius ε > 0 as small as
needed to be inside the outer closed curve C. Now, the function (z − a)−n

A

C

−Ca
a

is analytic everywhere inside the domain A bounded by the counter-clockwise
outer boundary C and the clockwise inner circle boundary −Ca (emphasized here
by the minus sign), so the interior A is always to the left when traveling on the
boundary.

By Cauchy’s theorem, this implies that the integral over the closed contour
of A, which consists of the sum C + (−Ca) of the outer counter-clockwise curve
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C and the inner clockwise circle −Ca, vanishes∮
C+(−Ca)

1

(z − a)n
dz = 0 =

∮
C

1

(z − a)n
dz +

∮
−Ca

1

(z − a)n
dz

but this implies that

C

Caa ∮
C

1

(z − a)n
dz =

∮
Ca

1

(z − a)n
dz,

since
∮
−Ca = −

∮
Ca , in other words the integral about the closed contour C equals

the integral about the closed inner circle Ca, now with the same orientation as
the outer contour.1 Thus the integral is invariant under deformation of the loop
C as long as such deformation does not cross the pole at a. The loop can be
shrunk to an arbitrary small circle surrounding the pole without changing the
value of the integral. That remaining integral about the arbitrarily small circle
is the residue integral.

That residue integral can be calculated explicitly with the circle parameter-
ization z = a+ εeiθ and dz = iεeiθdθ yielding the simple result that∮

Ca

dz

(z − a)n
=

∫ 2π

0

iεeiθ

εneinθ
dθ = iε1−n

∫ 2π

0

ei(1−n)θdθ =

{
2πi if n = 1,
0 if n 6= 1.

We can collect all these various results in the following useful formula that for
any integer k = 0,±1,±2, . . . and a closed contour C oriented counter-clockwise∮

C
(z − a)kdz =

{
2πi if k = −1 and C encloses a,
0 otherwise.

(89)

For k ≥ 0 this follows directly from Cauchy’s theorem since (z− a)k is complex
differentiable for all z. For k < 0 this also follows from Cauchy’s theorem that
allows the deformation of the contour C to a small circle Ca around the pole,
the integral residue, that can be calculated explicitly.

If the function f(z) has several poles, at a1, a2 and a3 for example, we can
use the same procedure to isolate all the poles inside the contour, say a1 and
a2 for example. The poles outside the contour C (a3 on the side figure) do not
contribute to the integral, the contour integral is driven by what’s inside and

C

C1

C2

a1

a2

a3

Cauchy’s theorem yields∮
C
f(z)dz =

∮
C1
f(z)dz +

∮
C2
f(z)dz, (90)

1Recall that we used this singularity isolation technique in conjunction with the divergence
theorem to evaluate the flux of r̂/r2 = r/r3 (the inverse square law of gravity and electro-
statics) through any closed surface enclosing the origin at r = 0, as well as in conjunction
with Stokes’ theorem for the circulation of a line current B = (ẑ × r)/|ẑ × r|2 = ϕ̂/ρ = ∇ϕ
around a loop enclosing the z-axis at ρ = 0.
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the integral is then the sum of the residue integrals, where the sum is over all
isolated singularities inside the contour. Each of these residue integrals can be
calculated as above. The procedure is called the ‘calculus of residues’.

B For example, consider ∮
C

1

z2 + 1
dz.

The function f(z) = 1/(z2 + 1) has two simple poles at z = ±i since z2 + 1 =
(z − i)(z + i), thus if C1 and C2 are small circles around ±i, respectively, the
residues are ∮

C1
f(z) dz = π and

∮
C2
f(z) dz = −π,

then ∮
C

1

z2 + 1
dz =


π if C encloses i but not −i,
−π if C encloses −i but not i,

0 if C encloses both ±i or neither.

(91)

This assumes that C is a simple closed curve (no self-intersections) and is ori-
ented counter-clockwise (otherwise all the signs would be reversed). If the con-
tour passes through a singularity then the integral is not defined. It would have
to be defined as a suitable limit (for instance as the Cauchy Principal Value).
The calculation of the residues for this function can be done using partial frac-
tions since

1

z2 + 1
=

1

2i

(
1

z − i
− 1

z + i

)
.

