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“Any fool can know. The point is to understand.”

— Albert Einstein
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Chapter 1

Vector Geometry and
Algebra

What is a vector? In calculus, you may have defined vectors as lists of numbers
such as (a1, a2) or (a1,as,as), mathematicians favor that approach nowadays
because it readily generalizes to n dimensional space (aq,aq,...,a,) and re-
duces geometry to arithmetic. But in physics, and in geometry before that, you
encountered vectors as quantities with both magnitude and direction such as
displacements, velocities and forces. The geometric point of view emphasizes
the invariance of these quantities with respect to the observer and the system
of coordinates.

1 Get your bearings

1.1 Magnitude and direction

We write
a=aad (1)

for a vector a of magnitude |a| = a in the direction @. The magnitude of vector
a is denoted |a| which is a positive real number with appropriate physical units
(meters, Newtons, ...), |a| > 0. The direction of vector a is denoted & which is
a vector of unit magnitude, |G| = 1. For that reason, direction vectors are often
called unit vectors, but ‘unit’ vectors have no physical units.
For example,

a = 2 km heading 30°clockwise from North

specifies a horizontal displacement @ of magnitude |a| = 2 kilometers and di-
rection @ = 30° clockwise from North.

Two points A and B specify a displacement vector a = E The same
displacement a starting from point C' leads to point D, with @ =a= E
Conversely, we can specify points (locations) by specifying displacements from




a reference point, thus point B is located displacement a from point A, and D
is a from C.

Vectors are denoted with a boldface: a, b, u, v, ..., usually lower-case but some-
times upper-case as in a magnetic field B, electric field E or force F. Some
authors write @ for @ and we use that notation to denote the displacement from
point A to point B as ﬁ . Writing by hand, we use the typographical notation
for boldface which is a for a, & for a, etc. This notation allows distinguish-

ing between a collection of unit vectors {a1,a2,as} = {a, a2, az} and the

components of a unit vector @ = a = (a1, a2, d3).

1.2 Representations of 2D vectors

For vectors in a plane (2D), a direction @ can be specified by an angle from a
reference direction as in the section [I.I] example. In navigation, that angle is
usually defined clockwise from North and called an azimuthal angle or azimuth
or heading. In mathematical physics, we specify the direction using an angle «
counterclockwise from a reference direction &. We can specify a 2D vector a
by giving the pair (a,«) for vector a of magnitude |a| = a and direction & =
“angle « counterclockwise from &.”

Figure 1.1: Polar and cartesian representations of vectors in a plane.

We can also specify the vector a as a sum of displacements in two reference
perpendicular directions, a, in direction £ and a, in direction 4 perpendicular to
Z. Now the pair (as, ay) specifies @. The pairs (a, a) and (az, ay) are equivalent
representations of a,

a = (a,a) = (ag, ay)

but in general they are not equal

(a,a) # (az,ay).
To express the equality of the representations, we need to include the direction
vectors and write
a=abd=a,T+ay,y (2)
then by Pythagoras and basic trigonometry
Gy = G,COS QY

. } = azzai+a,§, (3)
a, = asinw
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a=cosad+sinag. (4)
This confirms that a direction vector a is a vector of unit magnitude.

The representation @ = a @, where & = a(«) is a function of «, is a polar
representation of the 2D vector a and a = a,&-+a, is a cartesian representation
with & and ¢ two arbitrary perpendicular directions.

The vector a is specified by the pair (a,a) or (az,a,), or many other pairs
of numbers depending on how we specify the direction, for instance ‘20 feet
toward the water tower then 5 meters toward the oak tree’ specifies a displace-
ment as (20ft,5m) but the reference directions may not be perpendicular. The
same physical 2D vector can be represented by an infinity of pairs of numbers
depending on how we choose our reference magnitudes and directions.

Exercises:

1. If you move 2 miles heading 030° then 3 miles heading 290°, how far are
you from your original position? what heading from your original position?
Make a sketch. All headings are measured clockwise from North.

2. If you move distance a heading « then distance b heading 3, how far are
you and in what heading from your original position? Make a sketch and
show/explain your algorithm. Headings are clockwise from North.

3. Find |v| and 9 for the vector v = —5 miles per hour heading Northeast.

4. True or False: in ST units |G| = 1 meter while in CGS units || =1 cm.

1.3 Representations of 3D vectors

How do you specify an arbitrary direction a in 3D space?

Astronomers use an azimuth angle measured clockwise from North in the
horizontal plane and an inclination (or zenith) angle measured from the vertical.
An altitude (or elevation) angle measured up from the horizontal plane may be
used instead of the inclination. Azimuth and elevation angles are also used in
ballistics and computer graphics. The illustration is from NOAA, the National
Ocean and Atmosphere Administration.

Figure shows the mathematical physics convention, where we use the angle
B between a reference direction £ (typically the vertical direction or the polar
axis) and the arbitrary direction a, as well as the angle o between the (2, &)
and the (%,a) planes. Thus « is an azimuthal angle but defined to be posi-
tive counterclockwise around 2 as opposed to the clockwise convention used in
navigation. A little trigonometry applied to fig. yields

a=sinfa, +cospf 2, 4, =cosad+sinag. (5)

Thus an arbitrary vector @ = aé can be specified by its magnitude a and
its direction @, the latter being specified by its polar angle 8 and its azimuthal

AUp

h

‘\b{/l North
=
A Ll

h = elevation z=zenith angle,
angle, measured  measured from
up from horizon  vertical

A= Azimuth angle,
measured clockwise
from North



Figure 1.2: Top: Perspective view of arbitrary direction @ with respect to mutu-
ally orthogonal directions &, 4, 2, where @, is the direction of @ perpendicular
to 2. Bottom left: Meridional (or vertical) (2, @, a, ) plane view. Bottom right:
azimuthal (or horizontal) (£,a,,9) plane view.

angle . That is the spherical representation a = (a,,a). The cylindrical
representation (a,«,a.) specifies a by its horizontal magnitude a; = asin g,
azimuthal angle o and vertical component a, = a cos 8. The cartesian represen-
tation consists of the familiar (a,, ay,a.). A 3D vector a can thus be represented
by 3 real numbers, for instance (a, 5, a) or (a1, e, a;) or (az,ay,a.). Each of
these triplets are equivalent representations of the vector a

a=(a,p,a)=(a1,0,a,) = (ag,ay,a;) (6)
but they are not equal to each other, in general,
(a,B,a) # (a1, a,a.) # (ag,ay,a). (7)
To express equality, we need the direction vectors to write (fig. |1.3))

’a:a&:aJ_ELJ_—l—azizazﬁz—i—ayQ—i—azﬁ.‘ (8)

From this vector equation , and with a little help from Pythagoras and

basic trigonometry, we deduce
2 2 2 2 2 2
a®=aj +a;, aj =a;+a,, (9)

a:aidj__kaig:sinﬂdj_—i—cosﬁﬁ, (10)
a a
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Figure 1.3: Spherical, cylindrical and cartesian representations of vectors in 3D.

a =231+ % 5= cosaz+sinadg. (11)
ay ay
Unique and positive angles can be specified by restricting them to the ranges
0<a<2rand 0 < B <7, similar to the navigation convention where headings
are specified as angles between 0 and 359° from North (in degrees). In mathe-
matical physics, it is more common to use the definition —7m < a < 7 together
with 0 < 8 < 7 then we have

a = atan2(ay, az), B = acos(a./a) (12)

where atan2 is the arctangent function with range in (—, 7] and acos is the arc-
cosine function whose range is [0, 71]. The classic arctangent function atan(a,/a;)
has the range [—7/2,7/2] and determines « only up to a multiple of 7, that is
a = atan(ay/ag) + km where k is an integer.

Exercises:

1. In astronomy, meteorology and computer graphics: what is an azimuth?
What is an elevation? What is an inclination? Sketch, explain.

2. What are longitude and latitude? Sketch, explain. What are the longitude
and latitude at the North pole? in Madison, WI? in London, UK?

3. What is a direction in 3D space, mathematically: is it a number, a pair
of numbers, a triplet of numbers, a vector?

4. Find the angles o and 3, defined in fig. [[.2] for the vector a given in
cartesian form as (—1,—1,—1).

5. A vector v is specified in cartesian components as (—3,2,1). Find ¢, for
that vector and express ¥, in terms of the cartesian direction vectors.
Write v in cylindrical representation.

6. A vector is specified in cartesian coordinates as (3,2,1). Find its mag-
nitude and direction. Express its direction in cartesian, cylindrical and
spherical representations using the cartesian direction vectors.



2 Addition and scaling of vectors

The fundamental algebraic properties of the geometric vectors, such as the ori-
ented line segments used in the previous section, is that they can be added and
scaled. Geometric vector addition obeys the parallelogram rule illustrated in
the following figure:

a

Thus vector addition is commutative: a+b = b+ a, and associative: a+b+c =
(a+b)+c=a+ (b+c). Note that a, b and ¢ are not in the same plane, in
general.

To every vector a we can associate an opposite vector denoted (—a) that is
the displacement exactly opposite to a. Vector subtraction b—a is then defined
as the addition of b and (—a). In particular @+ (—a) = 0 corresponds to no net
displacement. This is an important difference between points and displacements,
there is no special point in our space, but there is one special displacement: the
zero vector O such that a + (—a) =0 = (—a) + a and a + 0 = a, for any a.

The other key operation that characterizes vectors is scaling, that is, multipli-
cation by a real number o € R.

Geometrically, v = aa is a new vector parallel to a but of length |v| = |af|al.
The direction of v is the same as a if @ > 0 and opposite to a if « < 0. Obviously
(=1)a = (—a), multiplying a by (—1) yields the previously defined opposite
of a. Other geometrically obvious properties are distributivity with respect to
addition of real factors: (a+ B)a = aa+ fa, and with respect to multiplication
of real factors: (af)a = a(Ba). Slightly less trivial is distributivity with respect
to vector addition: a(a + b) = aa + ab, which geometrically corresponds to
similarity of triangles, as illustrated above.

Exercises:
1. Given arbitrary a and b, sketch a + b/2 and a — b.

2. An airplane travels at airspeed V, heading 6 (clockwise from north).
Weather reports state that the wind has speed W heading ¢. Make
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a clean sketch. Show/explain the algorithm to calculate the airplane’s
ground speed and heading.

3 General Vector Spaces

3.1 Axiomatic definition of a vector space

Vector addition and scaling are the two key operations that define a Vector
Space, provided those operations satisfy the following 8 properties Va, b in the
vector space and Ve, 8 in R. The symbol V means for all or for any. It is now
common practice in defining vector spaces to assume a priori that addition and
scaling of vectors yield vectors in the same space as that of the vectors that are
added or scaled.

Vector addition must satisfy:

at+b=b+a, (13)
at(b+c)=(atb)+e (14)
a+0=a, (15)
a+(—a)=0. (16)

Scalar multiplication must satisfy:

(a+ f)a = aa + fa, (17)
(aB)a = a(fa), (18)
ala+b) = aa + ab, (19)
la=a. (20)

3.2 The vector space R”

Consider the set of ordered n-tuplets of real numbers « = (z1,z2,...,2,). These
could correspond to student grades on a particular exam, for instance. What
kind of operations would we want to do on these lists of student grades? We’ll
probably want to add several grades for each student and we’ll probably want



to rescale the grades. So the natural operations on these n-tuplets are addition
deﬁnecﬂ by adding the respective components:

m+yé(z1+y17x2+y2,...,xn+yn):y+33~ (21)

and multiplication by a real number « € R defined as

ax £ (axy, axg,. .., atLy,). (22)

The set of n-tuplets of real numbers equipped with addition and multiplication
by a real number as just defined is a fundamental vector space called R™. The
vector spaces R? and R?® are particularly important to us as they will soon
correspond to the components of our physical vectors. But we also use R™ for
very large n when studying systems of equations, for instance.

Exercises:

1.

4

Show that addition and scalar multiplication of n-tuplets satisfy the 8
required properties listed above.

Define addition and scalar multiplication of n-tuplets of complex numbers
and show that all 8 properties are satisfied. That vector space is called
Ccn.

The set of real functions f(x) is also a vector space. Define addition in
the obvious way: f(x) + g(z) = h(x) another real function, and scalar
multiplication: af(xz) = F(x) yet another real function. Show that all 8
properties are again satisfied.

Suppose you define addition of n-tuplets @ = (z1,z2,...,2,) as usual
but define scalar multiplication according to ax = (ax1, 22, - ,x,), that
is, only the first component is multiplied by «. Which property is vio-
lated? What if you defined ax = (ax1,0,---,0), which property would
be violated?

From the 8 properties, show that (0)a = 0 and (—1)a = (—a), Va, i.c.

show that multiplication by the scalar 0 yields the neutral element for
addition, and multiplication by —1 yields the additive inverse.

Bases and Components

Addition and scaling of vectors allow us to define the concepts of linear combina-
tion, linear (in)dependence, dimension, basis and components. These concepts
apply to any vector space.

IThe symbol £ means “equal by definition”.
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Linear Combination. A [inear combination of k vectors a1, asg, ..., ai is an
expression of the form

X1a1 + xza2 + -+ XkpQk

where x1, X2, ..., X% are arbitrary real numbers.
Linear Independence. The k vectors a1, as,--- ,a; are linearly independent
(L.1) if

X101+ X282 + -+ xrar =0 <& x1=x2=--=xr=0.

Otherwise, the vectors are linearly dependent. For instance if 3a;+2as+az = 0,
then a1, aq, as are linearly dependent.

Dimension. The dimension of a vector space is the largest number of linearly
independent vectors, n say, in that space.

Basis. A basis for a n dimensional vector space is any collection of n linearly
independent vectors.

Components. If aq,as, - ,a, is a basis for an n dimensional vector space,
then any vector v in that space can be expanded as

v =v1a1 +v2a3+ -+ v,a,

where the n real numbers (vy,ve,...,v,) are the components of v in the basis
a1,az, - ,Qnp.
v
Vo
as 202
a; v1aq
Examples

e Two non-parallel vectors a; and as in a plane (for instance, horizontal
plane) are L.I. and these vectors form a basis for vectors (for instance, dis-
placements) in the plane. Any given vector v in the plane can be written as
v = v1a1 + v2as, for a unique pair (vi,vs). Three or more vectors in a plane
are linearly dependent.

e Three non-coplanar vectors a;, as and as in 3D space are L.I. and those
vectors form a basis for 3D space. However 4 or more vectors in 3D are linearly
dependent. Any given vector v can be expanded as v = via; + voas + v3ag, for
a unique triplet of real numbers (v, ve, v3). Make sketches to illustrate.

The 8 properties of addition and scalar multiplication imply that if two
vectors u and v are expanded with respect to the same basis {a1, a2, as}, that
is

U = u1a; + u2az + usas,

v = vi1a;1 + v2a2 + v3a3,
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then
u+v=(u; +vi)a; + (uz +v2)as + (us + v3)as,

av = (avr)a; + (avs)as + (avs)as,

thus addition and scalar multiplication are performed component by component
and the triplets of real components (u1,us2,u3) and (v1,vs,v3) are elements of
the vector space R3. A basis {a1,as, a3} in 3D space provides a one-to-one
correspondence (mapping) between displacements v in 3D (Euclidean) space
(call it E3) and triplets of real numbers in R?

veR3 (v1,v9,v3) € R3.

Exercises

1. Given vectors a, b in E? | show that the set of all v = aa + b, Va, 3 € R
is a vector space. What is the dimension of that vector space?

2. Show that the set of all vectors v = aa + b, Va € R and fixed a, b is not
a vector space.

3. If you defined addition of ordered pairs & = (x1,z2) as usual but scalar
multiplication by ax = (ax1,z3), would it be possible to represent any
vector  as a linear combination of two basis vectors a and b?

4. Prove that if {a1,...,a;} and {b1,...,b;} are two distinct bases for the
same vector space, then k = [.

5. Prove that the components of any v with respect to a basis a1, as,...,a,
are unique.

6. Given three points Py, P», P35 in Euclidean 3D space, let M be the mid-
point of segment Py P>, what are the components of P, P; and P3M in the
basis P| P>, Py P37 Sketch.

7. Find a basis for R™ (consider the natural basis: e; = (1,0,---,0), ea =
(0,1,0,---,0), etc.)

8. Find a basis for C". What is the dimension of that space?

9. What is the dimension of the vector space of real continuous functions
flz)in0<z<1?

10. What could be a basis for the vector space of ‘nice’ functions f(z) in (0,1)?
(i.e. 0 < < 1) (what’s a nice function? smooth functions are infinitely
differentiable, that’s nice!)
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5 Points and Coordinates

5.1 Position vector

In elementary calculus and linear algebra it is easy to confuse points and vectors.
In R? for instance, a point P is defined as a triplet (21,2, 23) but a vector a is
also defined by a real number triplet (a1, as,as3), but in physical space, points
and displacements are two clearly different things. The confusion arises from the
fundamental way to locate points by specifying displacements from a reference
point called the origin and denoted O. An arbitrary point P is then specified by
providing the displacement vector » = OP. That vector is called the position
vector of P and denoted r for radial vector from the origin O.