A more general approach is to use Taylor series expansions about the respective
pole. For C1 around pole i for instance, we have

1

z2 + 1
=

1

(z − i)
1

(z + i)
=

1

(z − i)
1

2i+ (z − i)
=

1

2i

1

z − i

∞∑
n=0

(z − i)n

(2i)n
,

where the geometric series (19) has been used as a shortcut to the requisite
Taylor series. (89) term by term then yields

∮
C1 f(z) dz = π.

�

B As a second example, consider f(z) = z2/(z − 1)2. That function is dif-
ferentiable for all z except at z = 1 where there is a 2nd order pole since
f(z) ∼ 1/(z − 1)2. This asymptotic behavior as z → 1 might suggests that its
residue around that pole vanishes but we have to be a bit more careful about
integrating functions that diverge around vanishing circles, that’s the story of
calculus, ∞× 0 requires further analysis. The Taylor series of z2 about z = 1 is
easily obtained as z2 = (z − 1 + 1)2 = (z − 1)2 + 2(z − 1) + 1, then the residue
integral is, using (89) term-by-term,∮

C1

z2

(z − 1)2
dz =

∮
C1

(
z − 1 +

2

z − 1
+

1

(z − 1)2

)
dz = 4πi.
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�
B As a third example consider ∮

C
e1/zdz, (92)

the function e1/z has an infinite order pole – an “essential singularity” – at z = 0
but Taylor series and the simple (89) makes this calculation straightforward∮

C
e1/zdz =

∮
C

∞∑
n=0

1

n! zn
dz =

∞∑
n=0

1

n!

∮
C

1

zn
dz = 2πi (93)

since all integrals vanish except the n = 1 term from (89), if C encloses z = 0,
otherwise the integral is zero by Cauchy’s theorem. Note that this ‘Taylor’
series for e1/z is in powers of t = 1/z expanding about t = 0 that corresponds
to z = ∞! In terms of z, this is an example of a Laurent series, a power series
that includes negative powers to capture poles and essential singularities.

�

Connection with ln z

The integral of 1/z is of course directly related to ln z, the natural log of z which
can be defined as the antiderivative of 1/z that vanishes at z = 1, that is

ln z ≡
∫ z

1

1

ζ
dζ.

We use ζ as the dummy variable of integration since z is the upper limit of
integration.

But along what path from 1 to z? Here’s the 2πi multiplicity again. We saw
earlier that the integral of 1/z from a to b depends on how we go around the
origin. If we get one result along one path, we can get the same result + 2πi
if we use a path that loops around the origin one more time counterclockwise
than the original path. Or −2πi if it loops clockwise, etc. Look back at exercise
(7) in section (3.2). If we define a range for arg(z), e.g. 0 ≤ arg(z) < 2π, we
find ∫ z

1

1

ζ
dζ = ln |z|+ i arg(z) + 2ikπ (94)

for some specific k that depends on the actual path taken from 1 to z and
our definition of arg(z). The notation

∫ z
1

is not complete for this integral. The
integral is path-dependent and it is necessary to specify that path in more details,
however all possible paths give the same answer modulo 2πi.

Exercises:

Closed paths are oriented counterclockwise unless specified otherwise.
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1. Calculate the integral of f(z) = z + 2/z along the path C that goes once
around the circle |z| = R > 0. How does your result depend on R?

2. Calculate the integral of f(z) = az + b/z + c/(z + 1), where a, b and c
are complex constants, around (i) the circle of radius R > 0 centered at
z = 0, (ii) the circle of radius 2 centered at z = 0, (iii) the triangle −1/2,
−2 + i, −1− 2i.

3. Calculate the integral of f(z) = 1/(z2 − 4) around (i) the unit circle, (ii)
the parallelogram 0, 2− i, 4, 2 + i. [Hint: use partial fractions]

4. Calculate the integral of f(z) = 1/(z4 − 1) along the circle of radius 1
centered at i.

5. Calculate the integral of sin(1/(3z)) over the square 1, i, −1, −i. [Hint:
use the Taylor series for sin z].

6. Calculate the integral of 1/z from z = 1 to z = 2eiπ/4 along (i) the path
1→ 2 along the real line then 2→ 2eiπ/4 along the circle of radius 2, (ii)
along 1 → 2 on the real line, followed by 2 → 2eiπ/4 along the circle of
radius 2, clockwise.