I
I
I
|
I
I
I
4
I
I
I
I
5'/

hS)

Figure 1.4: Position vector r = 07% in spherical, cylindrical and cartesian coor-
dinates. Mathematical physics convention, 6 is the angle between Z and 7.

A Cartesian system of coordinates consists of a reference point O and three
mutually orthogonal directions &, ¢, £ that provide a basis for displacements
in 3D Euclidean space E3. The position vector » = OP of point P can then be
specified in spherical, cylindrical or cartesian form as in sect. now for the
position vector r instead of the arbitrary vector a,

’rzrr“:pﬁJrzzf::z::?:er'ngzﬁ, (23)

from which we deduce that

= P COS
p=VE+Z o {x peose (24)

y = psing

=rsinf
r=VR2+2 o {” (25)
z=rcost

and we can eliminate p to obtain

x =rsinfcosp

T:\/m & y=rsinfsingp (26)

z=rcost
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We can also deduce the expression for the direction vectors p and # in terms of
the cartesian directions &, g, 2

p=cospd+sinpi, 7 =sinf p+ cosh 2. (27)

We refer to these as hybrid representations using spherical coordinates (6, )
with cartesian direction vectors, to distinguish them from the full cartesian
expressions

rT+yYY f_x:f:—&—y'g—i-zﬁ

p= e
Va2 +y? Va2 +y? + 22

Note that # is the angle between £ and r (called the polar or zenith or in-
clination angle, depending on the context) while ¢ is the azimuthal angle about
the z axis, the angle between the (£, ) and the (£,7) planes. The distance to
the origin is r while p is the distance to the z-axis. This is the physics conven-
tion corresponding to ISO 80000-2 (International Standards Organization) that
has been used for many decades in mathematical physics. American calculus
teachers often reverse the definitions of # and ¢, confusing many engineering
and physics students.

The unit vectors &, g, 2 form a basis for 3D Euclidean vector space, but p
and 2 do not, and # does not either. The cartesian basis &, ¢, £ consists of
three fixed and mutually orthogonal directions independent of P, but p and #
depend on P, each point has its own p and #. We will construct and use full
cylindrical and spherical orthogonal bases, (g, @, 2) and (7, 0, @) later in vector
calculus. These cylindrical and spherical basis vectors vary with P, or more
precisely with ¢ and 6.

Once a Cartesian system of coordinates, O, &, 9, £, has been chosen,
the cartesian coordinates (x,y,z) of P are the cartesian components of r =
&+ yy + z2. The cylindrical coordinates of P are (p, ¢, z) and its spherical
coordinates are (r,0, ), but cylindrical and spherical coordinates are not vector
components, they are the cylindrical and spherical representations of 7.

(28)

Figure 1.5: A point P in a plane can be specified using bi-angular coordi-
nates (61,62), or two-center bipolar coordinates (r1,r2) or bipolar coordinates
(In(ry/r2), ). The latter bipolar coordinates occur in electrostatics and aero-
dynamics in the definition of source panels.
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Coordinates can be specified in many other ways that do not correspond to

a displacement vector. In 2D for instance, point P can be located by specifying
‘.‘_> .

the angles 6, and 6> between the vector F} Fs and 171?’ and }72?, respectively,
where F; and Fy are two reference points (the foci). In navigation, F; and
Fy would be lighthouses or radio beacons. Alternatively, one could specify
P by specifying the distances m = |F1P| and ro = |F»P| (as in the global
positioning system (GPS) that measures distance from satellites in 3D space).
Bipolar coordinates specify P through the angle o between }ﬁ and F? and
the natural log of the distance ratio In(r1/r2). Bipolar coordinates arise in
various areas of physics that lead to Laplace’s equation, including electrostatics
and aerodynamics. Thus, in general, coordinates of points are not necessarily
the components of vectors.

5.2 Lines and Planes

The line passing through point A that is parallel to the vector a consists of all
points P such that

AP =ta, VieR. (29)

This vector equation ex resg that the vector /ﬁ is parallel to a. In terms of
an origin O we have OP = OA + ﬁ, that is

r=r,+ta, (30)

where r = ﬁ and r, = &i are the position vectors of P and A with respect
to O, respectively. The real number ¢ is the parameter of the line, it is the
coordinate of P in the system of coordinates (A, a) specified by the reference
point A and the reference direction a.

Likewise the equation of a plane passing through A and parallel to the vectors
a and b consists of all points P such that

ﬁzsathb, Vs, t € R (31)
or with respect to the origin O:
r=r,+sa+tb. (32)

This is the parametric vector equation of that plane with parameters s, ¢, that
are the coordinates of P in the system of coordinates specified by A, a, b.

Exercises

1. Pick two vectors a, b and some arbitrary point A in the plane of your
sheet of paper. If ﬁ = aa + (b, sketch the region where B can be if: (i)
a and § are both between 0 and 1, (ii) |8| < |a] < 1.
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6

. Let 74 and rp be the position vectors of points A and B, respectively

and consider all points 7 = (ar4 + Srp)/(a+ B) for all real « and 8 with
a+ B # 0. Do these points lie along a line or a plane?

. Given three points P;, Py, P; in R3, what are the coordinates of the

—
midpoints of the triangle with respect to P; and the basis P, Py, Py P37

. Sketch the coordinates curves, the curves along which the coordinates are

constant, in 2D for (1) cartesian coordinates, (2) polar coordinates (p, ¢)
(often denoted (r, ) in 2D), (3) Biangular coordinates (61, 605), (4) Biradial
coordinates (r1,72), (5) Bipolar coordinates («, In(ry/rs2)).

. Show that the line segment connecting the midpoints of two sides of a

triangle is parallel to and equal to half of the third side using methods of
plane geometry and using vectors.

. Show that the medians of a triangle intersect at the same point, the cen-

troid G, which is 2/3 of the way down from the vertices along each median
(a median is a line that connects a vertex to the middle of the opposite
side). Do this in two ways: (1) using both plane geometry and (2) using
vector methods.

—
. Given three points A, B, C, not co-linear, find a point X such that X A+

ﬁ + ﬁ = 0. Show that the line through A and X cuts BC at its
mid-point. Deduce similar results for the other sides of the triangle ABC
and therefore that X is the point of intersection of the medians. Sketch.

[Hint: ﬁ:ﬂ—kﬁ,X =]

. Given four points A, B, C, D not co-planar, find a point X such that

ﬂ—i—ﬁ—%—ﬁ—&-ﬁ = 0. Show that the line through A and X intersects
the triangle BC'D at its center of area. Deduce similar results for the other
faces and therefore that the medians of the tetrahedron ABC D, defined as
the lines joining each vertex to the center of area of the opposite triangle,
all intersect at the same point X which is 3/4 of the way down from the
vertices along the medians. Visualize. [Hint: solve previous problem first,
of course.]

Dot Product

The geometric definition of the dot product of vectors in 3D Euclidean space is

’a~béabcost9, (33)

where a = |a|, b = |b| are the magnitudes of a and b, respectively, and 6 is
the angle between the vectors a and b, with 0 < 8 < w. The dot product is
also called the scalar product since its result is a scalar, or the inner product



©F. Waleffe, Math 321, 2016/1/18 15

in linear algebra (where the fundamental data structure is the ‘matrix’ and the
dot product is done over the ‘inner indices’).

The dot product is a real number such that a-b = 0 iff @ and b are orthogonal
(perpendicular), that is when 6 = 7/2 if |a| and |b| are not zero. The 0 vector is
considered orthogonal to any vector. The dot product of any vector with itself
is the square of its length

a-a=a’=lal’ (34)

The dot product is directly related to the perpendicular projections of b onto a
and a onto b. The latter are, respectively,

b b
0 a
a bH a
by =bcosba # a| = acosfb (35)

where @ = a/|a| and b = b/|b| are the unit vectors in the a and b directions,
respectively. While the perpendicular projections are not equal, a-b # a - b the
dot product does commute a-b = b-a and has the fundamental property that

a-b:a-bH:aH-b. (36)

In physics, the work W done by a force F' on a particle undergoing the
displacement £ is equal to distance ¢ times F) = F - £, but that is equal to the

total force F' times £ = £ - 13',

W =F/(=Fl(=F-&

Parallel and Perpendicular Components

We often want to decompose a vector b into vector components, b and b,
parallel and perpendicular to a vector a, respectively, such that b = b + b
with

b-
by=(b-a)a=——a
a-a ‘a (37)
bL—bfb”—bf(b a)d:bf—a
a-a

Properties of the dot product

The dot product has the following properties:
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1. a-b=b-a, b

2. a-a>0, a-a=0&a=0,

3. (a-b)?<(a-a)(b-b) (Cauchy-Schwarz) 9 0.
4. (aa+pb)-c =a(a-c)+p8(b-c) (distributivity) l

The first three properties follow directly from the geometric definition. To verify
the distributive property, first, show that (aa) - ¢ = a(a - ¢). This is left as an
exercise (consider both & > 0 and o < 0). Next, show that (a+b)-¢ = a-c+b-c.
Note that ¢ = cé is the key reference direction. Let a +b £ s = €+ s then
(a+b)-c=s-c = sc. Likewise, a = qé+a_ witha-c=ajcand b = bjé+by
with b- ¢ = bjjc. Thus verifying that (a +b)-c = a-c+ b c is equivalent to
verifying that s = a) + . This follows directly from s = s é+ s La+b=
aHé—i— a| + bHé—l- b, that is
(SH —q —bH)é:aJ_"‘bJ_ — 8|

but vectors parallel to ¢ cannot add up to vectors perpendicular to ¢ unless
both sides are zero. Thus

SHZGH—I—I)” and s, =a, +b,.

The distributivity property (also called multi-linearity in mathematics) is a
fundamental algebraic property of the dot product. It allows us to deduce that
a-b=(a,&+ayg+a,2) (by® +b,g+b,2) (33)

= agzby + ayby +a.b,

in terms of cartesian components for a and b, since £ -9y =0, -2 = 0 and
2z -2 = 0. That result is the standard definition of dot product in R?
but the geometric definition is more general. For an arbitrary basis a1, as, as,
expanding a vector v as v = v1a1 + v2as + v3as, the distributivity property of
the dot product yields
v-v =0} (a;-a;)+v3(as-az)+v3 (az - asz)

+ 20102 (a1 - a2) + 2vav3 (@2 - a3) + 2v3vy (a3 - ay) (39)

# vl + v 403,
In matrix notation, this reads

a;-a; a;-az aj-as

U1
vov= [vl Vg vg] as a1 Q-G Go-a3z| |V (40)
U3
asz-a; az-az ag-asg
while in index notation, this is
VU =005 G55 (41)

with implicit sums over the repeated i and j indices, where g;; La,- a; = gj
is the metric. Matrix and index notations are discussed later in these notes.
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Exercises

1.

10.

11.

12.

A skier slides down an inclined plane with a total vertical drop of h, show
that the work done by gravity is independent of the slope. Use F' and £’s
and sketch the geometry of this result.

. Sketch the solutions of a - € = «, where a and « are known.

Sketch ¢ = a + b then calculate ¢- ¢ = (a + b) - (a + b) and deduce the
‘law of cosines’.

Show that a, = a — (a-7)f is orthogonal to 7, V a. Sketch.

. If ¢ = a + b show that ¢; = a, + b, (defined in previous exercise).

Interpret geometrically.

B is a magnetic field and v is the velocity of a particle. We want to
decompose v = v + v where v is perpendicular to the magnetic field
and v is parallel to it. Derive vector expressions for v, and v).

Show that the three normals (or heights, or altitudes) dropped from the
vertices of a triangle perpendicular to their opposite sides intersect at the
same point, the orthocenter H.

Three points A, B, C in 3D space are specified by their cartesian coor-
di_n)ates. Show that the three equations zﬁ -CH = 0, B? - /ﬁ =0,
CA- ﬁ = 0, are not sufficient to find the coordinates of H. Explain.

. Three points A, B, C in 3D space are specified by their cartesian coor-

dinates. Derive the algorithm to compute the coordinates of the point H
that is the intersection of the heights.

A and B are two points on a sphere of radius R specified by their longitude
and latitude. What are longitude and latitude? Draw clean sketches and
explain. Find the shortest distance between A and B, traveling on the
sphere. [If O is the center of the sphere consider O—1>4 . O? to determine
their angle].

Consider v(t) = a+1tb where ¢t € R and a, b are arbitrary constant. What
is the minimum |v| and for what t? Solve two ways: (1) geometrically and
(2) using calculus.

Prove that the point of intersection O of the perpendicular bisectors of
any two sides of a triangle also lies on the perpendicular bisector of the
3rd side and that point is the center of a circle that passes through all
three vertices of the triangle. That point O is called the circumcenter.
[Hint: this is most easily done with methods from plane geometry].
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13. In an arbitrary triangle, let O be the circumcenter and G be the cen-
troid. Consider the point P such that (ﬁ = 20@. Show that P is the
orthocenter H, hence O, G and H are on the same line called the Fuler
line.

7 Orthonormal bases

Given an arbitrary vector v and three non co-planar vectors a1, as and as in
[E3, you can find the three (signed) scalars v;, vy and vz such that

vV =v1a1 +v20a2 + vV3as

by parallel projections (sect. . The scalars v1, vo and vs are the components
of v in the basis a1, as, a3. Finding those components is simpler if the basis is
orthogonal, that is if the basis vectors a1, as and a3 are mutually orthogonal,
in which case a; - a3 = as - a3 = a3z -a; = 0. For an orthogonal basis, a
projection parallel to ay say, is a projection perpendicular to as and as, but a
perpendicular projection is a dot product. In fact, we can forget geometry and
crank out the vector algebra: take the dot product of both sides of the equation
v = v1 a1 + V3 as + v3 a3 with each of the 3 basis vectors to obtain

a; -v as v as - v

Vg = —, vz =

v = s .
asz - as as - as

ai - a; ’

An orthonormal basis is even better. That’s a basis for which the vectors
are mutually orthogonal and of unit norm. Such a basis is often denotedﬂ ey,
es, e3. Its compact definition is

where 4,7 = 1,2,3 and §;; is the Kronecker symbol, §;; =1 if i = j and 0 if
i # .

The components of a vector v with respect to the orthonormal basis eq, e,
e; in E3 are the real numbers vy, va, vs such that

3
vV =vi1€e1 + vges + v3zez = Vi€;
2 3

v, =e;-v, Vi=123.

2Forget about the notation #, j, k for cartesian unit vectors. This is 19th century notation,
it is unfortunately still very common in elementary courses but that old notation will get in
the way if you stick to it. We will NEVER use 1, j, k, instead we use (&, 9, £) or (e1, ez, e3)
or (eq,ey,e;) to denote a set of three orthonormal vectors in 3D euclidean space. We will
soon use indices 4, j and k (next line already!). Those indices are positive integers that can
take all the values from 1 to n, the dimension of the space. We spend most of our time in 3D
space, so most of the time the possible values for these indices i, j and k are 1, 2 and 3. They
should not be confused with those old orthonormal vectors %, j, k from elementary calculus.
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If two vectors a and b are expanded in terms of ey, ez, es, that is
a = aie; + azez + ases, b =bie1 + baes + bses,

use the distributivity properties of the dot product and the orthonormality of
the basis to show that

a-b=aib + asbs + asbs. (44)

> Show that this formula is valid only for orthonormal bases.

One remarkable property of this formula is that its value is independent of
the orthonormal basis. The dot product is a geometric property of the vectors
a and b, independent of the basis. This is obvious from the geometric definition
but not from its expression in terms of components . If e1, es, e3 and
e1’, ex’, ez’ are two distinct orthogonal bases then

o o rr
a = aje; + azes + azes = a;€1 + asey + azes

but, in general, the components in the two bases are distinct: a1 # af, az # ab,
as # a, and likewise for another vector b, yet

a-b= a1b1 + a2bg + a3b3 = a'lb’l + CL/Qb/Q + agbé (45)

The simple algebraic form of the dot product is invariant under a change of
orthonormal basis.

Exercises

1. Given the orthonormal (cartesian) basis (e, ez, e3), consider a = aje; +
ases, b = biey + boes, v = vie; + voes. What are the components of v
(i) in terms of @ and b? (ii) in terms of @ and b, where a-b; = 07

2. If (e1,eq,e3) and (e}, eh, es) are two distinct orthogonal bases and a
and b are arbitrary vectors, prove but construct an example that
a1by + 2a2bs + 3agbs # aiby + 2abbl, 4+ 3a4by in general.

3. fw= Z§:1 w;e;, calculate e; - w using ) notation and .

4. Why is not true that e; - Zf’zl w;e; = 2?21 wi(e; - e;) = 2?21 w;0;; =
wy + wg + wz?

5 Ifv = Z?:1 v;e; and w = Zf’zl w;e;, calculate v - w using > notation

and .

6. If v = Zle via; and w = Zle w;a;, where the basis a;, i = 1,2,3, is
not orthonormal, calculate v - w.

7. Caleulate (i) Yo7, 0ija;, (i) Yooy Yo oy ijasbs, (i) Yo7, 655
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8 Dot product and norm in R" (Optional)

Dot product in R”

The geometric definition of the dot product is great for oriented line seg-
ments as it emphasizes the geometric aspects, but the algebraic formula is
very useful for calculations. It’s also the way to define the dot product for other
vector spaces where the concept of ‘angle’ between vectors may not be obvious
e.g. what is the angle between the vectors (1,2,3,4) and (4,3,2,1) in R*?! The
dot product (a.k.a. scalar product or inner product) of the vectors « and y in
R™ is defined as suggested by :

T-YE Ty +Toys + o+ Toyn. (46)

The reader will verify that this definition satisfies the fundamental properties
of the dot product (sect. @ (commutativity @ - y = y - @, positive definiteness
x-x > 0 and multi-linearity (or distributivity) (a1@1 + @) -y = a1 (21 - y) +
(6% (.’1}2 . y)

To show the Cauchy-Schwarz property, you need a bit of Calculus and a
classical trick: consider v = « + Ay, then

FAN2v-v=)Ny - y+2\z - y+z x>0

For given, but arbitrary,  and y, this is a quadratic polynomial in A\. That
polynomial F'(\) has a single minimum at A\, = —(z-y)/(y-y). That minimum
value is

2
FA)=(z-x) — (@-y) >0
(y-y)
which must still be positive since F' > 0, VA, hence the Cauchy-Schwarz inequal-
ity.

Once we know that the definition satisfies Cauchy-Schwarz, (z - y)? <
(x - x) (y-y), we can define the length of a vector by |x| = (x - 2)'/? (this is
called the Fuclidean length since it corresponds to length in Euclidean geometry
by Pythagoras’s theorem) and the angle § between two vectors in R™ by cos =
(x-y)/(Jz| ly|). A vector space for which a dot (or inner) product is defined is
called a Hilbert space (or an inner product space).

The bottom line is that for more complex vector spaces, the dot (or scalar or
inner) product is a key mathematical construct that allows us to generalize the
concept of ‘angle’ between vectors and, most importantly, to define ‘orthogonal
vectors’.

Norm of a vector

The norm of a vector, denoted ||a|, is a positive real number that defines its size
or ‘length’ (but not in the sense of the number of its components). For displace-
ment vectors in Euclidean spaces, the norm is the length of the displacement,
llal] = |a| i.e. the distance between point A and B if AB = a. The following
properties are geometrically straightforward for length of displacement vectors:
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1. Jla]]>0and ||a]| =0« a=0,
2. |eall = |al[lall,
3. |la+b|| <|a| + bl (triangle inequality)

Draw the triangle formed by a, b and a + b to see why the latter is called the
triangle inequality. For more general vector spaces, these properties become the
defining properties (azioms) that a norm must satisfy. A vector space for which
a norm is defined is called a Banach space.

Norms for R”

For other types of vector space, there are many possible definitions for the norm
of a vector as long as those definitions satisfy the 3 norm properties. In R", the
p-norm of vector x is defined by the positive number

1/p
I@llp 2 (loa” + 2ol + -+ [2al?) (47)

where p > 1 is a real number. Commonly used norms are the 2-norm |||z
which is the square root of the sum of the squares, the l-norm |x||; (sum of
absolute values) and the infinity norm, |||/, defined as the limit as p — oo of
the above expression.

Note that the 2-norm |||z = (- 2)'/? and for that reason is also called the
Euclidean norm. In fact, if a dot product is defined, then a norm can always
be defined as the square root of the dot product. In other words, every Hilbert
space is a Banach space, but the converse is not true.

Exercises
1. So what is the angle between (1,2,3,4) and (4, 3,2,1)?
2. Can you define a dot product for the vector space of real functions f(x)?

3. Find a vector orthogonal to (1,2,3,4). Find all the vectors orthogonal to
(1,2,3,4).

4. Decompose (4,2,1,7) into the sum of two vectors one of which is parallel
and the other perpendicular to (1,2,3,4).

5. Show that cos nz with n integer, is a set of orthogonal functions on (0, 7).
Find formulas for the components of a function f(x) in terms of that
orthogonal basis. In particular, find the components of sinx in terms of
the cosine basis in that (0, 7) interval.

Show that the infinity norm ||z|e = max; |z;]|.
Show that the p-norm satisfies the three norm properties for p = 1,2, co.

Define a norm for C".

© »® N>

Define the 2-norm for real functions f(z) in 0 < z < 1.
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9 Cross Product

The cross product, also called the vector product or the area product, is defined
as

laxb2An=absinfn (48)

where a = |al|, b = |b| and 6 is the angle between a and b, with 0 < 8 < 7. The
cross product is a vector whose

e magnitude is the area A of the parallelogram with sides a and b,
e direction 71 is perpendicular to both a and b, with (a, b, ) right handed,

Since the area of a parallelogram is base x height and there are two ways to
pick a base and a height, the geometric definition yields the fundamental cross
product identity

axb=axb; =a; xb (49)

, where b; = b— (b-a)a is the vector component of b perpendicular to a and
likewise a; = a — (a - 5)(3 is the vector component of a perpendicular to b (so
the meaning of L is relative).

The cross-product has the following properties:

1. axb=-bxa, (anti-commutativity) = axa =0,

2. (aa) xb=a x (ab) = ala x b),

3. ec¢x(a+b)=(cxa)+(cxb)

The first 2 properties are geometrically obvious from the definition. To show
the third property (distributivity) let ¢ = |¢|é and get rid of |¢| by prop 2. All
three cross products give vectors perpendicular to ¢ and furthermore from
wehave cxa=cxa ,cxb=cxb) andex (a+b) =cx(a+b),, where L
means perpendicular to ¢, a; = a—(a-é)é, etc. So the cross-products eliminate
the components parallel to ¢ and all the action is in the plane perpendicular to
c. To visualize the distributivity property it suffices to look at that plane from

é (a+b)L

the top, with ¢ pointing out. Then a cross product by é is equivalent to a
rotation of the perpendicular components by 7/2 counterclockwise. Since a, b
and a + b form a triangle, their perpendicular projections a, b, and (a+b)
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form a triangle and therefore ¢ X a, ¢ x b and ¢ x (a + b) also form a triangle,
demonstrating distributivity.
The distributivity property yields the cartesian formula for the cross product

axb=(a,&+ayg+a,2) X (by& +b,g+b,2)

50
= &(ayb, — a.by) + Y(a.by — azb.) + 2(azby — ayb,) (50)

since
EXYP=2 YXZ2=%, EZ2XE=9 (51)

and
E=9X2 GY=2x& Z2=Ix47. (52)

Note that each of these expressions is a cyclic permutation of the previous one

(x,y,2) = (y,2,2) = (2,2,y)

and this enables us to easily reconstruct formula — or any one of its com-
ponents, without having to use our right hand to figure out every cross product
with the right hand rule. We can figure them out simply with that cyclic (even)
or acyclic (odd) permutation rule.

That cartesian expansion of the cross product is often remembered using
the formal ‘determinants’

8 9 2 £ ap b,
ag ay a; |=| Y ay by |. (53)
be b, b 2 a. b,

however that mnemonic trick is not emphasized in this course since we will
emphasize the geometric meaning of determinants. The expressions are
not true determinants since they mix geometric vectors with numbers, it is just
a mnemonic trick to reconstruct the vector algebra formula . The cyclic
permutation rules , , enable reconstruction of that formula just as easily
without the need to muddle concepts.

Double cross product (‘Triple vector product’)

Double cross productﬂ occur frequently in applications (e.g. angular momentum
of a rotating body) directly or indirectly (see the discussion below about mirror
reflection and cross-products in physics). An important special case of double
cross products is

(axb)xa=ax(bxa)=(a-a)by (54)

where b, is the vector component of b perpendicular to a. The identity
easily follows from the geometric definition of the cross product since a x b =

3The double cross product is often called ‘triple vector product’, there are 3 vectors but
only 2 vector products!
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a x b, that demonstration is left as an exercise. The general double cross
products obey the following identity

(axb)xc=(a-¢c)b—(b-¢c)a,

ax(bxec)=(a-c)b—(a-b)ec. (55)

thus in general
(axb)xec#ax(bxec),

contrary to what might suggest. The identities follow from each other
after some manipulations and renaming of vectors, but we can remember both
at once as:

middle vector times dot product of the other two minus
other vector in parentheses times dot product of the other twoﬁ

To verify the identities consider the intrinsic orthogonal basis a, b, , (a xb).
In that basis

a-b a-c b, -c
a = a, b=——a+b,, c= =
a-a

b b
a~aa b b, L +7(axb)

for some ’yE| Now a x b = a x b, and substituting for ¢ from the (a,b, ,a x b)
expansion and using yields

(axb)xe=(a-c)b, —(by - c)a,

but
(a-¢)by —(by -c)a=(a-c)b—(b-c)a

since b = aa + b, and (a - ¢)(aa) — (aa - ¢)a = 0. Thus is true for all
a,b, c.

Orientation of Bases

If we pick an arbitrary unit vector e;, then a unit vector ey orthogonal to ey,
there are two opposite unit vectors es orthogonal to both e; and es. One choice
gives a right-handed basis (i.e. e1 in right thumb direction, e in right index
direction and e3 in right major direction). The other choice gives a left-handed
basis. These two types of bases are mirror images of each other as illustrated in
the following figure, where e;’ = e; point straight out of the paper (or screen).

4This is more useful than the confusing ‘BAC-CAB’ rule for remembering the 2nd. Try
applying the BAC-CAB mnemonic to (b X ¢) X a for confusing fun!
5y = (a x b)-c/la x b
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ey’ 3 ()
|
|
l

63, : €3

|

e’ | (]

Left-handed 1 Right-handed

marror

This figure reveals an interesting subtlety of the cross product. For this par-
ticular choice of left and right handed bases (other arrangements are possi-
ble of course), e;’ = e; and es’ = ey but es’ = —e3 so e; X es = ez and
e;’ X es’ = e3 = —e3’. This indicates that the mirror image of the cross-
product is not the cross-product of the mirror images. On the opposite, the
mirror image of the cross-product es’ is minus the cross-product of the images
e1’ x es’. We showed this for a special case, but this is general, the cross-product
is not invariant under reflection, it changes sign. Physical laws should not de-
pend on the choice of basis, so this implies that they should not be expressed
in terms of an odd number of cross products. When we write that the velocity
of a particle is v = w x 7, v and r are ‘good’ vectors (reflecting as they should
under mirror symmetry) but w is not quite a true vector, it is a pseudo-vector.
It changes sign under reflection. That is because rotation vectors are themselves
defined according to the right-hand rule, so an expression such as w X r actu-
ally contains two applications of the right hand rule. Likewise in the Lorentz
force F' = qv x B, F and v are good vectors, but since the definition involves
a cross-product, it must be that B is a pseudo-vector. Indeed B is itself a
cross-product so the definition of F' actually contains two cross-products.

The orientation (right-handed or left-handed) did not matter to us before
but, now that we’ve defined the cross-product with the right-hand rule, we’ll
typically choose right-handed bases. We don’t have to, geometrically speaking,
but we need to from an algebraic point of view otherwise we’d need two sets of
algebraic formula, one for right-handed bases and one for left-handed bases. In
terms of our right-handed cross product definition, we can define a right-handed
basis by

€] X ez = e3 = ey X ez = ey, €3 X e; = ey, (56)

= €9 X e} = —e3, €] Xez3 = —ey, e3Xey=—e. (57)

Note that are cyclic rotations of the basis vectors (1,2,3) — (2,3,1) —
(3,1,2). The orderings of the basis vectors in correspond to a-cyclic ro-
tations of (1,2,3). For 3 elements, a cyclic rotation corresponds to an even
number of permutations. For instance we can go from (1,2,3) to (2,3,1) in
2 permutations (1,2,3) — (2,1,3) — (2,3,1). The concept of even and odd
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number of permutations is more general. But for three elements it is useful to
think in terms of cyclic and acyclic permutations.

If we expand a and b in terms of the right-handed e, es, es, then apply
the 3 properties of the cross-product i.e. in compact summation form

3 3 3 3
a:Zaiei, b:ijej, #aXb:ZZ al—bj (eixej),
i—1 j=1

i=1 j=1
we obtain
axb= 61(a2b3 — a3b2) + 62(a3b1 — a1b3) + 63(a1b2 — a2b1)7 (58)

which, again, we can reconstruct using the cyclic permutations of

Exercises
1. Show that |a x b]?> + (a - b)? = |a|? |b|?, Va,b.

2. A particle of charge ¢ moving at velocity v in a magnetic field B experi-
ences the Lorentz force F' = gqv x B. Show that there is no force in the
direction of the magnetic field and that the Lorentz force does no work on
the particle. Does it have any effect on the particle?

3. Sketch three vectors such that a+b+c = 0, show that axb =bxc = cxa
in two ways (1) from the geometric definition of the cross product and (2)
from the algebraic properties of the cross product. Deduce the ‘law of
sines’ relating the sines of the angles of a triangle and the lengths of its
sides.

4. Consider any three points P, P», P53 in 3D Euclidean space. Show that

%(7’1 X 79 4+ T2 X T3+ T3 X 71) is a vector whose magnitude is the area of
the triangle and is perpendicular to the triangle in a direction determined

by the ordering P;, P», P3 and the right hand rule.

5. Consider an arbitrary non-self intersecting quadrilateral in the (z,y) plane
with vertices Py, P», P3, Py. Show that %(7‘1 XTy+7To XT3+7T3 X7y +
r4 X 1) is a vector whose magnitude is the area of the quadrilateral and
points in the £2 direction depending on whether Py, P5, Ps, P, are oriented
counterclockwise, or clockwise, respectively. What is the compact formula
for the area of the quadrilateral in terms of the (z,y) coordinates of each
point? Is the vector formula still valid if the points are in a plane but not
the (z,y) plane?
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10.

11.

12.

13.

14.
15.

16.
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. Four arbitrary points in 3D Euclidean space E3 are the vertices of an
arbitrary tetrahedron. Consider the area vectors perpendicular pointing
outward for each of the faces of the tetrahedron, with magnitudes equal
to the area of the corresponding triangular face. Make sketch. Show that
the sum of these area vectors is zero.

. Point P rotates about the axis parallel to a passing through point A at
angular velocity w. Derive a vector formula for the velocity of P. Make
sketches to illustrate your derivation.

. Vector c is the (right hand) rotation of vector b about ez by angle ¢. Find
the cartesian components of ¢ in terms of the components of b.

. Vector c is the (right hand) rotation of vector b about a by angle ¢. Show
that

’C:b”‘i_bj_COSQO"‘(&XbJ_)SinSO.‘ (60)

Find the cartesian components of the vector ¢ obtained by rotating b =
(b1, ba,b3) about @ = (a1, as,az) by an angle «. What is ¢ if a = (3,2, 1),
b=1(2,3,4) and o = 7/37 [Hint: consider the intrinsic orthogonal basis
a, b, and @ x b, and obtain the vector solution first, then translate into
cartesian components.]

Point P is rotated by angle ¢ about the axis parallel to a that passes
through point A. Derive a vector formula for the new position of P. Make
sketches to illustrate your derivation.

True or false: v L (a X b) & v = z1a + x2b for some real x; and xs.
Explain.
Show by (1) cross product geometry and (2) cross product algebra that
all the vectors X such that @ x X = b have the form

bxa

X=aa+—, Va€eR
lall

Show the Jacobi identity: a x (bx¢)+bx (e¢xa)+cx(axb)=0.

If n is any unit vector, show algebraically and geometrically that any
vector a can be decomposed as

a:(ﬁ'a)ﬁqtﬁx(axﬁ)za”JraL.‘ (61)

The first component is parallel to 72, the second is perpendicular to 7.

A left-handed basis e1’, e2’, es’, is defined by e;"-e;/ = ¢;; and e1’ x €3’ =
—e3’. Show that (e;’ x e;’)- e, has the opposite sign to the corresponding
expression for a right-handed basis, Vi, 7,k (the definition of the cross-
product remaining its right-hand rule self). Thus deduce that the formula
for the components of the cross-product in the left handed basis would all
change sign.
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17.
18.