7. If a is an arbitrary complex number, show that the integral of 1/z along
the straight line from 1 to a is equal to the integral of 1/z from 1 to |a|
along the real line + the integral of 1/z along the circle of radius |a| from
|a| to a along a certain circular path. Draw a sketch!! Discuss which
circular path and calculate the integral. What happens if a is real but
negative?

8. Does the integral of 1/z2 from z = a to z = b (with a and b complex)
depend on the path? Explain.

9. Does the integral of z∗ = conj(z) depend on the path? Calculate
∫ b
a
z∗dz

along (i) the straight line from a to b, (ii) along the real direction from
Re(a) to Re(b) then up in the imaginary direction from Im(a) to Im(b).
Sketch the paths and compare the answers.

10. The expansion (55) with a = 1 gives 1/z =
∑∞
n=0(1 − z)n. Using this

expansion together with (89) we find that∮
|z|=1

1

z
dz =

∞∑
n=0

∮
|z|=1

(1− z)ndz = 0.

But this does not match with our explicit calculation that
∮
|z|=1

dz/z =

2πi. What’s wrong?!
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3.4 Cauchy’s formula

The combination of (88) with (89) and partial fraction and/or Taylor series
expansions is quite powerful as we have already seen in the exercises, but there
is another fundamental result that can be derived from them. This is Cauchy’s
formula ∮

C

f(z)

z − a
dz = 2πif(a) (95)

which holds for any closed counterclockwise contour C that encloses a provided
f(z) is analytic (differentiable) everywhere inside and on C.

The proof of this result follows the approach we used to calculate
∮
C dz/(z−a)

in section 3.3. Using Cauchy’s theorem (88), the integral over C is equal to the
integral over a small counterclockwise circle Ca of radius ε centered at a. That’s
because the function f(z)/(z − a) is analytic in the domain between C and the
circle Ca : z = a+ εeiθ with θ = 0→ 2π, so∮

C

f(z)

z − a
dz =

∮
Ca

f(z)

z − a
dz =

∫ 2π

0

f(a+ εeiθ) idθ = 2πif(a). (96)

The final step follows from the fact that the integral has the same value no
matter what ε > 0 we pick. Then taking the limit ε → 0+, the function
f(a+ εeiθ)→ f(a) because f(z) is a nice continuous and differentiable function
everywhere inside C, and in particular at z = a.

Cauchy’s formula has major consequences that follows from the fact that it
applies to any a inside C. To emphasize that, let us rewrite it with z in place of
a, using ζ as the dummy variable of integration

2πif(z) =

∮
C

f(ζ)

ζ − z
dζ. (97)

This provides an integral formula for f(z) at any z inside C in terms of its
values on C. Thus knowing f(z) on C completely determines f(z) everywhere
inside the contour!

Mean Value Theorem

Since (97) holds for any closed contour C as long as f(z) is continuous and
differentiable inside and on that contour, we can write it for a circle of radius r
centered at z, ζ = z + reiθ where dζ = ireiθdθ and (97) yields

f(z) =
1

2π

∫ 2π

0

f(z + reiθ)dθ (98)

which states that f(z) is equal to its average over a circle centered at z. This
is true as long as f(z) is differentiable at all points inside the circle of radius
r. This mean value theorem also applies to the real and imaginary parts of
f(z) = u(x, y) + iv(x, y). It implies that u(x, y), v(x, y) and |f(z)| do not have
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extrema inside a domain where f(z) is differentiable. Points where f ′(z) = 0
and therefore ∂u/∂x = ∂u/∂y = ∂v/∂x = ∂v/∂y = 0 are saddle points, not
local maxima or minima.

Generalized Cauchy formula and Taylor Series

Cauchy’s formula also implies that if f ′(z) exists in the neighborhood of a point
a then f(z) is infinitely differentiable in that neighborhood! Furthermore, f(z)
can be expanded in a Taylor series about a that converges inside a disk whose
radius is equal to the distance between a and the nearest singularity of f(z).
That is why we use the special word analytic instead of simply ‘differentiable’.
For a function of a complex variable being differentiable in a neighborhood is a
really big deal!

B To show that f(z) is infinitely differentiable, we can show that the deriva-
tive of the right-hand side of (97) with respect to z exists by using the limit
definition of the derivative and being careful to justify existence of the integrals
and the limit. The final result is the same as that obtained by differentiating
with respect to z under the integral sign, yielding

2πif ′(z) =

∮
C

f(ζ)

(ζ − z)2
dζ. (99)

Doing this repeatedly we obtain

2πif (n)(z) = n!