19.

Show from the geometric definition of the cross-product.

Prove using the intrinsic right-handed orthonormal basis e; = a/|a|,
e; = (a x b)/|la x bl and es = e5 x e;. Then a = aje;, b =bre; + boes,
c = cie1 + caey + czes. Visualize and explain why this is a general result
and therefore a proof of the double cross product identity.

Magnetic fields B are created by electric currents according to the Ampere
and Biot-Savart laws. The simplest current is a moving charge. Consider
two electric charges ¢; and g2 moving at velocity vy and vs, respectively.
Assume along the lines of the Biot-Savart law that the magnetic field
induced by ¢1 at gs is

_ fo @11 X (P2 —T1)

By = -
2 47 |T’2 — ’I"1|‘3

(62)
where r; and 74 are the positions of g; and gz, respectively, and pg is the
magnetic constant. The Lorentz force experienced by ¢s is F'o = qav2 X Bs.
What is the corresponding magnetic field and Lorentz force induced by go
at ¢1?7 Do the forces satisfy Newton’s action-reaction law?
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10 Index notation

10.1 Levi-Civita symbol

We have used the Kronecker delta d;; to express all the 9 dot products in
a very compact form as e; - e; = §;;. There is a similar symbol, €1, the Levi-
Clivita symbol (also known as the alternating or permutation symbol), defined
as

1 if (i,7,k) is an even permutation of (1,2,3),

€k =4 —1 if (4,4,k) is an odd permutation of (1,2, 3), (63)
0 otherwise,
or, explicitly: €123 — €231 — €312 = 1 and €213 — €132 = €321 — 71, all other

€;j5 = 0. For 3 distinct elements, (a,b, ¢) say, an even permutation is the same
as a cyclic permutation — for example, the cyclic permutation (a, b, c) — (b, ¢, a)
is equivalent to the two permutations (a,b,c) — (b,a,¢) — (b,c,a). Thus
the even permutations of (1,2,3) are the cyclic permutations (1,2,3), (2,3,1),
(3,1,2) and the odd permutations are the acyclic permutations (2,1, 3), (3,2, 1),
(1,3,2). This implies that

€ijk = €jki = €kij Vi, j, k (64)

(why?). The €;;; symbol provides a compact expression for the components of
the cross-product of right-handed basis vectors:

’ (ei x €;) - ex = €. ‘ (65)

but since this is the k-component of (e; x e;) we can also write

3
(e,» X ej) = Zeijkek. (66)
k=1

Note that there is only one non-zero term in the latter sum (but then, why can’t
we drop the sum?). Verify this result for yourself.

Sigma notation, free and dummy indices

The expansion of vectors a and b in terms of basis e1,es,e3, a = aje; + ases +
ases and b = byeg + baes + bses, can be written compactly using the sigma (%)

notation
3 3
a = Z a;e;, b= Z biei. (67)
i=1 i=1

We have introduced the Kronecker symbol ¢;; and the Levi-Civita sym-
bol €;; in order to write and perform our basic vector operations such as dot
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and cross products in compact forms, when the basis is orthonormal and right-

handed, for instance using and

3 3 3.3 3
) TSR o ST Y A YR
i=1

i=1 j=1 i=1 j=1

3 3 3 3 3
axb= ZZaibj €e; X €5 :Zzzaibjeijk €y (69)
i=1j=1 i=1 j=1k=1
Note that i and j are dummy or summation indices in the sums and (68),
they do not have a specific value, they have all the possible values in their range.
It is their place in the particular expression and their range that matters, not
their name

3 3 3 3
a = E a;e; = E a;€; = E ap€r = -+ - 7é E aie; (70)
i=1 Jj=1 k=1 k=1

Indices come in two kinds, the dummies and the free. Here’s an example

3
e -(a-bc= Zajbj i, (71)
j=1

here j is a dummy summation index, but i is free, we can pick for it any value
1,2,3. Freedom comes with constraints. If we use 7 on the left-hand side of the
equation, then we have no choice, we must use i for ¢; on the right hand side.
By convention we try to use i, j, k, [, m, n, to denote indices, which are positive
integers. Greek letters are sometimes used for indices.

Mathematical operations impose some naming constraints however. Al-
though, we can use the same index name, i, in the expansions of a and b,
when they appear separately as in (67)), we cannot use the same index name
if we multiply them as in and (69). Bad things will happen if you do, for
instance

3 3 3
axb= <Z aiei> X <Z blez> = Zaibi e, Xe = 0 (WRONG') (72)
=1 =1 =1

10.2 Einstein summation convention

While he was developing the theory of general relativity, Einstein noticed that
many of the sums that occur in calculations involve terms where the summation
index appears twice. For example, i appears twice in the single sums in (67)), ¢
and j appear twice in the double sum in and 7, j and k each appear twice in
the triple sum in . To facilitate such manipulations he dropped the ¥ signs
and adopted the summation convention that a repeated index implicitly
denotes a sum over all values of that index. In a letter to a friend he
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wrote “I have made a great discovery in mathematics; I have suppressed the
summation sign every time that the summation must be made over an index
which occurs twice”. If it had been an email, he would have punctuated it with
)

Thus with Einstein’s summation convention we write the sum aj;e; +ases +
azes simply as a;e; since the index ¢ is repeated

a=a;e; = aje; + aseq + ases. (73)

The name of the index does not matter if it is repeated — it is a dummy or
summation index, thus

G;€; = a;€; = L€ = A1€] = -+

and any repeated index i, 7, k, [, ...implies a sum over all values of that index.
With the summation convention, the sum in is written simply as

a-b= aibi (74)

where a;b; = a1b; + asbs + agbs is a sum over all values of 4, while the triple
sum in reduces to the very compact form

axb= eijkaibjem (75)

which is a sum over all values of i, j and k and would have 33 = 27 terms,
however €;;;, = 0 for 21 of those terms, whenever an index value is repeated in
the triplet (¢,7,k). Note that these two index expressions for a - b and a x b
assume that the underlying basis {ej, es,es}, is a right handed orthonormal
basis.

The summation convention is a very useful and widely used notation but
you have to use it with care — not write or read an ¢ for a j or a 1 for an I,
for examples — and there are cases where it cannot be used. Some basic rules
facilitate manipulations.

Dummy repetition rule: Indices can never appear more than twice in the
same term, if they are, that’s probably a mistake as in (72]),

a-b=(a;e;)- (bie;) =777
where i appears 4 times in the same termEI However
a; +b; +¢; +d;
= (a; + by +c1 +dy, ag+ by +co+da, a3+ bz +c3 +d3)

is OK since the index i appears in different terms and is in fact the index form
for the vector sum a + b + ¢ + d. In contrast, the expression

ai—|—bj—|—c;€

6 Terms are elements of a sum, factors are elements of a product.
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does not make vector sense since ¢, j, k are free indices here and there is no
vector operation that adds components corresponding to different basis vectors
— free indices in different terms must match. Going back to that dot product
a - b in index notation, we need to change the name of one of the dummies, for
example 7 — j in the b expansion, and

a-b= (aiei) . (bjej) = aibj €; - ej = aibjéij.

Substitution rule: if one of the indices of §;; is involved in a sum, we substi-
tute the summation index for the other index in §;; and drop ;;, for example

a;0;; = a101; + a202; + a3dz; = a;, (76)

since ¢ is a dummy in this example and J;; eliminates all terms in the sum
except that corresponding to index j, whatever its value, thus a;d;; = a;. If
both indices of §;; are summed over as in the double sum a;b;d;;, it does not
matter which index we substitute for, thus

aibjdij = aibi = Cljbj
and likewise
010k = Opr = Oy = 3, dij€ijk = €k = 0. (77)

Note the result §ix = 3 because k is repeated, so there is a sum over all values
of k and dpp = 911 + 022 + 033 =1+ 1+ 1 =3, not 1. The last result is because
€;;1 vanishes whenever two indices have the same value.

Let’s compute the [ component of a x b from as an exercise. We pick [
because 7, j and k are already taken. The [ component is

e (a X b) = eijkaibjek e = eijkaibjékl = eijlaibj = €lmnambn (78)

what happened on that last step? first, €;;, = exi; because (4,7, k) to (k,,7) is
a cyclic permutation which is an even permutation in 3D space and the value of
€i;x does not change under even permutations. Then 7 and j are dummies and
we renamed them m and n respectively being careful to keep the place of the
indices. The final result is worth memorizing: if v = a x b, the [ component of
v 1S U] = €lmnamby, or switching indices to i, j, k

v=axb << v, = eijkajbk < vV =¢€; eijkajbk. (79)

As an another example that will lead us to a fundamental identity, let’s write
the double cross product identity (a x b) x ¢ in index notation. Let v =a x b
then the i component of the double cross product v x ¢ is €;;,vjck. Now we
need the j component of v = @ x b. Since i and k are taken we use [, m as new
dummy indices, and we have v; = €1, aiby,. So the i component of the double
cross product (a x b) X ¢ is

(a xb) X ¢ = €€ im aibmck. (80)
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Note that j, k, [ and m are repeated, so this expression is a quadruple sum!
According to our double cross product identity it should be equal to the ¢
component of (a-¢)b— (b-c)a for any a, b, c. We want the i component of
the latter expression since i is a free index in , that ¢ component is

(@a-c)b—(b-c)a = (ajc;)b; — (bjcj)a; (81)

wait! isn’t j repeated 4 times? no, it’s not. It’s repeated twice in separate terms
so this is a difference of two sums over j, j is a dummy but 7 is free and must
match in both terms. Since and are equal to each other for any a,
b, c, this should be telling us something about €;;, but to extract that out we
need to rewrite in the form a;b,,c,. How? by making use of our ability
to rename dummy variables and adding variables using §;; and the substitution
rule. Let’s look at the first term in , (ajcj)b;, here’s how to write it in the

form a;b,,c as in :
((lej)bi = (akck)bi = (5lkalck)(6imbm) = 5lk6imalckbm. (82)

Do similar manipulations to the second term in to obtain (bjcj)a; =
0i10kmarCrby, and

€ijk€j1ma1bmCr = (01k0im — 0i10km )1 Crbm, . (83)

Since this equality holds for any a;, ¢k, bm, we must have €;x€jim = (61k0im —
0i10xm ). That’s true but it’s not written in a nice way so let’s clean it up to
a form that’s easier to reconstruct. First note that €;;;, = € since € is
invariant under a cyclic permutation of its indices. So our identity becomes
€iki€jim = (O1k0im — 0i10km ). We've done that flipping so the summation index j
is in first place in both € factors. Now we prefer the lexicographic order (3, j, k)
to (j,k,4) so let’s rename all the indices being careful to rename the correct
indices on both sides. This yields

€ijk€ilm = 0510km — Ojm Ok (84)

This takes some digesting but it is an excellent exercise and example of index
notation manipulations.

The identity is actually pretty easy to remember and verify. First,
€;jk€ilm 1S & sum over ¢ but there is never more than one non-zero term (why?).
Second, the only possible values for that expression are +1, 0 and —1 (why?).
The only way to get 1 is to have (j,k) = (I,m) with j =1 # k = m (why?), but
in that case the right hand side of is also 1 (why?). The only way to get —1
is to have (j, k) = (m,l) with j =m # k =1 (why?), but in that case the right
hand side is —1 also (why?). Finally, to get 0 we need j = k or I = m and the
right-hand side again vanishes in either case. For instance, if j = k then we can
switch j and k in one of the terms and 6;;0km — 0jm0r = 0j10km — Okmbj = 0.

Formula has a generalization that does not include summation over one
index

€ijk€lmn :5il5jm5kn + 5im§jn5kl + 5in5jl5km

85
_5im6jl6kn - 5in5jm5kl - 6il6jn6km ( )
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note that the first line correspond to (3, j, k) and (I, m,n) matching up to cyclic
rotations, while the second line corresponds to (i, 7, k) matching with an odd
(acyclic) rotation of (I, m,n).

Exercises
1. Explain why €1 = €1 = —¢€;i for any integer 14, j, k.
2. Using and Einstein’s notation show that (a x b) - e = €;;xa;b; and

11

(a x b) = €,a:b; e, = €;1a;by €;.

Show that €; €1 = 203 by direct deduction and by application of .
Deduce from .

Let v = (a - b)a yielding v; = A;;b; in a cartesian basis. Find A,;.

Let v = a x b yielding v; = A;;b; in a cartesian basis. Find A;;.

Let v = b — 2(a - b)a yielding v; = A;;b; in a cartesian basis. Find A,;.
What is the geometric relation between v and b?

Let v = (@ x b) x a yielding v; = A;;b; in a cartesian basis. Find A,;.
What is the geometric relation between v and b?

Mixed product and Determinant

A mixed product, also called the box product or the ‘triple scalar product’,is a
combination of a cross and a dot product, (a x b) - ¢, the result is a scalar. We
have already encountered mixed products (e.g. eqn. ) but their geometric
and algebraic properties are so important that they merit their own subsection.

(axb)-c=(bxc)-a=(cxa) b=

signed volume of the parallelepiped a, b, ¢ (86)

axb

i 7
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To derive the fundamental identity , take a and b as the base of the
parallelepiped then a x b = Af is perpendicular to the base and has magnitude
equal to the base area A. The height h of the parallelepiped is simply 7 - ¢,
thus the volume is indeed (a x b) - ¢ = Ah. Signwise, (a x b)-¢ > 0if a, b
and ¢, in that order, form a right-handed basis (not orthogonal in general), and
(a x b) - ¢ < 0 if the triplet is left-handed. Taking b and ¢, or ¢ and a, as
the base, you get the same volume and sign. The dot product commutes, so
(bxc)-a=a-(bxc),yielding the identity

(axb)-c=a-(bxc). (87)

That is nice and easy! we can switch the dot and the cross without changing
the result. In summary, the mixed product is unchanged if we perform a cyclic
permutation of the vectors: u- (v X w) = v - (w x u) or if we swap the dot and
the cross u - (v X w) = (u X v) - w

u-(vxw)= { ’E)u E(wv;(.’l:g

We have shown geometrically. The properties of the dot and cross
products yield many other results such as (a x b)-¢ = —(bx a) - ¢, etc. We can
collect all these results as follows.

A mixed product is a scalar function of three vectors called the determinant

det(a,b,c) = (a x b) - c, (88)

whose value is the signed volume of the parallelepiped with sides a, b, ¢. The
determinant has three fundamental properties

1. it changes sign if any two vectors are permuted, e.g.

det(a, b, c) = —det(b, a, c) = det(b, c, a), (89)

2. it is linear in any of its vectors e.g. V «, d,

det(aa +d, b, c) = adet(a, b, c) + det(d, b, ¢), (90)

3. if the triplet e;, es, es is right-handed and orthonormal then

det(eq, ez, e3) = 1. (91)

You can deduce these from the properties of the dot and cross products as well
as geometrically. Property is a combination of the distributivity properties
of the dot and cross products with respect to vector addition and multiplication
by a scalar. For example,

det(aa +d,b,c) = (ea+d)- (bxc)=a(a-(bxc))+d-(bxc)
=adet(a, b, c) + det(d, b, c).
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From these three properties, you deduce easily that the determinant is zero
if any two vectors are identical (from prop 1), or if any vector is zero (from prop
2 with @ = 1 and d = 0), and that the determinant does not change if we add
a multiple of one vector to another, for example

det(a,b,a) =0,
det(a,0,¢) =0, (92)
det(a + 8b,b, c) = det(a, b, c).

Geometrically, this last one corresponds to a shearing of the parallelepiped, with
no change in volume or orientation.

The determinant determines whether three vectors a, b, ¢ are linearly inde-
pendent and can be used as a basis for the vector space

det(a,b,c) #0 < a,b,c form a basis. (93)

If det(a, b, ¢) = 0 then either one of the vectors is zero or they are co-planar and
a, b, ¢ cannot provide a basis for vectors in E3. This is how the determinant
is introduced in elementary linear algebra, it determines whether a system of
linear equations has a solution or not. But the determinant is much more
than a number that may or may not be zero, it ‘determines’ the volume of the
parallelepiped and its orientation!

The 3 fundamental properties fully specify the determinant as explored in
exercises [f] [6] below. If the vectors are expanded in terms of a right-handed
orthonormal basis, i.e. @ = a;e;, b = bje;, ¢ = cpe; (summation convention),
then we obtain the following formula for the determinant in terms of the vector
components

det(a,b,c) = (a x b) - c = a;bjcr(e; X e;) - ex = €k asbjcy. (94)
Expanding that expression
€ijk aibjck = a1b203 + a2b3€1 + a3b162 - a2b103 - a3b201 - (legCQ, (95)

we recover the familiar algebraic determinants

ap az as ap b1 c
det(a, b, C) = €35k aibjck = b1 b2 b3 = a2 b2 C2 |. (96)
c1 ¢y 3 az bz c3

Note that it does not matter whether we put the vector components along rows
or columns. This is a non-trivial and important property of determinants, that
the determinant of a matrix is the determinant of its transpose (see section on
matrices).

This familiar determinant has the same three fundamental properties ,

7 of course
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1. it changes sign if any two columns (or rows) are permuted, e.g.

a; b by a1
az by ca |=—|ba az c2 ) (97>
a3 bz c3 b3 az «c3

2. it is linear in any of its columns (or rows) e.g. V «, (di,d2,d3),

aay + dl b1 C1 a1 b1 C1 dl b1 C1
aas + d2 b2 Co = Q| a2 b2 co |+ d2 b2 Cc2 |, (98)
aas +ds by c3 az3 by c3 ds by c3

3. finally, the determinant of the natural basis is
1 00
01 0|=1. (99)
0 0 1

You can deduce from these three properties that the determinant vanishes if
any column (or row) is zero or if any two columns (or rows) is a multiple of
another, and that the determinant does not change if we add to one column
(row) a linear combination of the other columns (rows). These properties allow
us to calculate determinants by successive shearings and column-swapping.
There is another explicit formula for determinants, in addition to the €;;,a;:b;ck

formula, it is the Laplace (or Cofactor) expansion in terms of 2-by-2 determi-
nants, e.g.

aq bl C1
az by ¢ |=a 22 EQ —az lb)l il + a3 Zl o, (100)
as by cs 3 €3 3 2
where the 2-by-2 determinants are
a; b
a; b; = a162 — agbl. (101)

This formula is nothing but a - (b x ¢) expressed with respect to a right handed
basis. To verify that, compute the components of (b x ¢) first, then dot with
the components of a. This cofactor expansion formula can be applied to any
column or row, however there are +1 factors that appear. We won’t go into the
straightforward details, but all that follows directly from the column swapping
property (97). That’s essentially the identities a- (bx ¢) =b-(cxa) =---.

Exercises

a; b
az by
area of the parallelogram with sides a = a1e; 4+ ases, b = bie; + boes. It
is positive if a, b, —a, —b is a counterclockwise cycle, negative if the cycle
is clockwise. Sketch (of course).

1. Show that the 2-by-2 determinant = a1bs — agby, is the signed
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10.

11.

12.

13.

The determinant det(a, b, c) of three oriented line segments a, b, ¢ is a
geometric quantity. Show that det(a, b, c) = |a| |b||c|sin ¢ cosé. Specify
¢ and 6. Sketch.

Show that —|a| |b]||c| < det(a,b,c) < |a||b||c|]. When do the equalities
apply? Sketch.

Use properties and to show that
det(aa + Ad, Bb + pe, c) =
afdet(a, b, c) + apdet(a, e, c) + fAdet(d, b, c) + A\udet(d, e, c).
Use properties and to show that det(e;, e;, ex) = €;jk-

Use property and exercise [b| above to show that if a = a;e;, b = b;e;,
c = c;e; (summation convention) then det(a, b, ¢) = €;;,a;bjck.

Prove the identity (a x b)-(exd) = (a-c)(b-d)— (a-d)(b- c) using
both vector identities and indicial notation.

Express (a x b) - (a x b) in terms of dot products of a and b.

Show that (a-a)(b-b)—(a-b)? is the square of the area of the parallelogram
spanned by a and b.

If A is the area the parallelogram with sides a and b, show that

A% =

a-a a-b

a-b b-b |

If det(a, b, ¢) # 0, then any vector v can be expanded as v = aa+Sb+~e.
Find explicit expressions for the components «, 3, v in terms of v and the
basis vectors a, b, ¢ in the general case when the latter are not orthogonal.

[Hint: project on cross products of the basis vectors, then collect the mixed
products into determinants and deduce Cramer’s rule].

Given three vectors a1, as, as such that D = a4 - (a2 X a3z) # 0, define
a'lzﬁagxag, a'2:5a3><a1, ag:Balxag. (102)

This is the reciprocal basis of the basis a1, as, as.

(i) Show that a; - a; = d;;, V i,j = 1,2,3.

(ii) Show that if v = v; @; and v = v} a} (summation convention), then
v; = v -a; and v, = v - a;. So the components in one basis are obtained
by projecting onto the other basis.

ij

If @ and b are linearly independent and c¢ is any arbitrary vector, find «,
B and v such that ¢ = aa + b+ vy(a x b). Express a, 5 and v in terms
of dot products only. [Hint: find a and $ first, then use ¢j = ¢ —c1 ]
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14. Express (a x b) - ¢ in terms of dot products of @, b and ¢ only. [Hint: solve
problem (13| first.]

15. Provide an algorithm to compute the volume of the parallelepiped (a,
b, ¢) by taking only dot products. [Hint: ‘rectify’ the parallelepiped
(a,b,¢) = (a,by,c;) — (a,b,cyi 1) where b, and ¢, are perpendicular
to a, and ¢, | is perpendicular to both a and b, . Explain geometrically
why these transformations do not change the volume. Explain why these
transformations do not change the determinant by using the properties of
determinants.]

16. (*) If V is the volume of the parallelepiped with sides a, b, ¢ show that

V=

(SRS S|
SIS
(SRS S|
SAS S

a -
b-
C -

o 00

Do this in several ways: (i) from problem (ii) using indicial notation
and the formula .

12 Points, Lines, Planes, etc.

We discussed points, lines and planes in section [f] and reviewed the concepts
of position vector OP = r = r# = pp + 22 = x& + y§ + 22 and parametric
equations of lines and planes. Here, we briefly review implicit equations of lines
and planes and some applications of dot and cross products to points, lines and
planes.

Center of mass. The center of mass, 7., of a system of N particles of mass

m; located at position r;, ¢ = 1,..., N, is the mass averaged position defined
by
N
Mr. 2 mr; (103)
i=1

where M = Ef\il m; is the total mass. In particular, if all the masses are equal
then for N =2, r. = (r1 +r2)/2, for N =3, r. = (r1 + 7o + r3)/3. Note that
we do not use the summation convention for the sum over the N particles. This
N is not the dimension of the space in which the particles are located.

Equations of lines. The vector equation of a line parallel to a passing
through a point A is
AP =ta, VteR (104)

This vector equation expresses that the vector ﬁ is parallel to a, where ¢ is a

real parameter. In terms of an origin O we have OP = OA + AP and we can
write the vector (parametric) equation of that same line as

r=r,+ta, (105)
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—
where r = O? and r, = OA are the position vectors of P and A with respect
to O, respectively.

The real number ¢ is the parameter of the line, it is the coordinate of P in
the system A, a. We can eliminate that parameter by crossing the parametric
equation with a:

’r:rA—&—tm VtER‘@’(r—rA)xazo.‘ (106)

This is the (explicit) parametric equation v = r, + ta, with parameter ¢, and
the implicit equation (r —r,) x a =0 of a line.

Equations of planes. The equation of a plane passing through point A,
parallel to @ and b (with a x b # 0) is

ﬁ:t1a+t2b, Viti,to € R

—
orr=r, +tia-+tbsince r = O? = OA—i—ﬁ. The parameters t; and to can
be eliminated by dotting the parametric equation with n = a x b:

r=r, +tia+tsb, th,tQER‘«b’(fr*rAyn:O.‘ (107)

This is the parametric equation of the plane with parameters ¢; and to, and the
implicit equation of the plane passing through A and perpendicular to n.

Equations of spheres. The equation of a sphere of center . and radius
R is

r—r.]=R| < |r=r.+Ra,| Vasdt. l|al =1, (108)
| || |

where a is any direction in 3D space. We have seen in eqn. that such a
direction can be expressed as

a0, p) =cospsinf & + sinpsinf g + cosf 2,
where &, g, 2 are any set of mutually orthogonal unit vectors. The angles 6 and

o are the 2 parameters appearing in this parametrization of a sphere.

Exercises

1. Show that the center of gravity of three points of equal mass is at the
point of intersection of the medians of the triangle formed by the three
points.

2. What are the equations of lines and planes in Cartesian coordinates?

3. Find vector equations for the line passing through the two points r1, 72
and the plane through the three points r1, 2, 73.
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. What is the distance between the point r; and the plane through rq

perpendicular to a?

. What is the distance between the point r; and the plane through rq

parallel to a and b?

. What is the distance between the line parallel to a that passes through

point A and the line parallel to b that passes through point B?

. A particle was at point P; at time ¢; and is moving at the constant velocity

v1. Another particle was at P at t5 and is moving at the constant velocity
v2. How close did the particles get to each other and at what time? What
conditions are needed for a collision?

. Point C' is obtained by rotating point B about the axis passing through

point A, with direction a, by angle « (right hand rotation by « about a).

|
Find an explicit vector expression for O? in terms of O? , OA, a and a.
Make clean sketches. Express your vector result in cartesian form.
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Figure 1.6: Change of cartesian
bases in 2D.
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13 Orthogonal Transformations and Matrices

13.1 Change of cartesian basis

Consider two orthonormal bases (E1, E3, E3) and (e, ez, e3) in 3D euclidean
space. A vector v can be expanded in terms of each bases as v = V1 E1+ Vo Eo+
VsE3 = V;E; and v = vie; + vaes + v3es = v;e;. What are the relationships
between the two sets of components (Vi, Va2, V3) and (v1, v2,v3)? In 2D, you can
find the relations between the components (vy,vs) and (Vi,V3) directly using
geometry and trigonometry,

(109)

(%)

_ {01: Vicosaa +Vssina,

vg = —Visina +V5cosa.
U1

i

However, it is easier and more systematic to use the basis vectors and vector
operations. The starting point is the vector identity

vV =wvie] + Vg = V1E1 + VQEQ, (110)
then simple dot products yield

vn=e-v=Vie -E +Ve - Es,
U2:€2'U:V1€2'E1+‘/2€2'E2.

These yield (109) since

e - Ei= cosa, e; - Es =sinaq,

e - Ei=—sina, ey-FE;=cosa.

In 3D, a direct geometric derivation is cumbersome but using direction vec-
tors and vector algebra is just as straightforward. The components (v, v2,v3) #
(V1, Vo, V3) for distinct bases, but the geometric vector v is independent of the
choice of basis, thus

v = v;e; = ‘/jEja

using Einstein’s summation convention, and the relationships between the two
sets of coordinates are then

vi=ev=(e Ej)V;=QyVj, (111)

and, likewise,
Vi=E;-v=(E;-e€j)v; =Qjivj, (112)
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where we defined

These 9 coeflicients @;; are the elements of a 3-by-3 matriz @, that is, a 3-by-3
table with the first index 4 corresponding to the row index and the second index
j to the column index

Quu Q12 Q3 e -Ey e -E;, e -Ej
Q=[Qij] = Q21 Qxn Q| =|e-E1 e -E; ey-Es|. (114)
Q31 Q32 Qs3 e3-E; e3-E; e3-Ej

This is the Direction Cosine Matriz since e; and E; are unit vectors thus
e; - E; = cosf;; where 0;; is the angle between e; and E;. The coefficients
Qi = cosB;; are the direction cosines.

For example, if ey, e; are rotated about e3 = E3 by «, as in the 2D example
above in fig. then

cosa sina 0
Q= [Qij] = |-sina cosa 0. (115)
0 0 1

As another more general example, consider an Earth basis with E3 in the
polar direction, F1, E5 in the plane of the prime meridian and a local basis at
longitude ¢, polar angle 6 (latitude A = w/2 — @) with e; south, ey east and e3
up, as illustrated in the following figure.

Figure 1.7: An Earth basis and a local basis at longitude ¢, polar angle 6.

Most of the required vector analysis has already been done in section We
find (exercise {4)

e; =cospcos) FEp+sinpcost FEs —sinfEs;,
es = —sing FE; + cosy E,, (116)
e; =cosypsing FEp +singsingd FEs + cos6Es;,
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thus the transformation matrix for that example is

cospcosf sinpcosf —sinf
Q= | —sing Cos 0 . (117)
cospsinf  singsinf  cosf

There are 9 direction cosines cos;; (in 3D space) but orthonormality of
both bases imply several constraints, so these 9 angles are not independent and
the ) matrices have very special characteristics.

These constraints follow from (111]), (112)) which must hold for any (vy,va, v3)
and (V4, Va2, V3). Substituting in (watching out for dummy in-
dices!) yields

v = QuQir vy, Yvi = QuQjr = 6. (118)
This means that the rows of matrix @ (114)) are orthogonal to each other and
of unit magnitude. Likewise, substitutin into gives

Vi=QriQr; Vj, VVi = QriQrj = 0ij, (119)

and the columns of matrix @ (114)) are also orthogonal to each other and of unit
magnitude.

These two sets of orthogonal relationships can also be derived more geomet-
rically as follows. The coefficient Q);; = e; - E; is both the j component of e;
in the {E1, E9, E3} basis, and the ¢ component of E; in the {e;, es, e3} basis.
Therefore we can write

e; = (ei . Ej) Ej = Qij Ej7 (120)

where Qi Ej = Qi E1+Qi2E2+Q;3FEs in the summation convention. In other
words,

e; = (Qi1, Qi2, Qi3)

in the basis (E1, E2, E3), and this is the i-th row of matrix @ (114). Now the
e’s are mutually orthogonal unit vectors, e; - e; = d;; but from the previous
equation

€€ =QuEy QuE =QiwQuEy - E; = Qi.Q0n = QirQjk- (121)

(122

So the rows of @ are orthonormal because they are the components of (e, es, e3)
in the basis (E1, E3, E3).
Likewise,

hence

E; = (E;-ex)er = Qj e, (123)
where ij er = Qljel + Q2j€2 + ngeg, and

E; = (Qu),Q2;,Q35)
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in the basis (e1, ea, e3), this corresponds to the j-th column of matrix @ (114).

Then
20

and the columns of () are orthonormal because they are the components of
(E1, E2, E3) in the basis (eq, eq, e3).

A square matrix whose rows are mutually orthonormal to each other will
have mutually orthonormal columns, and wvice-versa. Such a matrix is called an
orthogonal matrix.

Exercises

1. Find Q if (e, eq, e3) is the right hand rotation of (E;, Es, E3) about Ej

by angle . Verify (122) and (124) for your Q. If v = V,E;, find the
components of v in the basis (e, es, e3) in terms of (V4, V5, V3) and .

2. Find Q if (e, e, e3) is the right hand rotation of (E1, E2, E3) about E»
by angle 6. Verify (122 and (124) for your Q.

3. Find Q if ey = —E;, ea = E3, e3 = E5 and verify (122)) and (124) for it.

4. Derive ([117) (i) using meridional and equatorial projections as in section
1.3} (ii) finding e3 by projections onto E3 and p then E; and Es, then
calculating e; = (E3 x e3)/|E3 X e3| and e; = e X e3.

5. Verify that the rows of (115)) and (117]) are orthonormal, and likewise for
the columns.

6. Find Q if {E;, Es, E3} is an Earth basis as defined in the text and
{e1,ea,e3} is a local basis at longitude ¢ and latitude A with e; east,
eo north and e3 up. Write @ in terms of ¢ and A.

7. Orthogonal projection of a 3D scene. One way to make a 2D picture of a
3D scene is to plot the orthogonal projection of the 3D data onto a plane
perpendicular to the viewpoint at azimuth « and elevation A\. Find the
relevant ) in terms of a and A and specify how to obtain the 2D plotting
data from the 3D data.

8. The velocity of a satellite is v; east, v north, v3 up as measured from
a cartesian basis located at longitude ¢, latitude \. What are the corre-
sponding velocity components with respect to the Earth basis?

9. The velocity of a satellite is v; east, vo north, vs up as measured from a
cartesian basis located at longitude (1, latitude A\;. What are the corre-
sponding velocity components with respect to a local basis at longitude
2, latitude A\3? Derive and explain an algorithm to compute those com-
ponents.

10. In relation to (L18)), prove that if v; = A;;v; for all v; then A;; = d;;.
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11. Explain why the determinant of any orthogonal matrix @ is 1. When is
det(Q) = +1 and when is it —1, in general? Give explicit examples.

12. If @ and b are two arbitrary vectors and (e, ez, e3) and (e}, e}, eh) are
two distinct orthonormal bases, we have shown that a;b; = a;b} (eqn. (45),
here with summation convention). Verify this invariance directly from the
transformation rule (111)), v; = Q;;v;, showing your mastery of index
notation. (Here Q;; £ €} - e;).

13. If ¢ is the rotation of b about a by a (exercise[J]in cross product section)
then ¢; = A;;b; in a cartesian basis. Find A;; in terms of o and the
cartesian components of @. Show that the matrix A;; is orthogonal. Note
that this is mot a change of basis, it is a rotation of vectors, however
rotation of vectors and rotation of bases are closely connected.