∮
C

f(ζ)

(ζ − z)n+1
dζ. (100)

where f (n)(z) is the nth derivative of f(z) and n! = n(n−1) · · · 1 is the factorial
of n. Since all the integrals exist, all the derivatives exist. Formula (100) is the
generalized Cauchy formula which we can rewrite in the form

∮
C

f(z)

(z − a)n+1
dz = 2πi

f (n)(a)

n!
(101)

�

B Another derivation of these results that establishes convergence of the
Taylor series expansion at the same time is to use the geometric series (19) and
the slick trick that we used in (55) to write

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a
1

1− z − a
ζ − a

=

∞∑
n=0

(z − a)n

(ζ − a)n+1
(102)

where the geometric series converges provided |z−a| < |ζ−a|. Cauchy’s formula
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(97) then becomes

2πif(z) =

∮
Ca

f(ζ)

ζ − z
dζ =

∮
Ca

∞∑
n=0

f(ζ)
(z − a)n

(ζ − a)n+1
dζ

=

∞∑
n=0

(z − a)n
∮
Ca

f(ζ)

(ζ − a)n+1
dζ (103)

where Ca is a circle centered at a whose radius is as large as desired provided
f(z) is differentiable inside and on that circle. For instance if f(z) = 1/z then
the radius of the circle must be less then |a| since f(z) has a singularity at z = 0
but is nice everwhere else. If f(z) = 1/(z+ i) then the radius must be less than
|a + i| which is the distance between a and −i since f(z) has a singularity at
−i. In general, the radius of the circle must be less than the distance between
a and the nearest singularity of f(z). To justify interchanging the integral and
the series we need to show that each integral exists and that the series of the
integrals converges. If |f(ζ)| ≤ M on Ca and |z − a|/|ζ − a| ≤ q < 1 since Ca
is a circle of radius r centered at a and z is inside that circle while ζ is on the
circle so ζ − a = reiθ, dζ = ireiθdθ and∣∣∣∣∮

Ca

(z − a)nf(ζ)

(ζ − a)n+1
dζ

∣∣∣∣ ≤ 2πMqn (104)

showing that all integrals converge and the series of integrals also converges
since q < 1.

The series (103) provides a power series expansion for f(z)

2πif(z) =

∞∑
n=0

(z − a)n
∮
Ca

f(ζ)

(ζ − a)n+1
dζ =

∞∑
n=0

cn(a)(z − a)n (105)

that converges inside a disk centered at a with radius equal to the distance
between a and the nearest singularity of f(z). The series can be differentiated
term-by-term and the derivative series also converges in the same disk. Hence
all derivatives of f(z) exist in that disk. In particular we find that

cn(a) = 2πi
f (n)(a)

n!
=

∮
Ca

f(ζ)

(ζ − a)n+1
dζ. (106)

which is the generalized Cauchy formula (100), (101), and the series (103) is
none other than the familiar Taylor Series

f(z) = f(a) + f ′(a)(z − a) +
f ′′(a)

2
(z − a)2 + · · · =

∞∑
n=0

f (n)(a)

n!
(z − a)n. (107)

�
Finally, Cauchy’s theorem tells us that the integral on the right of (106)

has the same value on any closed contour (counterclockwise) enclosing a but no
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other singularities of f(z), so the formula holds for any such closed contour as
written in (100). However convergence of the Taylor series only occurs inside a
disk centered at a and of radius equal to the distance between a and the nearest
singularity of f(z).

Exercises:

1. Why can we take (z − a)n outside of the integrals in (103)?

2. Verify the estimate (104). Why does that estimate implies that the series
of integrals converges?

3. Consider the integral of f(z)/(z − a)2 about a small circle Ca of radius ε
centered at a: z = a+ εeiθ, 0 ≤ θ < 2π. Study the limit of the θ-integral
as ε → 0+. Does your limit agree with the generalized Cauchy formula
(100), (106)?

4. Derive (101) by deforming the contour C to a small circle Ca about a,
expanding f(z) in a Taylor series about a (assuming that it exists) and
using (89) term by term. In applications, this is a practical and more gen-
eral approach that works for essential singularities as well. The approach
in this section actually proves that the Taylor series converges, a major
result of complex analysis.

5. Find the Taylor series of 1/(1+x2) and show that its radius of convergence
is |x| < 1 [Hint: use the geometric series]. Explain why the radius of
convergence is one in terms of the singularities of 1/(1 + z2). Would the
Taylor series of 1/(1 + x2) about a = 1 have a smaller or larger radius of
convergence than that about a = 0?

6. Calculate the integrals of cos(z)/zn and sin(z)/zn over the unit circle,
where n is a positive integer.

4 Real examples of complex integration

One application of complex (a.k.a. ‘contour’) integration is to turn difficult real
integrals into simple complex integrals.

Example 1: What is the average of the function f(θ) = 3/(5 + 4 cos θ)?
The function is periodic of period 2π so its average is

1

2π

∫ 2π

0

f(θ)dθ.

To compute that integral we think integral over the unit circle in the complex
plane! Indeed the unit circle with |z| = 1 has the simple parametrization

z = eiθ → dz = ieiθdθ ⇔ dθ =
dz

iz
. (108)
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Furthermore

cos θ =
eiθ + e−iθ

2
=
z + 1/z

2
,

so we obtain∫ 2π

0

3

5 + 4 cos θ
dθ =

∮
|z|=1

3

5 + 2(z + 1/z)

dz

iz

=
3

2i

∮
|z|=1

dz

(z + 1
2 )(z + 2)

=
3

2i

(
2πi

z + 2

)
z=− 1

2

= 2π.

(109)

What complex trickery was that?! We turned the integral of a real periodic
function over its period from θ = 0 to 2π into a complex z integral over the unit
circle z = eiθ. This is a general idea that applies for the integral of any periodic
function over its period. That led us to the integral over a closed curve of a
simple rational function (that is not always the case, it depends on the actual
f(θ)).

−1/2−2

z = eiθ

In this example, our complex function (2z2 +5z+2)−1 has two simple poles,
at −1/2 and −2, and the denominator factors as 2z2 +5z+2 = 2(z+1/2)(z+2).
Since −2 is outside the unit circle, it does not contribute to the integral, but
the simple pole at −1/2 does. So the integrand has the form g(z)/(z − a) with
a = −1/2 inside our domain and g(z) = 1/(z + 2), is a good analytic function
inside the unit circle. So one application of Cauchy’s formula, et voilà. The
function 3/(5 + 4 cos θ) which oscillates between 1/3 and 3 has an average of 1.

Related exercises: calculate∫ π

0

3 cosnθ

5 + 4 cos θ
dθ (110)

where n is an integer. [Hint: use symmetries to write the integral in [0, 2π], do
not use 2 cosnθ = einθ+e−inθ (why not? try it out to find out the problem), use
instead cosnθ = Re(einθ) with n ≥ 0.] An even function f(θ) = f(−θ) periodic
of period 2π can be expanded in a Fourier cosine series f(θ) = a0 + a1 cos θ +
a2 cos 2θ + a3 cos 3θ + · · · . This expansion is useful in all sorts of applications:
numerical calculations, signal processing, etc. The coefficient a0 is the average
of f(θ). The other coefficients are given by an = 2π−1

∫ π
0
f(θ) cosnθdθ, i.e. the

integrals (110). So what is the Fourier (cosine) series of 3/(5 + 4 cos θ)? Can
you say something about its convergence?

�
Example 2: ∫ ∞

−∞

dx

1 + x2
= π (111)

This integral is easily done with the fundamental theorem of calculus since
1/(1 +x2) = d(arctanx)/dx, but we use contour integration to demonstrate the
method. The integral is equal to the integral of 1/(1 + z2) over the real line
z = x with x = −∞ → ∞. That complex function has two simple poles at
z = ±i since z2 + 1 = (z + i)(z − i).
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Cθ

−R RCx

i

−i

Figure 3.15: Closing the contour and calculating the ‘residue’ for (111).

So we turn this into a contour integration by considering the closed path
consisting of Cx : z = x with x = −R → R (real line) + the semi-circle Cθ :
z = Reiθ with θ = 0 → π. Since i is the only simple pole inside our closed
contour C = Cx + Cθ, Cauchy’s formula gives∮

C

dz

z2 + 1
=

∮
C

(z + i)−1

z − i
dz = 2πi

(
1

z + i

)
z=i

= π.