14. Let v = b — 2(a - b)a yielding v; = A;;b; in a cartesian basis. Find A;;.
Show that A;; is an orthogonal matrix. Note that this is not a change of
basis.

13.2 Matrices

That @Q was a very special matrix, an orthogonal matrix. More generally a
3-by-3 real matrix A is a table of 9 real numbers

All A12 AIS
A= [AL]} = A21 A22 A23 . (125)
Az1 Az Ass

Matrices are denoted by a capital letter, e.g. A and @ and by square brackets
[]. By convention, vectors in R? are defined as 3-by-1 matrices e.g.

Z1
£r = T s
T3
although for typographical reasons we often write @ = (x1,22,23) but not

[€1, X2, x3] which would denote a 1-by-3 matrix, or row vector. The term ma-
triz is similar to wectors in that it implies precise rules for manipulations of
these objects (for vectors these are the two fundamental addition and scalar
multiplication operations with specific properties, see Sect. .

Matrix-vector multiply

Equation (|111)) shows how matrix-vector multiplication should be defined. The
matrix vector product Az (A 3-by-3,  3-by-1) is a 3-by-1 vector b in R? whose
i-th component is the dot product of row 7 of matrix A with the column x,

Az =b & b= Aij.ﬁj (126)
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where A;jz; = Ajiz1+Ajpxe+ Aszxs in the summation convention. The product
of a matrix with a (column) vector is performed row-by-column. This product
is defined only if the number of columns of A is equal to the number of rows of
x. A 2-by-1 vector cannot be multiplied by a 3-by-3 matrix.

Identity Matrix

There is a unique matrix such that Iz = x, V. For € R3, show that

I= (127)

O O =
O = O
= o O

Matrix-Matrix multiply

Two successive linear transformation of coordinates, that is,

! . . " __ o
z; = Ajjz;, then =z =Bjjz;
(summation over repeated indices) can be combined into one transformation
from z; to
T RB. 2O s
x; = BipAyj x5 = Cijxj

where
Cij 2 (BA)ij = Bip Ayj- (128)

This defines matrix multiplication. The product of two matrices BA is a matrix,
C say, whose (i,7) element Cj; is the dot product of row i of B with column j
of A. As for matrix-vector multiplication, the product of two matrices is done
row-by-column. This requires that the number of columns of the first matriz in
the product (B) equals the number of rows of the second matriz (A). Thus,
the product of a 3-by-3 matrix and a 2-by-2 matrix is not defined, for instance.
We can only multiply M-by-N by an N-by-P, that is ‘“nner dimensions must
match’. In general, BA # AB, matrix multiplication does not commute. You
can visualize this by considering two successive rotation of axes, one by angle «
about ez, followed by one by 3 about e). This is not the same as rotating by 3
about ey, then by « about e5. You can also see it algebraically

(BA)U = BikAkj 7é AikBkj = (AB)U

Matrix transpose

The transformation involves the sum Ajix;- that is similar to the matrix
vector multiply except that the multiplication is column-by-column! To write
this as a matrix-vector multiply, we define the transpose matriz AT whose row
i correspond to column i of A. If the (¢,j) element of A is A;; then the (¢, j)
element of AT is Aji

(AT)i; = (A)ji.
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Then
i =Aj, & xz=ATd (129)

A symmetric matriz A is such that A = AT, but an anti-symmetric matric A is
such that A = —AT.

> Show that the transpose of a product is equal to the product of the transposes
in reverse order (AB)T = BT AT.

13.3 Spherical coordinates with a twist: Euler Angles

Arbitrary matrices are typically denoted A, while orthogonal matrices are typ-
ically denoted @) in the literature. In matrix notation, the orthogonality condi-
tions , read

QTQ=QQ" =1 (130)
Such a matrix is called an orthogonal matriz (it should have been called or-
thonormal). A proper orthogonal matrix has determinant equal to 1 and cor-
responds geometrically to a pure rotation. An improper orthogonal matrix has
determinant -1. It corresponds geometrically to a combination of rotations and
an odd number of reflections. The product of orthogonal matrices is an orthog-
onal matrix but the sum (performed element by element) is not.

As we have seen at the beginning of this section, the elements @Q);; of an
orthogonal matrix can be interpreted as the dot products of unit vectors of
two distinct orthonormal bases, Q;; = e; - E; = cost;;, where 0;; is the angle
between e; and E;. In 3D, there are 9 such angles but these angles are not
independent since both bases (e1, ez, e3) and (E1, Eq, E3) consist of mutually
orthogonal unit vectors. If both bases are right handed (or both are left handed),
each can be transformed into the other through only three elementary rigid body
rotations, in general. Therefore, any 3 by 3 proper orthogonal matrix can be
decomposed into the product of three elementary orthogonal matrices. The 3
angles corresponding to those 3 elementary rotations are called Euler angles.

That only 3 angles are needed should not be a surprise since we learned early
in this chapter that an arbitrary direction & in 3D space can be specified by
2 angles. Thus, 2 angles ¢ and € are sufficient to specify es, say, in terms of
(E1, E5, E3) and we only need one extra angle, call it ¢, to specify the orienta-
tion of (ey, es) about the direction es. That’s spherical coordinates ¢, 6 plus a
twist . Thus we can construct, or represent, the matrix ) corresponding to the
transformation from (E4, E3, E3) to (e1,es,e3) in the following 3 elementary
rotations.

1. Rotation about E3 by ¢ to obtain the intermediate basis
el =cospEi+sinpEy, e,=—sinpE;+cospEy, e4=E3 (131)
defining Q;; = e; - Ej, yields the rotation matrix

cosep singp 0
Q = |—-sinp cosp 0 (132)
0 0 1
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for the rotation from (E1, E9, E3) to (e}, e}, e5). This rotation about E3
by ¢ is such that e is in the direction of E3 x es, or in other words so
that the target es is in the plane of e} and E3 = e}.

2. Rotation about e/, by angle 6 to obtain the basis
e/ =cosfe| —sinfe;, e)=¢e), e =sinfe]+cosbfe;, (133)
with Q; = e]’ - €/, this corresponds to the rotation matrix
cosf 0 —sinf

Q" = 0 1 0 (134)
sinf 0 cos@

for the rotation from (€], e}, e%) to (€7, ey, ef). These 2 rotations achieve

el = eg, the target e3 but the vectors (e, ey) do not necessarily match
the target (e1,esz).

3. To match those vectors in general requires another elementary rotation
about €4 = es to align (ef, el)) with the target basis (e, e2)

e; =cosCe] +sinCey, ey=—sinCe] +cosCey, e3=c¢ef (135)

defining Q] = e;” - €/, this corresponds to the rotation matrix

cos¢ sin¢ O
Q" = |—sin¢ cos¢ 0Of. (136)
0 0 1

The orthogonal transformation @ from (E1, Eo, E3) to (e1, ez, e3) is then ob-
tained by taking the matrix product

Q — Q///Q//Q/
cos¢ sin¢ O |cos@ 0 —sinf cosep singp 0 (137)
—sin¢ cos¢ 0 0 1 0 —singp cosp 0
0 0 1| |sinf 0 cosf 0 0 1

Watch out for the order! The first transformation is the rightmost matrix Q’.

Any 3 by 3 proper orthogonal matrix ) can thus be represented with only
three angles, (¢, 0, (), for example. There are many ways to choose those angles
however. The choice made above is consistent with spherical coordinates and
would be labelled a z-y-z representation in the literature since we rotated about
the original z axis, then the new y, then the new z again. A z-x-z definition
would perform a rotation about the original z so that e} is in the E3 X ej3
direction, instead of e}, as we chose above. Then a rotation about e} would be
performed to align ef = es, followed by a rotation about ef to align (ef, e}).
There are 4 other possible choices of Euler angles: x-y-z, x-z-x, y-x-y, y-z-y. In
all cases, the 1st and 3rd rotation are about the same relative direction.
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Euler angles inherit a singularity from spherical coordinates where the az-
imuth ¢ is undetermined when the polar angle # = 0 or 7. Likewise in
when 6 = 0 or 7, the first and 3rd rotation are about the same actual direction,
hence ¢ and ¢ are not uniquely determined. When 6 is near 0 or 7, the decom-
position may lead to large angles ¢, ¢ that almost cancel each other to
yield a small net effect. This may lead to computational inaccuracies, or wild
motions if the angles are used to control a 3D body. This singularity issue is
known as ‘Gimbal lock’ in mechanical engineering.

Pitch Axis
W

Roll Axis
Yaw Axis

Figure 1.8: Airplane attitude, yaw, pitch and roll, from wikipedia.

In aircraft dynamics and control, 3 angles about 3 distinct axes are used as
illustrated in fig. [I.8] Imagine a frame &, g, £ attached to an airplane, with &
pointing from tail to nose, 2 perpendicular to the plane of the airplane and ¢
pointing from one wingtip to the other. The orientation of the airplane with
respect to a fixed reference frame can be specified by the heading (or yaw) —
the angle around 2 to align & with the desired horizontal direction, the elevation
(or pitch) — the angle about § to pitch the nose up or down to align & with the
desired direction in the vertical plane, and the bank (or roll) — the angle about
& to rotate the wings around the axis of the airplane to achieve the desired bank
angle.

Gram-Schmidt

To define an arbitrary orthogonal matrix, we can then simply pick any three ar-
bitrary (Euler) angles ¢, 6, ¢ and construct an orthonormal matrix using (137).
Another important procedure to do this is the Gram-Schmidt procedure: pick
any three a1, a2, a3 and orthonormalize them, i.e.

(1) First, define ¢, = a1/[|a:[| and a5 = a2 —(az-q,)q,, a3 = as—(as-q)q,,
(2) next, define g, = aj/|labl] and af = a5 — (a} - 4,)as.
(3) finally, define g5 = a¥/|la4]|.

The vectors q;, g5, g5 form an orthonormal basis. This procedure generalizes
not only to any dimension but also to other vector spaces, e.g. to construct
orthogonal polynomials.
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Exercises

1.

10.

11.
12.

13.
14.

15.

. If 27 = [z, 29, 23], calculate 7z and zz”.

. For ¢ € R", show that ”a and zx

Give explicit examples of 2-by-2 and 3-by-3 symmetric and antisymmetric
matrices.

T

T are symmetric ((i) explicitly using

indices, (ii) by matrix manipulations).

. Let v = a x b in E? yielding v; = A;ijb; in a cartesian basis. Find A;;.

Show that A;; is not an orthogonal matrix but that it is anti-symmetric.

. If A is a square matrix of appropriate size, what is 7 Ax?

. Show that the product of two orthogonal matrices is an orthogonal matrix.

Interpret geometrically.

What is the general form of a 3-by-3 orthogonal and symmetric matrix?

. What is the orthogonal matrix corresponding to a reflection about the

x — z plane? What is its determinant?

. What is the most general form of a 2-by-2 orthogonal matrix?

We want to rotate an object (i.e. a set of points) by an angle v about
an axis passing through the origin. Provide an algorithm (or a Matlab or
Python code) to calculate the cartesian coordinates of the rotated points.
Compare (1) the vector approach of exercise@ in the cross-product section
and (2) the elementary rotation matrix approach. The latter performs two
elementary rotation of bases to obtain the coordinates in a basis whose e3
is the rotation direction, rotates in that basis, then returns to the original
basis. How many elementary rotation matrices are involved? Compare
the computational complexity of both approaches.

What are Euler angles? Are they unique (modulo 27)?

Let @ be any orthogonal matrix. What is the form of its ZYZ Euler angle
decomposition? What is the form of its ZXZ Euler angle decomposition?
What is the form of its ZYX decomposition?

Find the ZYZ, ZXZ and ZYX factorizations of (117).

The othonormal basis {e], e}, e4} is the rotation of {e;, ea, e3} by ¢ about
e3. The transformation from {E, Es, E3} to {ej, ez, e3} is given in
(117). What is the matrix corresponding to the transformation from
{E1, E2, E5} to {€],€eh,e5} 7 Find an elementary rotation factorization
of that matrix.

Prove that the product of two orthogonal matrices is an orthogonal matrix
but that their sum is not, in general.
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16. What are the Euler angles and the transformation matrix @ from {E1, E5, E3}
to {e1, es, e3} when the latter is the (right-handed) rotation of the former
by angle a about the direction E; + E5 4+ E3?

17. The basis {e1, €3, €3} is the rotation of { E1, F2, E3} by a about é. What
is the ZYZ Euler factorization of the matrix () corresponding to the trans-
formation {E4, E2, Es} — {e1,ea,e3}?

18. The basis {e;, eq, es} is the rotation of {E;, E2, Es} by € < 1 about
E, — E;. What is the matrix @) corresponding to the transformation
{E1,E2, E3} — {e1,es,e3}? What is its ZYZ factorization? Discuss and
visualize the elementary rotations when ¢ < 1. Imagine that you are con-
trolling a drone and {ej, es, es} is fixed in the drone while {E}, E5, E3}
is your fixed frame.

19. Derive an algorithm to find the ZYZ Euler angle representation of the
general orthogonal matrix

ap az as

Q= |b by b3

20. Pick three non-trivial but arbitrary vectors in R?® (e.g. using Matlab’s
randn(3,3) for instance), then construct an orthonormal basis g, g,
g5 using the Gram-Schmidt procedure. Verify that the matrix @ =
[@1, g5, q3] is orthogonal. Note in particular that the rows are orthogonal
eventhough you orthogonalized the columns only.

21. Pick two arbitrary vectors a;, ay in R and orthogonalize them to con-
struct q,, q,. Consider the 3-by-2 matrix Q = [q,, g5] and compute QQT
and QT'Q. Explain.

13.4 Determinant of a matrix (Optional)

See earlier discussion of determinants (section on mixed product). The deter-
minant of a matrix has the explicit formula det(A) = €;;,A4;14,2Aks, the only
non-zero terms are for (i,7, k) equal to a permutation of (1,2,3). We can de-
duce several fundamental properties of determinants from that formula. We
can reorder A;1 AjpAgs into A1y Ay, Asy, using an even number of permutations
if (4,4, k) is an even perm of (1,2,3) and an odd number for odd permutations.

So
det(A) = EijkAilAjQAkg = €imnA11Aom Az, = det(AT). (138)

Another useful result is that

ik Ait Ajm Akn = €ijk€imnAi1 AjoArs. (139)
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We can then prove that det(AB) = det(A)det(B) by a direct calculation in
compact index notation:

det(AB) = €, AuBi1 Ajy BrmaAgn Bns = €ijk€imnAit Ajo Arz Bl Bima B
= det(A) det(B)
(140)
These results and manipulations generalize straightforwardly to any dimension.

13.5 Three views of Az = b (Optional)

Column View

» View b as a linear combination of the columns of A.

Write A as a row of columns, A = [ay,as, as], where al = [a11,a21,a31]
etc., then
b= Ax = x1a1 + 2209 + 1303

and b is a linear combination of the columns ai, as, as. If  is unknown, the
linear system of equations Az = b will have a solution for any b if and only if the
columns form a basis, i.e. iff det(a1,aq,as3) = det(A) # 0. If the determinant
is zero, then the 3 columns are in the same plane and the system will have a
solution only if b is also in that plane.

As seen in earlier exercises, we can find the components (z1, z2, x3) by think-
ing geometrically and projecting on the reciprocal basis e.g.

b-(az x az) _ det(b,aq,as)

= . 141
a1 (az x a3)  det(ai,asq,as) (141)

T =

Likewise
det(ay, b, as) det(ay,as,b)
Ty = —— < T3 =

~ det(ay,az,a3)’ ~ det(ay,as,a3)’

This is a nifty formula. Component x; equals the determinant where vector
1 is replaced by b divided by the determinant of the basis vectors. You can
deduce this directly from the algebraic properties of determinants, for example,

det(b, az,a3) = det(x1a; + 202 + 2303, a2, a3) = x1 det(ay, as, as).

This is Cramer’s rule and it generalizes to any dimension, however computing
determinants in higher dimensions can be very costly and the next approach is
computationally much more efficient.

Row View:

» View x as the intersection of planes perpendicular to the rows of A.

View A as a column of rows, A = [ny,no, n3]”, where n? = [a11, a12, a13] is
the first row of A, etc., then

{ nl-w:bl
b=Azx=|nl |z < { ny-z=b
g 'I’L3'.’B:b3
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and x is seen as the position vector of the intersection of three planes. Recall
that n-x = C is the equation of a plane perpendicular to n and passing through
a point xg such that n - xy = C, for instance the point g = Cn/||n|.