To get the integral we want, we need to take R→∞ and figure out the Cθ part.
That part goes to zero as R→∞ since∣∣∣∣∫

Cθ

dz

z2 + 1

∣∣∣∣ =

∣∣∣∣∫ π

0

iReiθdθ

R2e2iθ + 1

∣∣∣∣ < ∫ π

0

Rdθ

R2 − 1
=

πR

R2 − 1
.

�
Example 3: We use the same technique for∫ ∞

−∞

dx

1 + x4
=

∫
R

dz

1 + z4
(112)

Here the integrand has 4 simple poles at z4+1 = (z−z1)(z−z2)(z−z3)(z−z4) =
0. These are the roots of z4 = −1. They are on the unit circle, equispaced by
π/2 with z1 = eiπ/4. Note that z1 and z3 = −z1 are the roots of z2 − i = 0
while z2 and z4 = −z2 are the roots of z2 + i = 0, so z4 + 1 = (z2− i)(z2 + i) =
(z − z1)(z + z1)(z − z2)(z + z2) with z1 = eiπ/4 and z2 = ei3π/4 = −z∗1 . We

use the same closed contour C = Cx + Cθ as above but now there are two simple
poles inside that contour. We need to isolate both singularities leading to∮

C
=

∮
C1

+

∮
C2
.

Then Cauchy’s formula gives∮
C1

dz

z4 + 1
= 2πi

(
1

2z1(z2
1 − z2

2)

)
=

π

2z1
.
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Cx

Cθ

−R R

C1C2

z1z2

z3 z4

Figure 3.16: Closing the contour and calculating the ‘residues’ for (112).

Likewise ∮
C2

dz

z4 + 1
= 2πi

(
1

2z2(z2
2 − z2

1)

)
=

π

2(−z2)
=

π

2z4
=

π

2z∗1
.

These manipulations are best understood by looking at the figure which shows
that −z2 = z4 = z∗1 together with z2

1 = i, z2
2 = −i. Adding both results gives∮

C

dz

z4 + 1
=
π

2

(
1

z1
+

1

z∗1

)
= π

e−iπ/4 + eiπ/4

2
= π cos

π

4
=

π√
2
.

As before we need to take R → ∞ and figure out the Cθ part. That part goes
to zero as R→∞ since∣∣∣∣∫

C2

dz

z4 + 1

∣∣∣∣ =

∣∣∣∣∫ π

0

iReiθdθ

R4e4iθ + 1

∣∣∣∣ < ∫ π

0

Rdθ

R4 − 1
=

πR

R4 − 1
.

�
We could extend the same method to∫ ∞

−∞

x2

1 + x8
dx (113)

(and the much simpler
∫∞
−∞ x/(1 + x8)dx = 0 ;-) ) We would use the same

closed contour again, but there would be 4 simple poles inside it and therefore
4 separate contributions.

�
Example 4:∫ ∞

−∞

dx

(1 + x2)2
=

∫
R

dz

(z2 + 1)2
=

∫
R

dz

(z − i)2(z + i)2
. (114)

We use the same closed contour once more, but now we have a double pole inside
the contour at z = i. We can figure out the contribution from that double pole
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by using the generalized form of Cauchy’s formula (100). The integral over Cθ
vanishes as R→∞ as before and∫ ∞

−∞

dx

(1 + x2)2
= 2πi

(
d

dz
(z + i)−2

)
z=i

=
π

2
. (115)

A (z − a)n in the denominator, with n a positive integer, is called and n-th
order pole.

�
Example 5: ∫ ∞

−∞

sinx

x
dx = π. (116)

This is a trickier problem. Our impulse is to consider
∫
R(sin z)/z dz but that

integrand is a super good function! Indeed (sin z)/z = 1 − z2/3! + z4/5! − · · ·
is analytic in the entire plane, its Taylor series converges in the entire plane.
For obvious reasons such functions are called entire functions. But we love
singularities now since they actually make our life easier. So we write∫ ∞

−∞

sinx

x
dx = Im

∫ ∞
−∞

eix

x
dx = Im

∫
R

eiz

z
dz, (117)

where Im stands for “imaginary part of”. Now we have a nice simple pole at
z = 0. But that’s another problem since the pole is on the contour! We have to
modify our favorite contour a little bit to avoid the pole by going over or below
it. If we go below and close along Cθ as before, then we’ll have a pole inside our
contour. If we go over it, we won’t have any pole inside the closed contour. We
get the same result either way (luckily!), but the algebra is a tad simpler if we
leave the pole out.
So we consider the closed contour C = C1 + C2 + C3 + C4 where C1 is the real

C4

−R R−ε ε

C1 C3

C2

Figure 3.17: Closing the contour for (117) and calculating a ‘half-residue’.

axis from −R to −ε, C2 is the semi-circle from −ε to ε in the top half-plane, C3
is the real axis from ε to R and C4 is our good old semi-circle of radius R. The
integrand eiz/z is analytic everywhere except at z = 0 where it has a simple
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pole, but since that pole is outside our closed contour, Cauchy’s theorem gives∮
C = 0 or ∫

C1+C3
= −

∫
C2
−
∫
C4

The integral over the semi-circle C2 : z = εeiθ, dz = iεeiθdθ, is

−
∫
C2

eiz

z
dz = i

∫ π

0

eiεe
iθ

dθ → πi as ε→ 0.

As before we’d like to show that the
∫
C4 → 0 as R → ∞. This is trickier

than the previous cases we’ve encountered. On the semi-circle z = Reiθ and
dz = iReiθdθ, as we’ve seen so many times, we don’t even need to think about
it anymore (do you?), so∫

C4

eiz

z
dz = i

∫ π

0

eiRe
iθ

dθ = i

∫ π

0

eiR cos θe−R sin θdθ. (118)

This is a pretty scary integral. But with a bit of courage and intelligence it’s not
as bad as it looks. The integrand has two factors, eiR cos θ whose norm is always
1 and e−R sin θ which is real and exponentially small for all θ in 0 < θ < π,
except at 0 and π where it is exactly 1. Sketch e−R sin θ in 0 ≤ θ ≤ π and it’s
pretty clear the integral should go to zero as R →∞. To show this rigorously,
let’s consider its modulus (norm) as we did in the previous cases. Then since
(i) the modulus of a sum is less or equal to the sum of the moduli (triangle
inequality), (ii) the modulus of a product is the product of the moduli and (iii)
|eiR cos θ| = 1 when R and θ are real (which they are)

0 ≤
∣∣∣∣∫ π

0

eiR cos θe−R sin θdθ

∣∣∣∣ < ∫ π

0

e−R sin θdθ (119)

we still cannot calculate that last integral but we don’t need to. We just need
to show that it is smaller than something that goes to zero as R → ∞, so our
integral will be squeezed to zero.
The plot of sin θ for 0 ≤ θ ≤ π illustrates that it is symmetric with respect to π/2
and that 2θ/π ≤ sin θ when 0 ≤ θ ≤ π/2, or changing the signs −2θ/π ≥ − sin θ
and since ex increases monotonically with x,

π/2 π θ

1
sin θ

2θ/π

e−R sin θ < e−2Rθ/π

in 0 ≤ θ ≤ π/2. This yields Jordan’s Lemma∣∣∣∣∫ π

0

eiRe
iθ

dθ

∣∣∣∣ < ∫ π

0

e−R sin θdθ = 2

∫ π/2

0

e−R sin θdθ

< 2

∫ π/2

0

e−2Rθ/πdθ = π
1− e−R

R
(120)

so
∫
C4 → 0 as R→∞ and collecting our results we obtain (116).

�
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Exercises

All of the above of course, +

1. Calculate
∫ 2π

0
1/(a+ b sin s)ds where a and b are real numbers. Does the

integral exist for any real values of a and b?

2. Make up and solve an exam question which is basically the same as∫∞
−∞ dx/(1 + x2) in terms of the logic and difficulty, but is different in

the details.

3. Calculate
∫∞
−∞ dx/(1+x2 +x4). Can you provide an a priori upper bound

for this integral based on integrals calculated earlier?

4. Calculate F (k) =

∫ ∞
−∞

eikx

a2 + x2
dx, the Fourier transform of the Lorentzian,

where a and k are real.

5. Given the Poisson integral
∫∞
−∞ e−x

2

dx =
√
π, what is

∫∞
−∞ e−x

2/a2dx
where a is real? (that should be easy!). Next, calculate∫ ∞

−∞
e−x

2/a2eikxdx

where a and k are arbitrary real numbers. This is the Fourier transform
of the Gaussian e−x

2/a2 . [Complete the square. Note that you can pick
a, k > 0 (why?), then integrate over an infinite rectangle that consists of
the real axis and comes back along the line y = ka2/2 (why? justify).]