To find @ such that Az = b, for given b and A, we can combine the equations
in order to eliminate unknowns, i.e.

n1~m:bl n, - T :bl
no-x=by & (ng—agnl)-a: = by — by
n3-x = b (n3 —azng)-x = bz —azb

where we pick as and «ajz such that the new normal vectors nh, = ny — asng
and nj = n3 — azny have a zero lst component i.e. nh = (0,ah,,abs), Ny =
(0, a5y, a53). At the next step, one defines a nf = n§ — fzn,, picking S3 so that
the 1st and 2nd components of n4 are zero, i.e. n§ = (0,0,af5;). And the re-
sulting system of equations is then easy to solve by backward substitution. This
is Gaussian Elimination which in general requires swapping of equations to
avoid dividing by small numbers. We could also pick the a’s and ’s to orthog-
onalize the n’s, just as in the Gram-Schmidt procedure. That is better in terms
of roundoff error and does not require equation swapping but is computationally
twice as expensive as Gaussian elimination.

Linear Transformation of vectors into vectors

» View b as a linear transformation of x.

Here A is a ‘black box’ that transforms the vector input « into the vector
output b. This is the most general view of Ax = b. The transformation is
linear, this means that

Alaz + By) = a(Az) + B(Ay), Voa,BER,z,yeR” (142)

This can be checked directly from the explicit definition of matrix-vector mul-
tiply:
> Ailomy + Byr) = Y aApar + Y BAiyy.
k k k

This linearity property is a key property because if A is really a black box (e.g.
the “matrix” is not actually known, it’s just a machine that takes a vector and
spits out another vector) we can figure out the effect of A onto any vector x
once we know Aeq, Aes, ..., Ae,.

This transformation view of matrices leads to the following extra rules of
matrix manipulations.

Matriz-Matriz addition

Az+Bx = (A+B)z < Y _ Apar+Y Buyzp = Y _(Aix+Bix)wk, Yoy, (143)
k k k

so matrices are added components by components and A+ B = B+ A, (A +
B)4+C = A4 (B+C). The zero matrix is the matrix whose entries are all zero.



©F. Waleffe, Math 321, 2016/1/18 55

Matriz-scalar multiply

Alax) = (ecd)z < ZAik(amk) = Z(aAik)xk, Vo, xy, (144)
k k

so multiplication by a scalar is also done component by component and «(SA) =
(aB)A = Bad).

In other words, matrices can be seen as elements of a vector space! This
point of view is also useful in some instances (in fact, computer languages like
C and Fortran typically store matrices as long vectors. Fortran stores it column
by column, and C row by row). The set of orthogonal matrices does NOT
form a vector space because the sum of two orthogonal matrices is not, in
general, an orthogonal matrix. The set of orthogonal matrices is a group, the
orthogonal group O(3) (for 3-by-3 matrices). The special orthogonal group SO(3)
is the set of all 3-by-3 proper orthogonal matrices, i.e. orthogonal matrices with
determinant =41 that correspond to pure rotation, not reflections. The motion
of a rigid body about its center of inertia is a motion in SO(3), not R3. SO(3)
is the configuration space of a rigid body.

Exercises

> Pick a random 3-by-3 matrix A and a vector b, ideally in matlab using its
A=randn(3,3), b=randn(3,1). Solve Ax = b using Cramer’s rule and Gaus-
sian Elimination. Ideally again in matlab, unless punching numbers into your
calculator really turns you on. Matlab knows all about matrices and vectors.
To compute det(ai,as,as) = det(A) and det(b, as, as) in matlab, simply use
det(A), det(b,A(:,2),A(:,3)). Type help matfun, or help elmat, and or
demos for a peek at all the goodies in matlab.

13.6 Eigenvalues and Eigenvectors (Math 320 not 321)
Problem: Given a matrix A, find  # 0 and A such that

Ax = Ix. (145)

These special vectors are eigenvectors for A. They are simply shrunk or elon-
gated by the transformation A. The scalar A is the eigenvalue. The eigenvalue
problem can be rewritten

(A=X)x =0

where [ is the identity matrix of the same size as A. This will have a non-zero
solution iff
det(A — M) =0. (146)

This is the characteristic equation for A. If A is n-by-n, it is a polynomial of
degree n in \ called the characteristic polynomial.

[Future version of these notes will discuss the important connection between
symmetric and orthogonal matrices]
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Chapter 2

Vector Calculus

1 Vector function of a scalar variable

The position vector of a moving particle is a vector function r(¢) of the scalar
time ¢. For instance, a particle moving a constant velocity vy has position vector
r =19 +tvg = r(t) where 7 is the position at ¢ = 0. The derivative of a vector
function r(t) is defined as usual as the limit of a ratio

dr _ lim r(t + At) — r(t). (1)

dt At—0 At
The derivative of the position vector is of course the instantaneous velocity
vector v(t) = dr/dt, and for the simple motion r = r¢ + tvg, dr/dt = vy. In
general, a position vector function r(¢) describes a curve C in three-dimensional
space, the particle trajectory, and v(t) is tangent to that curve as we will dis-
cuss further in section below. The derivative of the velocity vector is the
acceleration vector a(t) = dv/dt. We sometime use Newton’s dot notation for

time derivatives: 1 = dr/dt, ¥ = d*r/dt? etc.

Rules for derivatives of vector functions are similar to those of simple func-
tions. The derivative of a sum of vector functions is the sum of the derivatives,

We can prove as in calc 1 the various product rules:
%(aa):%a+a%, %(wb):%b-l-a-%, (3)
%(a b)fEXbJrax%, (4)
%[(axb) c]=(%?><b) C+(GX%)'C+(aXb)'%a (5)
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therefore

d da db dc
pr det(a,b,c) = det(g7 b, c) + det(a, o c) + det(a, b, E) (6)
All of these are as expected but the formula for the derivative of a determinant
is worth noting because it generalizes to any dimensionEI

Exercises

1. Show that if w(t) is any vector with constant length, then

du

= t.
u— 0, V (7)

The derivative of a vector of constant magnitude is orthogonal to the
2

vector. [Hint: w-w = ug ]

2. If r(t) is not of constant magnitude, what is the geometric meaning of
points where r - dr/dt = 07 Make sketches to illustrate such r(¢) and
points.

3. Consider r(t) = acost + bsint where a, b are arbitrary constant vectors
in 3D space. Sketch r(t) and indicate all points where 7 - dr/dt = 0.

4. Show that d|a|/dt = &-da/dt for any vector function a(t). Make a sketch
to illustrate.

5. If v(t) = dr/dt show that d(r xv)/dt = 7 xdv/dt. In mechanics, r x mv =
L is the angular momentum of the particle of mass m and velocity v with
respect to the origin.

6. The position of a particle at time ¢ is given by r(t) = Tacosf(t) +
Yasinf(t), with 6(t) = mcost and &, g orthonormal. What are the ve-
locity and the acceleration? Describe the particle motion.

7. A particle is rotating a constant angular velocity w about a circular hoop
that rotates about a fixed diameter at angular velocity (2. What are
the particle velocity and acceleration? What are the velocity and the
acceleration if the angular velocity around the hoop is not constant?

We now illustrate all these concepts and results by considering the basic
problems of classical mechanics: motion of a particle and motion of a rigid
body.

IFor determinants in R? it reads

a1 b1
az by c
az bz c3

ar b1 a
as by co
az bz c3

ar b1 <
as by c2
az bz c3

d

dt

as by 2
az bz ¢3

+ +

ar b1 & ‘

and of course we could also take the derivatives along rows instead of columns.
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2 Motion of a particle

In classical mechanics, the motion of a particle of constant mass m is governed
by Newton’s law
F = ma, (8)

where F' is the resultant of the forces acting on the particle and a(t) = dv/dt =
d?r /dt? is its acceleration, with (t) its position vector. Newton’s law is a vector
equation.

» Deduce the angular momentum law dL/dt = T where L = r x muv is the
angular momentum and T £ r x F is the torque (see exercise |5 above).

Free motion

If F = 0 then a = dv/dt = 0 so the velocity of the particle is constant, v(t) = v
say, and its position is given by the vector differential equation dr/dt = wvq
whose solution is 7(t) = rg + tvy where rg is a constant of integration which
corresponds to the position of the particle at time ¢ = 0. The particle moves in
a straight line through r( parallel to vg.

Constant acceleration

d*>r  dv
— =—=aqa(t)=a 9
where ag is a time-independent vector. Integrating we find
2 i
v(t) = agt + vy, r(t) = a0 + vot + 7 (10)
where vy and r( are vector constants of integration. They are easily interpreted .y .-
as the velocity and position at ¢ = 0. The trajectory is a parabola passing / T
through ry parallel to vy at ¢t = 0. The parabolic motion is in the plane through  /_---
ro that is parallel to vy and ag but the origin O may not be in that plane. o
We can write this parabola in standard form by selecting cartesian axes such
that ag = —g9, vg = o + voy and r¢y = 0 then
t2
r=x&+yy+z2Z= —9519 + (uo® +vog)t
yielding x = ugt, y = vot — gt2/2. Eliminating t when ug # 0 yields

Yo g 2
y=—T— 51"
U 2ug

Uniform rotation

If a particle rotates with angular velocity w about an azis (A,®) that passes
through point A and is parallel to unit vector @, then its velocity v = dr/dt is

v=wx(r—r,) (11) \
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where w = w is the rotation vector and r, = 0—121 is the position vector of A.

If w and A are constants, this is circular motion about the axis (A4,®). Let
s(t) =r(t)—r, = AP and 5(0) = r(0) — r, = 80, then use the intrinsic
orthogonal basis

_ ~ 1 Il 1
Sy =

(W'So), Sy = So — Sy, &JXSO

©

and the solution is

r(t) :rAJrngrsé‘ coswt + (& x sp°) sinwt, (12)

—
where 74 + .sy) = OA, is the position vector of the circle center A,.

Motion under a central force

A force F = —F(r)# where r = |r| that always points toward the origin (if
F(r) > 0, away if F(r) < 0 ) and depends only on the distance to the origin
is called a central force. The gravitational force for planetary motion and the
Coulomb force in electromagnetism are of that kind. Newton’s law for a particle
submitted to such a force is

dv R
mey = —F(r)+ (13)

where v = dr/dt and r(t) = r# is the position vector of the particle, hence both
r and 7 are functions of time ¢, in general. Motion due to such a force has two
conserved quantities, angular momentum and energy.

1. Conservation of angular momentum V F(r)
The cross product of with r yields

dv d L
7'><E:O@%(rxv)zoﬁrxv:roxvoéﬁo (14)

where Ly = Ly Ly is a constant vector (exercise [5|in the previous section).

Figure 2.1: Kepler’s law: The radius vector sweeps equal areas in equal times.
Here for the classic F(r) = 1/r? in which case the trajectories are ellipses with
the origin as a focus.
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The vector L = r x mw is called angular momentum in physics. The fact
that r X v is constant implies that the motion is in the plane that passes through
the origin O and is orthogonal to Ly (why?) and that ‘the radius vector sweeps
equal areas in equal times’. Indeed vdt = dr is the displacement during the
infinitesimal time span dt thus

Ly

rxvdt=rxdr=—dt
m

but ) I
_ = _ =0
dA(t) = 2\r(t) x dr(t)| 5 dt

is the infinitesimal triangular area swept by 7(¢) in time d¢. This yields Kepler’s
law of areas that the area swept by 7(t) in time T is independent of the start
time ¢

A= dA(t) =

ty

t1+T /tl-‘rT LO - L()
t1

2. Conservation of energy: kinetic + potential
The dot product of with v yields

e
dt

. d v-v
-U+F(r)r.v_o<:>%(m7+vm)_o, (15)
where V(r) is an antiderivative of F(r), dV(r)/dr = F(r). This follows from
the chain rule
W) _dvar_av

dt  drdt dr

(exercise |4|in the previous section applied to r instead of @). This implies that

(m“;'2 + vm) (16)

is a constant, say Ey. The first term, m|v|?/2, is the kinetic energy and the
second term, V(r), is the potential energy which is defined up to an arbitrary
constant. The constant Ej is the total conserved energy. Note that V(r) and
Ey can be negative but m|v|?/2 > 0, so the physically admissible r domain is
that were V (r) is less or equal to Ey. For the classic F(r) = 1/r2, the potential
V(r) =1/r (up to constant physical factors).

cv=F(r)f v

Exercises:

1. Show that |r(t) — | remains constant if r(t) evolves according to
even when w is not constant. If w and r, are constants, show that
@ - (r—mr,) and |v| are also constants. Given all those constants of mo-
tion, what type of particle motion is that? Find the force F' required to
sustain this motion for a particle of mass m according to Newton’s law.
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2. Verify that yields the correct initial condition at ¢ = 0 and satisfies
the vector differential equation .

3. If dr/dt = w x r with w constant, show that d*r, /dt?> = —w?r, where
r is the component of r perpendicular to w and w = |w]|.

4. Find r(t) if d?r/dt? = —w?r with w constant. How does this differ from
the previous problem?

5. Find »(t) if mdv/dt = —k(r — ro)# for constant m and arbitrary initial
conditions 7(0) = rg and v(0) = vg, where v = dr/dt, r = r#, with k, 7o
a constant (modeling a spring of stiffness k and rest length ro). What is
the potential V (r) for this problem?

6. Find r(t) if d®r/dt*> = —r/r® with 7(0) = ro and dr/dt(0) = vo.

3 Motion of a system of particles (optional)

Consider N particles of mass m; at positions r;, ¢ = 1,..., N. The net force
acting on particle number ¢ is F'; and Newton’s law for each particle reads
m;¥; = F;. Summing over all i’s yields

N N
i=1 i=1

Great cancellations occur on both sides. On the left side, let r; = r.+s;, where
T, is the center of mass and s; is the position vector of particle ¢ with respect
to the center of mass, then

Zmi'ri :Zmi(T‘c—l-Si) :Mrc+2misi :Zmisi =0,

as, by definition of the center of mass ), m;r; = Mr., where M = >, m, is the
total mass. If the masses m; are constants then ZZ m;s; =0 = ZZ mi§; =0
= > ., m;8; = 0. In that case, >, m;#; = >, m; (Fc + 8;) = >, miFc = Mi..
On the right-hand side, by action-reaction, all internal forces cancel out and the
resultant is therefore the sum of all external forces only >, F; = ). FZ(-e) =
F©),
Therefore,
Mi, = F© (17)

where M is the total mass and F(®) is the resultant of all external forces acting
on all the particles. The motion of the center of mass of a system of particles is
that of a single particle of mass M with position vector r. under the action of
the sum of all external forces. This is a fundamental theorem of mechanics.
There are also nice cancellations occurring for the motion about the center
of mass. This involves considering angular momentum and torques about the
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center of mass. Taking the cross-product of Newton’s law, m;#; = F;, with s;
for each particle and summing over all particles gives

E S; X m;T; = E s; x F;.
i i

On the left hand side, r; = r. + s; and the definition of center of mass implies
>, m;s; = 0. Therefore

zi:si X my;T; = zi:si x m;(Fe+ 8§;) = Z:Si X m;8; = 7 <z;sz X misi> .

This last expression is the rate of change of the total angular momentum about
the center of mass
N
L.= (8i x m;8;).
i=1

On the right hand side, one can argue that the (internal) force exerted by particle
j on particle ¢ is in the direction of the relative position of j with respect to 1,
fij = aij(ri —7;). By action-reaction the force from i onto j is f;; = —f,;; =
—a;j(r; — rj), and the net contribution to the torque from the internal forces
will cancel out: 7; x f,; +7; x f,;; = 0. This is true with respect to any point
and in particular, with respect to the center of mass s; X f,; +s; x f;; = 0.
Hence, for the motion about the center of mass we have

dL.

where T(¢) = Zl s; X F; is the net torque about the center of mass due to
external forces only. This is another fundamental theorem, that the rate of
change of the total angular momentum about the center of mass is equal to the
total torque due to the external forces only.

> If f,; = a(ri —r;) and f;; = a(r; —r;), show algebraically and geo-
metrically that s; x f,; +s; X f;; =0, where s is the position vector from the
center of mass.

4 Motion of a rigid body (optional)

The two vector differential equations for motion of the center of mass and evo-
lution of the angular momentum about the center of mass are sufficient to fully
determine the motion of a rigid body.