6. The Fresnel integrals come up in optics and quantum mechanics. They
are ∫ ∞

−∞
cosx2 dx, and

∫ ∞
−∞

sinx2 dx.

Calculate them both by considering
∫∞

0
eix

2

dx. The goal is to reduce

this to a Poisson integral. This would be the case if x2 → (eiπ/4x)2. So
consider the closed path that goes from 0 to R on the real axis, then on
the circle of radius R to Reiπ/4 (or the vertical line R → R + iR), then
back along the diagonal z = seiπ/4 with s real.

7. Calculate the Glauert integrals∫ 2π

0

cosnθ

cos θ − cos θ0
dθ

interpreted in the sense of Cauchy Principal value (that is, with a ±ε
interval around the singularity, as in fig. 3.17), where n is an integer and
θ0 is real.



168

Peeking at branch cuts

You may have noticed that we’ve only dealt with integer powers. What about
fractional powers? First let’s take a look at the integral of

√
z over the unit

circle z = eiθ from θ = θ0 to θ0 + 2π∮
|z|=1

√
z dz =

∫ θ0+2π

θ0

eiθ/2ieiθdθ =
2i

3
e3iθ0/2(ei3π − 1) =

−4i

3
e3iθ0/2 (121)

The answer depends on θ0! The integral over the closed circle depends on where
we start on the circle?! This is weird, what’s going on? The problem is with
the definition of

√
z. We have implicitly defined

√
z = |z|1/2ei arg(z)/2 with

θ0 ≤ arg(z) < θ0 + 2π or θ0 < arg(z) ≤ θ0 + 2π. But each θ0 corresponds to a
different definition for

√
z.

For real variables the equation y2 = x ≥ 0 had two solutions y = ±
√
x

and we defined
√
x ≥ 0. Can’t we define

√
z in a similar way? The equation

w2 = z in the complex plane always has two solutions. We can say
√
z and −

√
z

but we still need to define
√
z since z is complex. Could we define

√
z to be

such that its real part is always positive? yes, and that’s equivalent to defining√
z = |z|1/2ei arg(z)/2 with −π < arg(z) < π (check it). But that’s not complete

because the sqrt of a negative real number is pure imaginary, so what do we do
about those numbers? We can define −π < arg(z) ≤ π, so real negative numbers
have arg(z) = π, not −π, by definition. This is indeed the definition that Matlab
chooses. But it may not be appropriate for our problem because it introduces a
discontinuity in

√
z as we cross the negative real axis. If that is not desirable

for our problem then we could define 0 ≤ arg(z) < 2π. Now
√
z is continuous

across the negative real axis but there is a jump across the positive real axis. No
matter what definition we pick, there will always be a discontinuity somewhere.
We cannot go around z = 0 without encountering such a jump, z = 0 is called
a branch point and the semi-infinite curve emanating from z = 0 across which
arg(z) jumps is called a branch cut. Functions like z3/2, ln z,

√
z2 − 1, etc. have

similar issues. The functions are not differentiable across the cut and therefore
Cauchy’s theorem does apply directly. It can still be used as long as we do not
cross branch cuts.

Here’s a simple example that illustrates the extra subtleties and techniques.∫ ∞
0

√
x

1 + x2
dx

First note that this integral does indeed exist since
√
x/(1 + x2) ∼ x−3/2 as

x → ∞ and therefore goes to zero fast enough to be integrable. Our first
impulse is to see this as an integral over the real axis from 0 to ∞ of the
complex function

√
z/(z2 + 1). That function has simple poles at z = ±i as we

know well. But there’s a problem:
√
z is not analytic at z = 0 which is on our

contour again. No big deal, we can avoid it as we saw in the (sinx)/x example.
So let’s take the same 4-piece closed contour as in that problem. But we’re not
all set yet because we have a

√
z, what do we mean by that when z is complex?
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We need to define that function so that it is analytic everywhere inside and on
our contour. Writing z = |z|ei arg(z) then we can define

√
z = |z|1/2ei arg(z)/2.

We need to define arg(z) so
√
z is analytic inside and on our contour. The

definitions −π ≤ arg(z) < π would not work with our decision to close in the
upper half place. Why? because arg(z) and thus

√
z would not be continuous at

the junction between C4 and C1. We could close in the lower half plane, or we can
pick another branch cut for arg(z). The standard definition −π < arg(z) ≤ π
works. Try it!
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