A rigid body is such that all lengths and angles are preserved within the rigid
body. If A, B and C' are any three points of the rigid body, then E . ﬁ =
constant.
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Kinematics of a rigid body

Consider a right-handed orthonormal basis, e (), e2(t), es(t) tied to the body.
These vectors are functions of time ¢ because they are frozen into the body
so they rotate with it. However the basis remains orthonormal as all lengths
and angles are preserved. Hence e;(t) - e;(t) = d;; ¥V 4,5 = 1,2,3, and V¢ and
differentiating with respect to time

dei dej

—eite-—2=0. 19
dt ejte dt (19)

In particular, as seen in an earlier exercise, the derivative of a unit vector is
orthogonal to the vector: e; - de;/dt =0, VI = 1,2,3. So we can write

%:wlxel, Vi=1,2,3 (20)

as this guarantees that e; - de;/dt = 0 for any w;. Substituting this expression

into yields

(wi X 61') ~ej+ei . ((Uj X ej) :O,
and rewriting the mixed products
(61' X 6]‘) W = (ei X (-3]‘) CWj. (21)

Now let

wp = E wrier = wijel + wores + wyes,
k

SO wy; is the k component of vector w;. Substituting in gives
Z €ijkWki = Z €ijkWEkj (22)
k k

where as before €;;; = (e; X €;) - e,. The sums over k have at most one non-zero
term. This yields the three equations

(i,7,k) = (1,2,3) — w31 = wao
(i7.ja k) = (27 3a 1) — W12 = W13 (23)
(’i,j, k) = (33 13 2) — W23 = W21.

The second equation, for instance, says that the first component of ws is equal
to the first component of ws. Now wy; is arbitrary according to (20]) (why?), so
we can choose to define wq1, the first component of wq, for instance, equal to
the first components of the other two vectors that are equal to each other, i.e.
W11 = W12 = W13. Likewise, piCk W29 = W93 = W21 and W33 — W31 — W32. This
choice implies that

W] =Wy =w3=w (24)

The vector w(t) is the Poisson vector of the rigid body.
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The Poisson vector w(t) gives the rate of change of any vector tied to the

body. Indeed, if A and B are any two points of the body then the vector ¢ = 1@
can be expanded with respect to the body basis e;(t), ea(t), es(t)

c(t) = cre1(t) + caea(t) + czes(t),

but the components ¢; = ¢(t) - e;(t) are constants because all lengths and angles,
and therefore all dot products, are time-invariant. Thus

@—23: 4@—23: (wxe)=wxc
at — £=“ar £ v '

i=1 i=1

This is true for any vector tied to the body (material vectors), implying that
the Poisson vector is unique for the body.

Dynamics of rigid body

The center of mass of a rigid body moves according to the sum of the external
forces as for a system of particles. A continuous rigid body can be considered
as a continuous distribution of ‘infinitesimal’ masses dm

N
Zmisi —>/ sdm
i=1 v

where the three-dimensional integral is over all points s in the domain V of the
body (dm is the ‘measure’ of the infinitesimal volume element dV', or in other
words dm = pdV, where p(s) is the mass density at point s).

For the motion about the center of mass, the position vectors s; are frozen
into the body hence §; = w x s; for any point of the body. The total angular
momentum for a rigid system of particles then reads

L= Zmisi X & = Zmisi X (wx s8;) = Zmi (\si|2w —8; (8 w)) . (25)
and for a continuous rigid body

L= /V (|s]Pw = s(s-w)) dm. (26)

The Poisson vector is unique for the body, so it does not depend on s and
we should be able to take it out of the sum, or integral. That’s easy for the
|s||*w term, but how can we get w out of the [ s(s-w)dm term?! We need
to introduce the concepts of tensor product and tensors to do this, but we can
give a hint by switching to index notation L — L;, s — s;, |8| = s, w — wy,
with ¢ = 1,2,3 and writing

14 \4

where J is the tensor of inertia of the rigid body, independent of the rotation
vector w.
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5 Curves

5.1 Elementary curves

Recall the parametric equation of a line: r(t) = rg + tvg, where r(t) = OP is
the position vector of a point P on the line with respect to some ‘origin’ O, rg
is the position vector of a reference point on the line and vy is a vector parallel
to the line. Note that this can be interpreted as the linear motion of a particle
with constant velocity vo that was at the point r¢ at time ¢ = 0 and r(¢) is the
position at time t.

More generally, a vector function r(t) of a real variable ¢ defines a curve
C. The vector function r(t) is the parametric representation of that curve and
t is the parameter. It is useful to think of ¢ as time and r(¢) as the position
of a particle at time t. The collection of all the positions for a range of t is
the particle trajectory. The vector Ar = r(t + At) — r(t) is a secant vector
connecting two points on the curve, if we divide Ar by At and take the limit
as At — 0 we obtain the vector dr/d¢ which is tangent to the curve at r(t). If
t is time, then dr/dt = v is the velocity.

dr/df AN
7 N
/ \

/ \
/o) b \
) |
| I
\ /

\ /

\ /
AN /
N 7
N .

Figure 2.2: r(0) = acosf& + asinf g is a circle of radius a centered at O and
dr/df = —asin & + acos g is the tangent vector to the circle at r(6).

The parameter can have any name and does not need to correspond to time.
For instance the circle of radius a centered at O can be parameterized by

r(0) =& acosh + Gasinb, (28)

where 6 is a real parameter that can be interpreted as the angle between the
position vector and the & basis vector.

The circle parameterization is easily extended to an arbitrary ellipse with
major radius a and minor radius b | a centered at C'

r(@) =7, +a cosf+ b sinb. (29)

Likewise,
r(t) =r, +a cosht+ b sinht (30)
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Figure 2.3: r(t) = v, + acost + bsint, ellipse centered at C' with major radius
a and minor radius b.

Figure 2.4: 7(t) = v + acosht + bsinh ¢, hyperbolic branch centered at C.

is a hyperbolic branch in the C, a, b plane, where the hyperbolic cosine and sine

t —t t —t
e +e . A€ —€
—_— sinht = ————

ht £
cos 5 s 5

satisfy
cosh?t — sinh?t =1

for any real ¢.

5.2 Speeding through Curves

Consider a point P (or a Particle, or a Plane, or a Planet) at position or radius
vector r = OP at time t, thus » = 7(t). In cartesian coordinates

r(t) =z(t)Z+y(t)g + 2(t)2 (31)
with fixed basis vector &, ¢, £, while in spherical coordinates
r(t) = r(t)7F(t) (32)

where the magnitude r(¢) and the direction #(¢) are functions of ¢ in general.
The radial direction 7 is a function of the azimuthal angle ¢ and the polar
angle 6, 7(p,0) as seen in Chapter 1, section 5. Thus the time dependence of #
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would specified by 7(p(t),0(t)). Whatever those functions, we know well that
7-de/dt = 0.

The velocity v = dr/dt contains geometric information about the curve
C traced by P(t). Imagine for instance a car on highway 90, or a car on a
rollercoaster track. The position of the car defines the curve (road, track) but
also contains speed information about how fast the car is going along that track.
The concept of arclength — the distance along the curve — allows us to separate
speed information from trajectory information.

Arclength s is specified in differential form as

ds = |dr| = Vdr - dr = \/daz?® + dy? + d=2, (33)

it should not be confused with the differential of distance to the origin r which

is
dr=dir| = d(/@ T ¥ 2) = TV T Ede o (g

Va2 +y? + 22
The arclength s can be defined in terms of the speed v(t) = |v(¢)| by the scalar
differential equation

ds _
dt

dr

— >
=0 (35)

the latter definition picks the direction of increasing s as the direction of travel
as t increases. Thus arclength s is a monotonically increasing function of ¢t and
there is a one-to-one correspondence between s and ¢ (but watch out if the
particle stops and backtracksE[).

Velocity v is

dr dr ds ~
= — = —— = t
T 0 T dsar " (36)

where

.~ dr dr/dt v
t=— = = —
ds |dr/dt|] v (37)

is the unit tangent vector to the curve at point r. Here we think of r as r(s(t)),
that is, position r is given as a function of distance along a known track r(s) (for
instance, 42 miles from Madison westbound on highway 90 specifies a point in 3D
space) and s(t) as a function of time ¢ obtained by integrating ds/dt = v(t) with
respect to time (for instance, given the speed v(t) of a car traveling westbound
on highway 90). In general, we write v = v ¥ for a velocity vector v of magnitude
v and direction ¥, however here we are separating geometric track information
t from speed v along that track and the velocity direction @ is the same as the
track direction, © = £, with the direction of £ given as the direction of increasing
time. So t is the unit tangent to the curve at  and also the direction of motion
as t increases, .

2That is dangerous and illegal when traveling westbound on Highway 90, but that might
happen on a roller coaster where the point is to jerk you around!
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Acceleration a is

dPr  dv dvds  d(vi) dv, ,db

= — = — =— = = —t
a2 " dt dsdt - ds 0 Vdst Y g (38)
_d (1,5 9 .
=1 (2v>t+m; n
where ~
N
I _fh=gh (39)

is the rate of change of the curve direction £ with respect to distance along the
curve s. Since -t = 1, we have t- df/ds = 0 and 7 is perpendicular to . Indeed
71 points in the direction of the turn and is a unit vector that is normal (that
is orthogonal or perpendicular) to the curve at r. The curvature

i
ds

1
- = (40)

K =

has units of inverse length and can thus be written as 1/R where R = R(s) is the
local radius of curvature. Thus yields a decomposition of the acceleration
a in terms of a component in the curve direction £ and a component in the turn
direction #. The A component kv = v?/R is the centripetal acceleration of the
particle. This result is completely general, holding for any curve, not just for
circles, and in general kK = k(s), v = v(s) vary along the curve.

Jerk 7 is
_dr_da_dads
T=a T w Tds
(1, ; dv dt d dn
_ 1 i 20V at a9\ 3
v (211) +v dsds+vds(m] )+ Ko T .
d? 12A+d(3)ﬁ+3ﬁ (41)
= —v — (kv KU° —
ds? \ 2 ds
= d—Q 1 2) — k23 t+—(nv3)ﬁ+n'rv3i)
52\ 2
where i
CTZ —rb— ki (42)
in terms of the binormal .
b2txn (43)
and the torsion .
~ dn db
LAp. 20 2
T(s)=b T T P (44)

since 7u-b =0 and £- 7 = 0 with dt/ds £ k7. The binormal b will be constant
and the torsion 7 will be 0 for a planar curve.
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The cross product of with
vXxa=7XxiF=rv>b (45)

provides another way to obtain the curvature x and binormal b directly from
the velocity and acceleration without passing through arclength, where v =7 =
dr/dt, a = # = d?r/dt? and v = |#|. The dot product of with (41)),

(vxa)-j=Fx#) -7 = (k7 (46)

yields an expression for the torsion 7 once v and k are known.

5.3 Integrals along curves, or ‘line integrals’

Line element: Given a curve C, the line element denoted dr is an ‘infinitesimal’
secant vector. This is a useful shortcut for the procedure of approximating the
curve by a succession of secant vectors Ar, = r, —r,_1 where r,_; and r,, are
two consecutive points on the curve, with n = 1,2,..., N integer, then taking
the limit max |Ar,| = 0 (so N — 00). In that limit, the direction of the secant
vector Ar,, becomes identical with that of the tangent vector at that point. If
an explicit parametric representation r(¢) is known for the curve then

_dr(1)
S dt

dr

dt (47)

The typical ‘line’ integral along a curve C has the form | ¢ F'-dr where F(r)
is a vector field, i.e. a vector function of position. If F(r) is a force, this integral
represent the net work done by the force on a particle as the latter moves along
the curve. We can make sense of this integral as the limit of a sum, namely
breaking up the curve into a chain of N secant vectors Ar,, as above then

N
F -dr = lim F,-Ar, 48
A max |Ar,|—0 n;l ( )

where F',, is an estimate of the average value of F' along the segments r,_1 —
rn. A simple choice is F,, = F(r,) but better choices are the trapezoidal
rule Fy, = 5 (F(ry,) 4+ F(r,_1)), or the midpoint rule F,, = F (3(r, +7,-1)).
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These different choices for F',, give finite sums that converge to the same limit,
fc F - dr, but the trapezoidal and midpoint rules will converge faster for nice
functions, and give more accurate finite sum approximations.

If an explicit representation 7(t) is known then we can reduce the line integral
to a regular Calc I integral:

/c Fodr— /tt <F(r(t)) - d’:i(tt)) dt, (49)

where 7(t,) is the starting point of curve C and r(t) is its end point. These
may be the same point even if ¢, # ¢, (e.g. integral once around a circle from
6 =0 to 6 =2m).

Likewise, we can use the limit-of-a-sum definition to make sense of many
other types of line integrals such as

/Cf(r) |dr|, /CF\dr|, /Cf('r)dm /Cder.

The first one gives a scalar result and the latter three give vector results. Recall
from the previous section that ds = |dr| is differential arclength, not to be
confused with dr = d|r|, the differential of distance to the origin.

» One important example is

N

ds:/ dr| = lim Ar, 50
/c [Jar| = tim 3 [ar,| (50)

n=1

which is the length of the curve C from its starting point r, = 7 to its end
point 7, = ry. If a parametrization r = r(¢) is known then

ty
/‘[ | /
C ta

where 7, = 7(t,) and rp, = r(t;). That’s almost a Calc I integral, except for
that |dt|, what does that mean?! Again you can understand that from the limit-
of-a-sum definition with ¢t = t,, ty = tp and At,, = t, — t,_1. If t, < tp then
At,, > 0 and dt > 0, so |dt| = dt and we’re blissfully happy. But if ¢, < t, then
At, <0 and dt <0, so |dt| = —dt and

ddff’\ ] (51)

/ttb(...)dt/ta(.u)dt, it t, >ty (52)

tp

a

» A special example of a fc F x dr integral is

ol B dr(t)
dr= 1 n X Ar, = t dt
/Cr X dr \Arlir\l—w nZ::l r, X Ar / (r( ) X o ) (53)

ta

This integral yields a vector 2A2 whose magnitude is twice the area A swept
by the position vector r(¢) when the curve C lies in a plane perpendicular to 2
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and O is in that plane (recall Kepler’s law that ‘the radius vector sweeps equal
areas in equal times’). This follows from the fact that

%rn X Ar, = AA 2

is the area AA of the triangle with sides r, and Ar,.

LT T~ Ary, C

’ ’

If C and O are not coplanar then the vectors r,, x Ar,, are not necessarily
in the same direction and their vector sum is not the area swept by r. In that
more general case, the surface is conical and to calculate its area S we would
need to calculate S = 3 [. v x dr|.

Exercises:

1. Show that and can be reduced to the standard equations for an
ellipse and a hyperbola, respectively, by choosing an appropriate basis and
eliminating the parameter.

2. What is the geometric interpretation for the angle 6 in ? Is it the
same as the polar angle? [Hint: consider the circles of radius a and b]

3. Show that 7(t) = acosf + bsinf is an ellipse even if a and b are not
orthogonal. How do you find the major and minor radii vectors?

4. What is a curve with constant jerk? Find »(¢) for such a curve.

5. Consider the curve r(t) = ro(1 — t)? + 2t(1 — t)a + t?>r;. Show that the
curve is planar. Show that the curve passes through the points ry and
r1 and that v(0.5) is parallel to 1 — rg. What are v(0) and v(1) where
v = dr/dt? Sketch the curve in a generic case.

6. What is the curve described by 7(t) = a coswt & + asinwt § + bt 2, where
a, b and w are constant real numbers and &, 9, 2 are a cartesian basis?
Sketch the curve. What are the velocity, acceleration and jerk for this
curve? Find ¢, 7 and b for this curve. What are the curvature and torsion
for this curve?
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10.

11.

12.

13.

14.

6

6.1
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. (i) Show that the tangent, normal and binormal unit vectors each satisfy

the vector differential equation

dv

— =w(s) xv

7 = @)

with w = 7 + kb. Interpret geometrically. (i) Write each equation in the
intrinsic (Frenet) frame ¢, 7, b.

. Consider the vector function r(6) = r. + acosf e; + bsinf es, where r,

e1, e, a and b are constants, with e; - e; = d;;. What kind of curve is
this? Next, assume that r., e; and es are in the same plane. Consider
cartesian coordinates (z,y) in that plane such that r = x& + yg. Assume
that the angle between e; and & is a. Derive the equation of the curve
in terms of the cartesian coordinates (x,y) (i) in parametric form, (ii) in
implicit form f(x,y) = 0. Simplify your equations as much as possible.

. Generalize the previous exercise to the case where r. is not in the same

plane as e; and ey. Consider general cartesian coordinates (z,y, z) such
that » = & +yy + zZ. Assume that all the angles between e; and e; and
the basis vectors {&, g, 2} are known. How many independent angles is
that? Specify those angles. Derive the parametric equations of the curve
for the cartesian coordinates (x,y, z) in terms of the parameter 6.

Derive integrals for the length and area of the planar curve in the previous
exercise. Clean up your integrals and compute them — if possible (one is
trivial, the other is not).

Calculate |[ ¢ dr and fc 7-dr along the curve of the preceding exercise from
r(0) to r(—3m/2). What are these integrals if C is an arbitrary curve from
point A to point B?

Calculate [, B - dr and [, B 